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Three syntheses of the architecturally complex, cytotoxic marine macrolide (þ)-spongistatin 1 (1) are
reported. Highlights of the first-generation synthesis include: use of a dithiane multicomponent linchpin
coupling tactic for construction of the AB and CD spiroketals, and their union via a highly selective Evans
boron-mediated aldol reaction en route to an ABCD aldehyde; introduction of the C(44)–C(51) side chain
via a Lewis acid-mediated ring opening of a glucal epoxide with an allylstannane to assemble the EF
subunit; and final fragment union via Wittig coupling of the ABCD and EF subunits to form the C(28)–
C(29) olefin, followed by regioselective Yamaguchi macrolactonization and global deprotection. The
second- and third-generation syntheses, designed with the goal of accessing 1 g of (þ)-spongistatin 1 (1),
maintain both the first-generation strategy for the ABCD aldehyde and final fragment union, while in-
corporating two more efficient approaches for construction of the EF Wittig salt. The latter combine the
original chelation-controlled dithiane union of the E- and F-ring progenitors with application of a highly
efficient cyanohydrin alkylation to append the F-ring side chain, in conjunction with two independent
tactics to access the F-ring pyran. The first F-ring synthesis showcases a Petasis–Ferrier union/re-
arrangement protocol to access tetrahydropyrans, permitting the preparation of 750 mg of the EF Wittig
salt, which in turn was converted to 80 mg of (þ)-spongistatin 1, while the second F-ring strategy, in-
corporates an organocatalytic aldol reaction as the key construct, permitting completion of 1.009 g of
totally synthetic (þ)-spongistatin 1 (1). A brief analysis of the three syntheses alongside our earlier
synthesis of (þ)-spongistatin 2 is also presented.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The spongistatin family of marine natural products comprises
some of the most potent antimiotic, growth inhibitory substances
discovered to date (Scheme 1).1 As such members of this remark-
able class hold great potential as exciting new leads for cancer
chemotherapy. The extremely low natural abundance of the
spongistatins,2 however, represents a major hurdle for clinical de-
velopment. Not surprisingly, the potent biological activities and
daunting molecular architectures of the spongistatins have attrac-
ted considerable interest in both the synthetic and biomedical
communities. To date seven total syntheses of representatives of
th, III).

All rights reserved.
this class of natural products have been achieved.3 While these
elegant syntheses have taught much about the intricacies of the
chemistry of the spongistatins, to date only the Heathcock
report3m,n on spongistatin 2 begins to address the need for suffi-
cient quantities of material for biomedical development.

Encouraged by our successful gram-scale synthesis of (þ)-
discodermolide,which led to phase I clinical development,4 we
initiated a program aimed at the evolution of a synthetic strategy
capable of delivering gram-quantities of (þ)-spongistatin 1 (1).
While we had already achieved a total synthesis of the closely re-
lated (þ)-spongistatin 2 (2), as outlined in the preceding paper,5,3h

the length and overall efficiencies of several critical trans-
formations would clearly not permit large-scale production. We
therefore reengineered our (þ)-spongistatin 2 (2) strategy, drawing
on lessons learned in our laboratory, as well as the experiences of
others, to permit access to (þ)-spongistatin 1 (1) on a preparative
scale.
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2. Results and discussion

2.1. Synthetic analysis

Having in place a successful endgame for (þ)-spongistatin 2
(Scheme 1), comprising Wittig olefination of an advanced Wittig
salt (cf. 4a) with ABCD aldehyde 3, followed by macro-
lactonization and global deprotection,3h we turned to improve
acquisition of both 3 and the requisite chloro side chain fragment
4b for (þ)-spongistatin 1 (1). For the ABCD subunit 3, we rec-
ognized that, although the elegant Julia union/methylenation6

protocol proved to be a powerful method for uniting the AB and
CD subunits in our spongistatin 2 effort,3h this tactic relied on
a simplified AB precursor to permit high efficiency in the union
event. Extensive structural remodeling was then required to
obtain the fully functionalized ABCD subunit. Reasoning that
a more convergent strategy would be required for significant
material advancement, we turned to a revised disconnection of
the ABCD fragment 3, now at the C(15)–C(16) bond to reveal AB
aldehyde 5 and CD ketone 6. Their union would call on an aldol
reaction similar to that employed in the pioneering Evans
(þ)-spongistatin 2 (2) synthesis.3a–d We were also cognizant of
the ever present possible loss of configurational control of the
C(23) CD spiroketal stereocenter via mild acid treatment both
during assembly of the ABCD aldehyde, as well as final elabora-
tion to (þ)-spongistatin 1 (1).3a–f

