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Abstract: The conjugate addition of a homochiral lithium amide to
a x-hydroxy-a,b-unsaturated ester, followed by a one-pot, ring-
closure–N-debenzylation protocol has been used in the asymmetric
syntheses of (S)-coniine and (R)-d-coniceine (isolated as the corre-
sponding hydrochloride salts) and the bicyclic core of stellettamide
A.
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Enantiopure piperidines are common structural motifs
present in a range of natural products and biologically sig-
nificant molecules,1 and as such there has been a great
deal of interest in their synthesis. These syntheses have
employed a vast range of synthetic methods, including
manipulation of the chiral pool,2 chiral-auxiliary-based
approaches,3 asymmetric catalysis,4 and the conjugate ad-
dition of homochiral lithium amides. For example,
O’Brien et al. have shown that addition of lithium amide
(S)-1 to a,b-unsaturated ester 2 gives the corresponding x-
chloro-b-amino ester 3 which may then be cyclised, after
oxidative N-debenzylation, via an intramolecular SN2-
type displacement to give piperidine 5 (Scheme 1).5

Scheme 1 Reagents and conditions: (i) (S)-N-(a-methylbenzyl)-N-
(p-methoxybenzyl)amine, BuLi, THF, –78 °C, 30 min; (ii) CAN,
MeCN–H2O (5:1), 0 °C, 30 min; (iii) K2CO3, NaI, EtOH, reflux, 16 h.

As part of our ongoing research program concerning the
application of enantiopure lithium amides6 as homochiral
ammonia equivalents in total synthesis7 we became inter-
ested in developing methodology for one-pot processes
involving cyclisation with concomitant N-debenzylation
of a b-amino ester. For example, we have recently report-

ed that iodoamination of 6 upon treatment with I2 occurs
with in situ loss of the N-a-methylbenzyl protecting
group. The reaction proceeds via quaternary ammonium
ion 7 that undergoes preferential loss of the N-a-methyl-
benzyl cation, which is then trapped by acetonitrile in a
Ritter reaction to give racemic N-a-methylbenzylacet-
amide in 72% yield in addition to pyrrolidine 8 which was
isolated in 63% yield and >99:1 dr (Scheme 2).8

Scheme 2 Reagents and conditions: (i) I2, NaHCO3, MeCN, r.t., 20 h.

We envisaged that a similar one-pot procedure may be
employed in the synthesis of homochiral piperidine scaf-
folds 9 from the corresponding x-halo-b-amino esters 10
via an intramolecular SN2-type displacement of the halide
by the amino substituent with concomitant loss of the N-
a-methylbenzyl group. It was anticipated that the cyclisa-
tion precursors 10 could either be accessed directly from
the conjugate addition of enantiopure lithium amides 11 to
x-halo-a,b-unsaturated esters 12 or via the intermediacy
of the known x-hydroxy-b-amino esters 149 which can be
readily produced via the addition of a lithium amide 11 to
x-hydroxy-a,b-unsaturated ester 13, which in turn is de-
rived from commercially available d-valerolactone
(Scheme 3).

x-Iodo-, x-bromo-, and x-chloro-a,b-unsaturated esters
16–18 were synthesized from tert-butyl 7-hydroxyhept-2-
enoate 1310 via standard procedures.11 Addition of lithium
amide (R)-15 to x-iodo substituted 16 gave exclusively the
known transhexacin derivative 19,12 resulting from in situ
cyclisation of the intermediate lithium b-amino enolate
onto the pendant x-iodo functionality,13 in 58% isolated
yield and >99:1 dr. Conjugate addition of (R)-15 to x-bro-
mo-substituted 17 resulted in an inseparable 56:44 mix-
ture of 19 and x-bromo-b-amino ester 20, respectively,
both as single diastereomers (>99:1 dr), consistent with
the decreased reactivity of the x-bromo group towards SN2
displacement. However, addition of (R)-15 to x-chloro-
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substituted 18 gave exclusively x-chloro-b-amino ester 21
in >99:1 dr, which was isolated in 76% yield and >99:1 dr
after purification (Scheme 4). Attempted cyclisation and
in situ N-debenzylation by heating 21 in MeCN at 80 °C
for 16 hours unfortunately returned only starting material,
even in the presence of 1.5 equivalents of AgBF4.

Scheme 4 Reagents and conditions: (i) (R)-15, THF, –78 °C, 2 h.

Attention next turned towards our second strategy involv-
ing the synthesis of x-iodo-b-amino ester 23 from the cor-
responding known x-hydroxy-b-amino ester 22. Thus,
iodination11c of 229 (>99:1 dr) gave 23 in 85% isolated
yield as a single diastereomer. Heating a solution of 23 in
MeCN for 16 hours at reflux resulted in a 48:49:3 mixture
of starting material 23, the desired piperidine 9 and w-
unsaturated b-amino ester 24, respectively, in addition to
racemic N-a-methylbenzylacetamide 25 (resulting from
Ritter reaction of the a-methylbenzyl cation). However,
repetition of this reaction in the presence of 1.5 equiva-

lents of AgBF4 resulted in complete consumption of start-
ing material, giving a 63:37 mixture of 9 and 24,
respectively, in addition to 25. Purification of this mixture
enabled isolation of 9 in 55% yield, 24 in 33% yield and
>99:1 dr, and (RS)-25 in 49% yield (Scheme 5). The for-
mation of 24 in this case is consistent with silver-promot-
ed elimination of HI from 23.

