Palladium-Catalyzed Oxidative Carbonylation of Aromatic C–H Bonds with Alcohols using Molybdenum Hexacarbonyl as the Carbon Monoxide Source

Zechao Wang,^a Yahui Li,^a Fengxiang Zhu,^a and Xiao-Feng Wu^{a,*}

^a Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany E-mail: xiao-feng.wu@catalysis.de

Received: April 13, 2016; Revised: April 29, 2016; Published online:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201600395.

1

Abstract: With molybdenum hexacarbonyl as the carbon monoxide source, a general palladium-catalyzed carbonylative transformation of the C–H bond on aromatic rings to produce esters has been developed. Good yields of the corresponding products have been obtained with wide functional group tolerance and excellent regioselectivity. A variety of aliphatic alcohols are suitable reactants here.

Keywords: carbonylation; C–H activation; molybdenum hexacarbonyl; palladium catalyst; 2-phenylpyridines

Carboxylic esters are important chemicals with wide applications in fine chemicals, natural products, and polymers.^[1] Traditionally, esters are mainly prepared from the corresponding carboxylic acids or their derivatives and alcohols. Alternatively, direct oxidative esterifications of aldehydes, alcohols and arenes with alcohols have been investigated as well.^[2]

On the other hand, transition metal-catalyzed carbonylation reactions have already become a powerful tool in modern organic synthesis.^[3] By incorporating carbon monoxide as an inexpensive and abundant C_1 source, numerous carbonyl-containing compounds can be easily prepared. Depending on the nucleophiles, esters can be effectively produced when alcohols are added (called alkoxycarbonylation). However, most of the known alkoxycarbonylation procedures need aryl halides or analogues as the starting materials which require pre-activation steps.

Based on the achievements in transition metal-catalyzed C–H activation reactions,^[4] the merging of carbonylation and C–H bond activation in ester synthesis will be attractive. Indeed, some interesting transformations have been achieved recently. In 2009, a general rhodium-catalyzed carbonylation of arenes to produce esters was reported.^[5] By using Oxone as the oxidant under a carbon monoxide (2 bar) atmosphere, the desired esters were formed in good to excellent yields with primary alcohols. Compared with expensive rhodium catalysts, palladium catalysts were explored in this topic as well. In 2010, Z. J. Shi and coworkers reported a novel palladium-catalyzed orthocarbonylation of N,N-dimethylbenzylamines to produce the corresponding ortho-methyl benzoates.^[6] With $Cu(OAc)_2$ as the oxidant, moderate to good yields of the desired products were isolated. LiCl was found to play an important role here. In 2013, B. F. Shi and co-workers reported an interesting palladiumcatalyzed alkoxycarbonylation procedure for the synthesis of aryl carboxylic esters via C-H activation under an atmospheric pressure of carbon monoxide.^[7] With oxygen as the co-oxidant, good yields of the desired products can be achieved with 2-arylpyridines and primary alcohols as the reactants. More recently, Lei^[8] and Guan^[9] reported their achievements on palladium-catalyzed carbonylative syntheses of o-aminobenzoates from N-alkylanilines via C->H activation. With a copper(II) salt, KI and oxygen as the oxidation system, good yields of o-aminobenzoates can be isolated in both cases.

However, the above discussed procedures all require carbon monoxide gas as the CO source and primary or secondary alcohols as the reaction partner. Although carbon monoxide, as one of the cheapest C_1 sources, does hold a non-replaceable position in industrial scale applications, its high toxicity and odourless character limit its usage in laboratories. Hence, the development of new procedure based on CO surrogates will be interesting for the synthetic community.^[10] Among all the candidates, Mo(CO)₆ as a nontoxic solid is an attractive CO source.^[11] Against this background, we wish to report herein a general palladium-catalyzed oxidative carbonylation of aromatic C–H bonds with Mo(CO)₆ as the CO source. In the presence of only 0.4 equivalent of Mo(CO)₆, various

Adv. Synth. Catal. 0000, 000, 0-0Wiley Online LibraryThese are not the final page numbers!

kinds of alcohols were carbonylated in moderate to good yields. In addition to 2-arylpyridine derivatives, 1,2-diphenyldiazene, 1-phenyl-1*H*-pyrazole and 2-phe-nylpyrimidine are all suitable substrates here. Not only primary alcohols, but also secondary and tertiary alcohols are applicable as reaction partners.

