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Abstract: Chiral ec-keto orthoesters derived from tartaric acid can be reduced diastereoselectively. 
Hydrolysis affords optically active o~-hydroxy acids and the recovered auxiliary. 

Our interest in the design of a new auxiliary for asymmetric synthesis led us to investigate 
orthoesters I as a possible complement to the more conventional approaches (chiral ester, 
amide etc.). 2,3 Chiral orthoesters have recently been reported as acylating agents, 4 but the idea 
of using them as an auxiliary has not been explored to date. We chose to test this concept in the 
stereoselective synthesis of ec-hydroxy acids because they are important chirons or building 
blocks in organic synthesis.5, 6 Herein, we disclose the first successful application of this 
approach. The level of stereoselection in the reduction of ~-keto orthoesters reported here is as 
good or exceeds the results obtained with other auxiliaries in similar applications. 7 
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A simple and efficient method for the preparation of (x-keto orthoesters 6 was developed 
from enantiomerically pure dimethyl tartrate, commercially available in both (+) and (-) forms. As 
illustrated in Scheme 1, (+)-dimethyl tartrate was treated with phenyl magnesium bromide and 
then reacted with commercially available methyl 2-methoxy-2,2-dichloroacetate in anhydrous 
pyridine to afford the desired methyl ester 4 in greater than 75% yield for 2 steps. The required 
ketones 6 can then be made via addition of an alkylmagnesium or aryllithium reagent to the 
corresponding N,O-dimethyl amide 5. This amide could be obtained in good yield from the ester 
4 using the magnesium salt of N,O-dimethylhydroxylamine. 
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Scheme 1 
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(a) PhMgBr (b) MeO(CI)2CCO2Me, Pyridine (c) MeO(Me)NMgBr, THF, -78°C to 0°C (d) RMgX or RLi, THF 

We investigated conditions leading to the asymmetric reduction of 6 by varying the size of 
the R group, hydride sources, s solvents and the nature of the substitution on the tertiary alcohol. 
In summary, we found that optimum selectivity was obtained with L-Selectride ® in THF at -78°C. 
When the tertiary alcohol is not derivatised, we observed maximum stereoselection with bulky e- 
substituted ketones (R=/-propyl; 99:1, R=benzyl; 98:2). The selectivity decreases proportionately 
with the size of the substituents (R=Et; 86:14, R=Me; 53:47, R=Ph; 95:5, R=2-furyl; 69:31). In 
order to enhance the diasteroselectivity for less hindered (x-substituted ketones, the alcohol was 
protected as its carbamate (Scheme 2). 
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Diastereoselection in the reduction of carbamate 7 (Scheme 3) is excellent with all ketones 
studied (Table 1). Other derivatives of the tertiary alcohol, such as the t-butyl carbonate (OBOC), 
also gave rise to excellent diastereoselection. However, we chose to use carbamate 7 because 
it can be easily removed with catalytic NaOEt in EtOH at room temperature in a one pot reaction. 
Using the auxiliary derived from (+)-tartrate, we consistantly obtained the unnatural R-isomer for 
the newly formed chiral center. 
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Scheme 3 
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(a) L-Selectride ®, THF, -78°C, (1.1 equiv.) (b) NaOEt / EtOH, 21°C (c) Ac20, DMAP 
(d) THF:MeOH:H20:TFA (4:4:1:0.1) (e) LiOH, THF 

Attempted hydrolysis of the orthoester 8a directly to the corresponding acid 11 in strong 
acidic media led to partial or total racemisation of the newly formed chiral center. A milder, more 
reliable two step sequence was thus developed. The cleanest and fastest hydrolyses were 
obtained using aqueous TFA in THF / MeOH, which effected opening of the ~-acetoxy orthoester 
8b to the ester 10b 9 (Scheme 3). The ester 10b was then treated with LiOH, giving the desired 
~-hydroxy acid 1 1 without any racemisation when R is an alkyl group (Table 1, entry 1-4) and 
the recovered auxiliary 3. lo 

Table 1 Diastereoselective Reduction of Chiral (x-Keto Orthoester 7 and Hydrolysis to the Free 
Acid 1 1 

enantiomeric purity 
entry R isomer ratio a after hydrolysis b 

8b : 9b 11 (R:S) c 

1 methyl 97:3 _> 99:1d 

2 ethyl _> 99:1 > 99:1 

3 benzyl _> 99:1 _> 99:1 
4 /-propyl _> 99:1 _> 99:1 
5 phenyl > 99:1 99:1 
6 2-furyl >_ 99:1 98".2 e 

(a) Ratios were determined by 400 MHz 1H NMR. (b) Ratios were determined, after treatment with CH=N=, by 
1H and / or 19F NMR of the corresponding Moshar's ester (ref. 11). (c) Absolute configuration was confirmed by 
the sign of [(x]o and / or by comparison of the IH NMR of their corresponding Mosher's ester with authentic 

samples ( see also ref.t2,13). (d) Prior to hydrolysis, the product mixture (Sb+9b, white solid) was purified 
by stirring vigorously in hexane / ether and then filtered; this could have resulted in further enrichment of 
major isomer. (e) Hydrolysis was conducted on 8a. 
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Partial racemisation can be observed when R is an aryl group (Table 1, entry 5,6). We 
observed significant racemisation (ratio 91:9) with 8b when R=2-furyl, but hydrolysis of (x-hydroxy 
analog 8tl was more rapid and gave rise to less racemisation (ratio 98:2). 

R O ~ ~  One hypothesis to rationalize the observed diastereoselectivity 
involves a restricted rotation about the C-C bond between the 
carbonyl and the orthoester. The favoured conformation is as 
depicted, which minimizes steric interactions between the R group 

~ ' o ~ , ,  ~ and the sterically demanding substituents on the bicyclo [2.2.1] 
nucleus. Hydride then approaches from the bottom face of the 
carbonyl, away from the bulky tertiary carbinol which shields the top 

H" face of the carbonyl, leading to the observed diastereoisomer 8. 
In conclusion, we have shown that bicyclic orthoesters are 

can be a useful complement to the standard methods efficient new chiral auxiliaries and 
available for asymmetric synthesis. 
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