Scheme 5 Reagents and conditions: (i) Ph3P, imidazole, I2, PhMe–
MeCN (4:1), 65 °C, 2 h; (ii) AgBF4, MeCN, 80 °C, 16 h.

Since it was probable that loss of the benzylic cation could
be rate-limiting, the corresponding N-(p-methoxy-a-
methylbenzyl)-substituted analogue 27, which was pro-
duced in 76% yield and >99:1 dr from the conjugate addi-
tion of (R)-26 to 13, was also investigated. Iodination11c of
27 gave x-iodo-b-amino ester 28 in 91% yield and >99:1
dr. Subsequent treatment of 28 under the AgBF4-promot-
ed cyclisation conditions gave an 86:14 mixture of 9 and
a compound which was tentatively assigned as w-unsatur-
ated b-amino ester 29, although only 9 was isolated in
84% yield after purification. Interestingly, heating a solu-
tion of 28 in MeCN at reflux for 16 hours (in the absence
of AgBF4) caused complete consumption of starting ma-
terial, to give 9 and p-methoxystyrene 30 which were iso-
lated in 94% and 65% yield, respectively. The one-pot
conversion of x-hydroxy-b-amino ester 27 into 9 was next
attempted by heating a solution of 27 in MeCN in the pres-
ence of I2, Ph3P, and imidazole. Under these conditions
cyclisation and in situ N-debenzylation gave piperidine 9
in 75% isolated yield (in 3 steps and 31% overall yield
from d-valerolactone) and 30 in 33% isolated yield
(Scheme 6).

With methodology for the synthesis of piperidine 9 estab-
lished, attention was turned towards the conversion of 9
into the Hemlock alkaloids (S)-coniine 34 and (R)-d-coni-
ceine 37. Reduction of 9 with DIBAL-H gave the corre-
sponding alcohol 31 in 99% yield. Subsequent oxidation
of 31 under Swern conditions gave aldehyde 32 in quanti-
tative yield.14 Wittig reaction of b-amino aldehyde 32
gave olefin 33 in 52% yield which, when subjected to tan-
dem hydrogenation–hydrogenolysis conditions gave 34,
which was isolated as the corresponding hydrochloride
salt, in 82% yield (Scheme 7).15

Scheme 3 Retrosynthetic analysis of enantiopure piperidine 9
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For the synthesis of (R)-d-coniceine 37, chain extension of
aldehyde 32 gave enol ether 35 in 81% yield as a 52:48
mixture of geometric isomers. Hydrolysis of this mixture
gave g-amino aldehyde 36 in quantitative yield, which
upon treatment with Pd(OH)2/C under 1 atm of H2 under-
went one-pot hydrogenolysis, imine formation, and in situ
reduction to give (R)-d-coniceine 37, which was isolated
as the corresponding hydrochloride salt, in 94% yield
(Scheme 8).17

Further efforts focused upon the elaboration of 9 to give
40 (the bicyclic core of stellettamide A).18 Thus, alkyla-
tion of 9 with 2.0 equivalents of LiTMP and 3.0 equiva-
lents of methyl bromoacetate proceeded to 70%
conversion giving 38 in 90:10 dr.19,20 Attempted purifica-
tion of the crude reaction mixture gave a 77:23 mixture of
38 (98:2 dr) and recovered starting material 9, respective-
ly. Treating this mixture under hydrogenolysis conditions
led to successful N-debenzylation, although heating the
crude reaction mixture at reflux in CHCl3 for 16 hours was

required to promote cyclisation to give hexahydroindoli-
zin-3-one 39.19 Subsequent purification enabled isolation
of 39 in 53% yield and >99:1 dr. The relative configura-
tion within 39 was confirmed by 1H NMR NOE analysis
which showed strong reciprocal enhancements between
the C(1)H and C(8a)H protons. Subsequent treatment of
39 with LiAlH4 gave (1R,8aR)-1-(hydroxymethyl)-octa-
hydroindolizine 40 in 95% yield and >99:1 dr
(Scheme 9).21–23

Scheme 9 Reagents and conditions: (i) LiTMP, THF, –78 °C then
BrCH2CO2Me, –78 °C to r.t., 16 h; (ii) Pd(OH)2/C (20 wt%), H2 (1
atm), MeOH, r.t., 48 h; (iii) CHCl3, reflux, 16 h; (ix) LiAlH4, THF,
reflux, 16 h.

In conclusion, a one-pot ring closure with concomitant N-
debenzylation protocol for the synthesis of tert-butyl (R)-
(N-benzylpiperidin-2¢-yl)acetate has been developed and
subsequently employed in the total asymmetric syntheses
of (S)-coniine and (R)-d-coniceine (as the corresponding
hydrochloride salts), and the bicyclic core of stellettamide
A.
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