Our initial investigation was started with 2-phenylpyridine (**1a**, 1 equiv.) and methanol (**2a**, 15 equiv.), $Pd(OAc)_2$,(10 mol%), $[Mo(CO)_6]$ (1 equiv.), BQ (benzoquinone, 2 equiv.), NaOAc (2 equiv.) and Ag₂CO₃ (3 equiv.) in chlorobenzene and, to our delight, a 45%

Table 1. Optimization of the reaction conditions.^[a]

Entry	Temp.	[°C] Base or A	cid Oxidant	Solvent Yiel	d [%] ^[b]
1	130	NaOAc	Ag ₂ CO ₃	PhCl	45
2	130	NaOAc	Ag ₂ CO ₃ (2 equiv.) PhCl	40
3	130	NaOAc	-	PhCl	23
4	130	-	Ag ₂ CO ₃	PhCl	36
5	130	NaOAc (4 equ	uiv.) Ag ₂ CO ₃	PhCl	41
6	130	NaOAc	Ag ₂ O	PhCl	trace
7	130	NaOAc	AgNO ₃	PhCl	34
8	130	NaOAc	Cu(OAc) ₂	PhCl	trace
9	130	NaOAc	CuCl ₂	PhCl	trace
10	130	NaOAc	CuO	PhCl	20
11	130	NaOAc	K ₂ S ₂ O ₈	PhCl	trace
12	130	NaOAc	oxone	PhCl	29
13	130	Na ₂ CO ₃	Ag ₂ CO ₃	PhCl	10
14	130	NaHCO ₃	Ag ₂ CO ₃	PhCl	12
15	130	KOAc	Ag ₂ CO ₃	PhCl	8
16	130	K ₂ CO ₃	Ag ₂ CO ₃	PhCl	20
17	130	Cs_2CO_3	Ag ₂ CO ₃	PhCl	trace
18	130	Li ₂ CO ₃	Ag ₂ CO ₃	PhCl	trace
19	130	DBU	Ag ₂ CO ₃	PhCl	0
20	130	HOAc	Ag ₂ CO ₃	PhCl	0
21	100	NaOAc	Ag ₂ CO ₃	MeOH	43
22	100	NaOAc	Ag ₂ CO ₃	DCE	81
23	130	NaOAc	Ag ₂ CO ₃	DMSO	0
24	130	NaOAc	Ag ₂ CO ₃	HOAc	0
25	80	NaOAc	Ag ₂ CO ₃	DCE	56 ^[c]
26	80	NaOAc	Ag ₂ CO ₃	DCE	57 ^[d]
27	80	NaOAc	Ag ₂ CO ₃	DCE	85 (80) ^[e]
28	80	NaOAc	Ag ₂ CO ₃	DCE	82 ^[f]

^[a] Reaction conditions: **1a** (0.5 mmol, 1 equiv.), **2a** (7.5 mmol, 15 equiv.), $[Mo(CO)_6]$ (0.5 mmol, 1 equiv.), $Pd(OAc)_2$ (0.05 mmol, 10 mol%), BQ (1 mmol, 2 equiv.), base or acid (1 mmol, 2 equiv.) and oxidant (1.5 mmol, 3 equiv.), solvent (2 mL) for 18 h in a sealed tube.

- ^[b] Yields were determined by GC-MS. Isolated yield is given in parenthesis.
- [c] $[Mo(CO)_6]$ (0.1 mmol, 0.2 equiv.).
- [d] $[Mo(CO)_6]$ (0.15 mmol, 0.3 equiv.).
- [e] $[Mo(CO)_6]$ (0.2 mmol, 0.4 equiv.).
- ^[f] $[Mo(CO)_6]$ (0.25 mmol, 0.5 equiv.).

