

0040-4039(95)00154-9

A Novel Bicyclic Orthoester as a Chiral Auxiliary: Application to the Synthesis of α -Hydroxy Acids

D. Dubé*, D. Deschênes, J. Tweddell, H. Gagnon, R. Carlini

Merck Frosst Centre For Therapeutic Research, P.O. Box 1005, Pointe Claire-Dorval, Québec, Canada H9R 4P8

Abstract: Chiral α -keto orthoesters derived from tartaric acid can be reduced diastereoselectively. Hydrolysis affords optically active α -hydroxy acids and the recovered auxiliary.

Our interest in the design of a new auxiliary for asymmetric synthesis led us to investigate orthoesters¹ as a possible complement to the more conventional approaches (chiral ester, amide etc.).^{2,3} Chiral orthoesters have recently been reported as acylating agents,⁴ but the idea of using them as an auxiliary has not been explored to date. We chose to test this concept in the stereoselective synthesis of α -hydroxy acids because they are important chirons or building blocks in organic synthesis.^{5,6} Herein, we disclose the first successful application of this approach. The level of stereoselection in the reduction of α -keto orthoesters reported here is as good or exceeds the results obtained with other auxiliaries in similar applications.⁷

A simple and efficient method for the preparation of α -keto orthoesters **6** was developed from enantiomerically pure dimethyl tartrate, commercially available in both (+) and (-) forms. As illustrated in Scheme 1, (+)-dimethyl tartrate was treated with phenyl magnesium bromide and then reacted with commercially available methyl 2-methoxy-2,2-dichloroacetate in anhydrous pyridine to afford the desired methyl ester **4** in greater than 75% yield for 2 steps. The required ketones **6** can then be made via addition of an alkylmagnesium or aryllithium reagent to the corresponding *N*,*O*-dimethyl amide **5**. This amide could be obtained in good yield from the ester **4** using the magnesium salt of *N*,*O*-dimethylhydroxylamine.

Scheme 1

R= Me, Et, +Pr, Bn, Ph, 2-Furyl

(a) PhMgBr (b) MeO(Cl)₂CCO₂Me, Pyridine (c) MeO(Me)NMgBr, THF, -78°C to 0°C (d) RMgX or RLi, THF

We investigated conditions leading to the asymmetric reduction of **6** by varying the size of the R group, hydride sources,⁸ solvents and the nature of the substitution on the tertiary alcohol. In summary, we found that optimum selectivity was obtained with L-Selectride[®] in THF at -78°C. When the tertiary alcohol is not derivatised, we observed maximum stereoselection with bulky α -substituted ketones (R=*i*-propyl; 99:1, R=benzyl; 98:2). The selectivity decreases proportionately with the size of the substituents (R=Et; 86:14, R=Me; 53:47, R=Ph; 95:5, R=2-furyl; 69:31). In order to enhance the diasteroselectivity for less hindered α -substituted ketones, the alcohol was protected as its carbamate (Scheme 2).

Scheme 2

Diastereoselection in the reduction of carbamate 7 (Scheme 3) is excellent with all ketones studied (Table 1). Other derivatives of the tertiary alcohol, such as the *t*-butyl carbonate (OBOC), also gave rise to excellent diastereoselection. However, we chose to use carbamate 7 because it can be easily removed with catalytic NaOEt in EtOH at room temperature in a one pot reaction. Using the auxiliary derived from (+)-tartrate, we consistantly obtained the unnatural *R*-isomer for the newly formed chiral center.

Scheme 3

⁽a) L-Selectride®, THF, -78°C, (1.1 equiv.) (b) NaOEt / EtOH , 21°C (c) Ac₂O, DMAP

(d) THF:MeOH:H2O:TFA (4:4:1:0.1) (e) LiOH, THF

Attempted hydrolysis of the orthoester **8a** directly to the corresponding acid **11** in strong acidic media led to partial or total racemisation of the newly formed chiral center. A milder, more reliable two step sequence was thus developed. The cleanest and fastest hydrolyses were obtained using aqueous TFA in THF / MeOH, which effected opening of the α -acetoxy orthoester **8b** to the ester **10b**⁹ (Scheme 3). The ester **10b** was then treated with LiOH, giving the desired α -hydroxy acid **11** without any racemisation when R is an alkyl group (Table 1, entry 1-4) and the recovered auxiliary **3**.¹⁰

Table 1	Diastereoselective Reduction of Chiral α -Keto Orthoester 7 and Hydrolysis to the Free
	Acid 11

entry	R	isomer ratio ^a 8b : 9b	enantiomeric purity after hydrolysis ^b 11 (<i>R:S</i>) ^c
1	methyl	97:3	≥ 99:1 ^d
2	ethyl	≥ 99:1	≥ 99:1
3	benzyl	≥ 99:1	≥99:1
4	<i>i</i> -propyl	≥ 99:1	≥99:1
5	phenyl	≥ 99:1	99:1
6	2-furyl	≥ 99 :1	98:2 ^e

(a) Ratios were determined by 400 MHz ¹H NMR. (b) Ratios were determined, after treatment with CH_2N_2 , by ¹H and / or ¹⁹F NMR of the corresponding Mosher's ester (ref. 11). (c) Absolute configuration was confirmed by the sign of [α]_o and / or by comparison of the ¹H NMR of their corresponding Mosher's ester with authentic samples (see also ref.12,13). (d) Prior to hydrolysis, the product mixture (8b+9b, white solid) was purified by stirring vigorously in hexane / ether and then filtered; this could have resulted in further enrichment of major isomer. (e) Hydrolysis was conducted on 8a.