Adv. Synth. Catal. **0000**, *000*, 0–0

These are not the final page numbers! **77**

yield of the desired carbonylation product **3a** was formed after 18 h at 130 °C (Table 1, entry 1). In our further optimization studies, we found that the use of BQ was essential for the formation of the carbonylation products **3**. Presumably, BQ can facilitate the reductive elimination step.^[12] The yield of product **3a** was decreased when we changed the amounts of NaOAc or Ag₂CO₃ used (Table 1, entries 2–5). Various other oxidants such as Ag₂O, AgNO₃, Cu(OAc)₂, CuCl₂, CuO, K₂S₂O₈, and Oxone were tested in this reaction as well (Table 1, entries 6–12). However, none of them could give improved results.

Then the effects of other bases and acids were investigated (Table 1, entries 13–19). NaOAc was found to be the best base here, whereas Na_2CO_3 , NaHCO₃,

^[a] 2-Phenylpyridine **1a** (0.5 mmol), alcohol **2** (7.5 mmol), [Mo(CO)₆] (0.2 mmol), Pd(OAc)₂ (0.05 mmol), BQ (1 mmol), NaOAc (1 mmol) and Ag₂CO₃ (1.5 mmol) in DCE (2 mL) at 80 °C for 18 h, isolated yields.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 2. Carbonylation of 2-phenylpyridine with different alcohols.^[a]

KOAc, K_2CO_3 , Cs_2CO_3 , and Li_2CO_3 were all found to be inferior. DBU inhibited the reaction completely (Table 1, entry 19). No carbonylation product could be detected when AcOH was added (Table 1, entry 20). The solvent was found to function critically in this reaction. The yield decreased to 43% when MeOH was applied as the solvent (Table 1, entry 21) and no desired product can be observed when DMSO (dimethyl sulfoxide) or AcOH was used (Table 1, entries 23 and 24). However, 81% of the desired product **3a** can be formed when DCE (1,2-dichloroethane) was applied as the reaction medium (Table 1, entry 22). To our surprise, the yield can even be further improved by using 0.4 equiv. of Mo(CO)₆ (Table 1, entry 27).

Table 3. Carbonylation of arenes with methanol.^[a]

With the optimized conditions in hand (Table 1, entry 27), a screening of different alcohols was performed subsequently. As shown in Table 2, various primary, secondary and tertiary alcohols worked well under our reaction conditions and gave the corresponding esters in moderate to good yields. Nevertheless, no desired product could be detected when phenol, benzyl alcohol or amines was applied instead of aliphatic alcohols.

Successively, various directed arenes (**1b–j**) were screened with methanol (Table 3). Delightfully, a series of functional groups, such as Me, OMe, CF_3 and Br were compatible under our conditions, and gave the desired carbonylation products **4** in moderate to good isolated yields (Table 3, entries 1–4). In

^[a] Reaction conditions: **1** (0.5 mmol), methanol **2a** (7.5 mmol), BQ (1 mmol), $[Mo(CO)_6]$ (0.2 mmol), Pd(OAc)₂ (0.05 mmol), NaOAc (1 mmol) and Ag₂CO₃ (1.5 mmol) in DCE (2 mL) at 80 °C for 18 h.

^[b] Isolated yields.

Adv. Synth. Catal. 0000, 000, 0-0

These are not the final page numbers! **77**

 $\ensuremath{\mathbb O}$ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

the case of the analogues 1f and 1g, the reaction worked efficiently and gave the corresponding carbonylation product **4f** and **4g** in 61% and 64% yields, respectively. Interestingly, 1,2-diphenyldiazene, 1phenyl-1*H*-pyrazole and 2-phenylpyrimidine as examples of substrates with easily removable directing groups were found to be suitable substrates here as well (Table 3, entries 7–9).^[13] Nitrogen heterocycles, such as pyrazole and pyrimidine, served as efficient directing groups and generated the carbonylation products in good yields under the optimal conditions (Table 3, entries 7 and 8). Good yields of the desired products were isolated (4i-4j; 40-63%). It's important to mention that 2-ethylpyridine, aniline, acetanilide, N,N-dimethylbenzylamine, and N,N-dimethylbenzamide were all tested under our standard conditions, but no carbonylation products could be observed.

A plausible reaction pathway is proposed on the basis of the above results and previous studies (Scheme 1).^[14] The reaction started with C–H bond activation of 2-phenylpyridine **1a** which generates dimeric palladium intermediate **A**, that undergoes ligand exchange to provide intermediate **B**. Subsequently, a six-membered cyclic intermediate **C** is generated through the coordination and insertion of CO into the Pd–C bond. The final product will be eliminated after reductive elimination of intermediate **C** promoted by BQ which could also acts as a co-oxidant. The meanwhile formed Pd(0) will be re-oxidized to Pd(II) to complete the catalytic cycle.

In conclusion, we have developed a mild and general procedure for palladium-catalyzed alkoxycarbonylation of arenes with $Mo(CO)_6$ as the CO source. A

Scheme 1. Proposed mechanism.

Adv. Synth. Catal. 0000, 000, 0-0

variety of primary, secondary and tertiary alcohols can be applied as substrates here. Additionally, only 0.4 equivalent of $Mo(CO)_6$ as a solid and safe CO source is required for this new procedure. High regioselectivity and good functional group tolerance can be demonstrated, the desired carbonylation products were isolated in moderate to good yields.

Experimental Section

General Procedure for Palladium-Catalyzed Oxidative Carbonylation

In a 25-mL sealed tube, a mixture of 2-substituted pyridine **1** (0.5 mmol, 1.0 equiv.), alcohol **2** (7.5 mmol, 15 equiv.), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 10 mol%), Ag₂CO₃ (414 mg, 1.5 mmol, 3.0 equiv.), Mo(CO)₆ (52.8 mg, 0.2 mmol, 0.4 equiv.), BQ (108 mg, 1.0 mmol, 2 equiv.) and NaOAc (82 mg, 1.0 mmol, 2 equiv.) in DCE (2.0 mL) was stirred at 80 °C under air. After 18 h, the mixture was cooled to room temperature. The residue was diluted with H₂O (10 mL) and extracted with EtOAc (3×10 mL). The organic solvent was then evaporated under vacuum. The crude products were purified by using column chromatography on silica gel (pentane/ethyl acetate) to give the pure products.

Acknowledgements

We thank the Chinese Scholarship Council for financial support. We appreciate the general support from Professor Matthias Beller in LIKAT. We thank the analytical department of Leibniz-Institute for Catalysis at the University of Rostock for their excellent analytical service.

References

- [1] Esterification: methods, reactions, and applications, (Ed.: J. Otera), Wiley-VCH, Weinheim, **2010**.
- [2] a) K. Ekoue-Kovi, C. Wolf, Chem. Eur. J. 2008, 14, 6302–6315; b) D. Milstein, Top. Catal. 2010, 53, 915–923; c) S. Tang, J. Yuan, C. Liu, A. Lei, Dalton Trans. 2014, 43, 13460–13470; d) H. Miyamura, S. Kobayashi, Acc. Chem. Res. 2014, 47, 1054–1066; e) B. Liu, F. Hu, B. F. Shi, ACS Catal. 2015, 5, 1863–1881.
- [3] a) C. F. J. Barnard, Organometallics 2008, 27, 5402–5422; b) A. Brennführer, H. Neumann, M. Beller, Angew. Chem. 2009, 121, 4176–4196; Angew. Chem. Int. Ed. 2009, 48, 4114–4133; c) X. F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986–5009; d) X. F. Wu, H. Neumann, M. Beller, Chem. Rev. 2013, 113, 1–35; e) X.-F. Wu, H. Neumann, ChemCatChem 2012, 4, 447–458; f) X.-F. Wu, H. Neumann, M. Beller, ChemSusChem 2013, 6, 229–241; g) L. Wu, X. Fang, Q. Liu, R. Jackstell, M. Beller, X.-F. Wu, R. Jackstell, H. Neumann, M. Beller, Acc. Chem. Res. 2014, 47,

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! **77**

1041–1053; i) X. F. Wu, Chem. Eur. J. 2015, 21, 12252–12265.