Partial racemisation can be observed when R is an aryl group (Table 1, entry 5,6). We observed significant racemisation (ratio 91:9) with **8b** when R=2-furyl, but hydrolysis of α -hydroxy analog **8a** was more rapid and gave rise to less racemisation (ratio 98:2).

One hypothesis to rationalize the observed diastereoselectivity involves a restricted rotation about the C-C bond between the carbonyl and the orthoester. The favoured conformation is as depicted, which minimizes steric interactions between the R group and the sterically demanding substituents on the bicyclo [2.2.1] nucleus. Hydride then approaches from the bottom face of the carbonyl, away from the bulky tertiary carbinol which shields the top face of the carbonyl, leading to the observed diastereoisomer **8**.

In conclusion, we have shown that bicyclic orthoesters are efficient new chiral auxiliaries and can be a useful complement to the standard methods available for asymmetric synthesis.

Acknowledgement: We would like to thank NSERC of Canada for Industrial Undergraduate Student Research Awards to D.D., J.T., H.G. and R.C.

REFERENCES AND NOTES:

- 1. DeWolfe, R.H. *Carboxylic Ortho Acid Derivatives*; Academic Press: New York. **1970**. DeWolfe, R.H. *Synthesis*, **1974**, 153.
- Evans, D.A.; Heathcock, C.H.; Meyers, A.I.; Lutomski, K.A., Morrison, J.D. Eds.; Asymmetric Synthesis; Academic Press: New York. 1984; Vol. 3, chap. 1-3.
- 3. Blaser, H.-U. Chem. Rev. 1992, 92, 935.
- Longobardo, L.; Mobbili, G.; Tagliavini, E.; Trombini,C.; Umani-Ronchi, A. *Tetrahedron*, 1992, 48, 1299. Basile, T.; Longobardo, G.; Tagliavini, E.; Trombini,C.; Umani-Ronchi, A. J. Chem. Soc., Chem. Commun. 1991, 391.
- 5. Hanessian, S. Total Synthesis Of Natural Products: The Chiron Approach; Pergamon Press: New York 1963.
- 6. Scott, J.W.; Morrison, J.D. Eds.; Asymmetric Synthesis; Academic Press: New York. 1984; Vol. 4, p.1.
- Sugimura, H.; Yoshida, K. J. Org. Chem. 1993, 58, 4484. Xiang, Y.-B.; Snow, K.; Belley, M. J. Org. Chem. 1993, 58, 993 and references cited therein. Solodin, I.; Goldberg, Y.; Zelcans, G.; Lukevics, E. J. Chem. Soc., Chem. Commun. 1990, 1321 and references cited therein.
- 8. With LAH, DIBAL-H, LiAIH[OC(Et)₃]₃, BH₃, NaBH₄, N or K-Selectride[®], we observed lower diastereoselectivity and longer reaction time.
- 9. Small amounts (≤ 5%) of the deacetylated hydroxy ester 10a were also produced during hydrolysis.
- 10. A typical experimental procedure for reduction and hydrolysis is as follows:

(a) To a solution of 7 (1.5 mmol) in anh. THF (40 mL) at -78°C was added L-Selectride* (1M, THF, 1.7 mL, 1.7 mmol) dropwise. After 15 min, NaOEt/EtOH (0.25M, 2.0 mL, 0.5 mmol) was added and the reaction mixture was warmed to 21°C, stirred for 2 h and quenched with a saturated NH₂Cl solution. After standard workup, the crude diol **8a** in CH₂Cl₂ (30 mL) was treated with Ac₂O (0.29 mL, 3 mmol), pyridine (0.25 mL, 3 mmol) and DMAP (20 mg, 0.15 mmol) for 1 h. After standard workup, the residue was purified by flash chromatography to afford **8b** as a white solid (81-92% yield).

(b) To the orthoester **8b** (0.35 mmol) in THF/MeOH/H₂O (4:4:1, 12 mL) was added TFA (0.13 mL, 1.7 mmol). After 3 h at 21°C, the reaction mixture was quenched with a saturated NaHCO₃ solution. After standard workup, the crude esters **10ab** were dissolved in THF (6mL) and a solution of LiOH (1N, 0.7 mL, 0.7 mmol) was added. After 24 h at 21°C, the mixture was diluted with Et₂O (10 mL) and H₂O (2 mL). The organic phase decanted, the aqueous phase stirred vigorously with Et₂O and decanted again (2x). The combined organic phases were evaporated and the residue purified by flash chromatography to afford the recovered auxiliary 3 (81-95%). The aqueous phase was lyophilized, the salts obtained were suspended in EtOAc and a HCI solution was added (1N, 0.8 mL, 0.8 mmol). The resulting mixture was dried with NaCl and MgSO₄ and the solvant evaporated to afford the desired α -hydroxy acid **11** (71-95%) as a white solid.

- 11. Dale, J.A.; Dull, D.L.; Mosher, H.S. J. Org. Chem. 1969, 34, 2543.
- 12. Yasuhara, F., Yamaguchi, S. Tetrahedron Lett., 1980, 21, 2827.
- For [α]₀ values: R=2-Furyl: Achmatowicz, O.Jr.; Bielski, R. *Carbohydrate Res.* **1977**, *55*, 165. Waldmann, H. *Tetrahedron Lett.* **1989**, *30*, 3057 is reporting the wrong absolute configuration for the same product. R=Ph: Evans, D.A.; Morrissey, M.M.; Dorow, R.L. *J. Am. Chem. Soc.* **1985**, *107*, 4346. R=Bn: Pearson, W.H.; Cheng, M.-C. *J. Org. Chem.* **1986**, *51*, 3746. R=Et: Chenault, H.K.; Kim, M.-J.; Akiyama, A.; Miyazawa, T.; Simon, E.S. Whitesides, G.M. J. Org. Chem. **1987**, *52*, 2608.