- [4] For selected reviews on C-H activation, see: a) X. Chen, K. M. Engle, D. H. Wang, J. Q. Yu, Angew. Chem. 2009, 121, 5196-5217; Angew. Chem. Int. Ed. 2009, 48, 5094-5115; b) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976-10011; Angew. Chem. Int. Ed. 2009, 48, 9792-9826; c) I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890-931; d) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068-5083; e) K. M. Engle, T. Mei, M. Wasa, J. Q. Yu, Acc. Chem. Res. 2012, 45, 788-802; f) S. D. Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461-1479; g) V. S. Thirunavukkarasu, S. I. Kozhushkov, L. Ackermann, Chem. Commun. 2014, 50, 29-39; h) J. Q. Yu, Z. Shi, Top. Curr. Chem. 2010, 292, 1-378; i) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074–1086; j) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; k) J. Wencel-Delord, T. Drçge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740-4761; 1) F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906-6919; m) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107-1295; n) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169.
- [5] Z. H. Guan, Z. H. Ren, S. M. Spinella, S. Yu, Y. M. Liang, X. Zhang, J. Am. Chem. Soc. 2009, 131, 729–733.

- [6] H. Li, G. X. Cai, Z. J. Shi, Dalton Trans. 2010, 39, 10442–10446.
- [7] a) B. Liu, B.-F. Shi, Synlett 2013, 2274–2278; b) B. Liu,
 H.-Z. Jiang, B.-F. Shi, Org. Biomol. Chem. 2014, 12, 2538–2542.
- [8] W. Li, Z. Duan, R. Jiang, A. Lei, Org. Lett. 2015, 17, 1397–1400.
- [9] M. Chen, Z. H. Ren, Y. Y. Wang, Z. H. Guan, J. Org. Chem. 2015, 80, 1258–1263.
- [10] a) T. Morimoto, K. Kakiuchi, Angew. Chem. 2004, 116, 5698–5706; Angew. Chem. Int. Ed. 2004, 43, 5580–5588;
 b) P. Gautam, B. M. Bhanage, Catal. Sci. Technol. 2015, 5, 4663–4702.
- [11] L. R. Odell, F. Russo, M. Larhed, Synlett 2012, 685– 698.
- [12] a) X. Chen, J. J. Li,, X. S. Hao, C. E. Goodhue, J. Q. Yu, *J. Am. Chem. Soc.* 2006, *128*, 78–79; b) X. Chen, C. E. Goodhue, J. Q. Yu, *J. Am. Chem. Soc.* 2006, *128*, 12634–12635.
- [13] a) G. Rousseau, B. Breit, Angew. Chem. 2011, 123, 2498–2543; Angew. Chem. Int. Ed. 2011, 50, 2450–2494;
 b) C. Wang, Y. Huang, Synlett 2013, 145–149;
 c) B. Liu, B. F. Shi, Chem. Commun. 2015, 51, 5093–5096;
 d) L. Zhang, H. Li, Z. Shi, ChemCatChem 2014, 6, 3069–3074.
- [14] J. H. Chu, P. S. Lin, M. J. Wu, Organometallics 2010, 29, 4058–4065.

UPDATES

6 Palladium-Catalyzed Oxidative Carbonylation of Aromatic C-H Bonds with Alcohols using Molybdenum Hexacarbonyl as the Carbon Monoxide Source

Adv. Synth. Catal. 2016, 358, 1-6

Zechao Wang, Yahui Li, Fengxiang Zhu, Xiao-Feng Wu*

6