Even greater challenges were evident in our synthesis of the EF
Wittig salt 4a. Here, the low efficiency of the Julia union/methyl-
enation installation of the side chain, in conjunction with the dif-
ficulties associated with subsequent side chain elaboration were
clearly evident.3h We therefore again chose to abandon the Julia
tactic. In the end, three strategically independent approaches were
developed (vide infra). The first called for appending a fully elab-
orated side chain [cf. 8] exploiting chelation control to an advanced
EF intermediate (7) to afford 4b.

2.2. Construction of ABCD aldehyde 3 beginning with AB
spiroketal 5

As now well recognized,3 the AB spiroketal in the spongistatins
adopts the thermodynamically favorable axial–axial (AA) spiro
configuration at C(7); 5 was thus envisioned to be readily available
via spiroketalization under thermodynamic control of linear pre-
cursor 9 (Scheme 2). The requisite precursor in turn would arise via
our multicomponent linchpin tactic,7 in this case employing 2-
triethylsilyl-1,3-dithiane, epoxide 10 and epoxide 11, the latter
available by the addition of dithiane 13 to epoxide 12. By exploiting
more advanced epoxide coupling partners in the tri-component
linchpin event, extensive remodeling to arrive at an advanced AB
system would not be required.
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Construction of 5 began with the elaboration of napthyl epoxide
10. We selected the rarely utilized 2-napthylmethyl protecting
group based on the reported potential for selective removal in the
presence of a benzyl ether,8 the latter employed to protect the C(28)
hydroxyl in CD spiroketal 6 (Scheme 1). Employing a sequence
similar to that developed for (þ)-spongistatin 2 (2), mono-
protection of 1,3-propanediol as the 2-napthylmethyl ether, followed
by oxidation furnished aldehyde 14 (Scheme 3). Brown allylbora-
tion9 then furnished homoallylic alcohol (þ)-15 in both high yield
and enantioselectivity (88% yield, 90% ee). Assignment of the C(3)
configuration of the major diastereomer entailed Mosher ester
analysis.10 Protection of the alcohol as a tert-butylcarbonate was
then followed by IBr-mediated cyclization exploiting our improved
protocol11 to furnish iodocarbonate (�)-16, which was then con-
verted to epoxide (�)-10.
a) t-BuLi, THF-HMPA
–78 °C 15min., –40 °C 45 min.

b) THF
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The synthesis of epoxide 11 began with Sharpless asymmetric
epoxidation12 of 2-methyl-2-propenol; in situ protection with
tert-butyldiphenylchlorosilane (BPSCl) afforded epoxide (�)-17
(Scheme 4). Treatment of the latter with vinylmagnesium bromide
in the presence of copper ion, followed by protection of the
resulting alcohol with Boc anhydride furnished carbonate (þ)-18.
Cyclic carbonate formation mediated by IBr proved less selective
than anticipated, initially furnishing a mixture (3:1) of syn- and
anti-iodocarbonates. However, by employing diethyl ether at
�100 �C, the desired syn-iodocarbonate (þ)-19 was available as
a mixture of diastereomers (ca. 8:1). Chromatographic separation,
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followed by exposure of the requisite iodocarbonate to K2CO3 in
methanol led to epoxide (�)-12.

Completion of epoxide 11 began with a four-step synthesis of
dithiane (�)-13 employing the (þ)-Roche ester (Scheme 5). Alkyl-
ation with epoxide (�)-12 proceeded smoothly to provide diol
(�)-21, which was subjected to removal of the BPS group, Fraser-
Reid epoxidation,13 and protection of the secondary alcohol as a TES
ether to furnish (�)-11. The overall yield for the eight-step se-
quence was 31%.
With both epoxides in hand, we explored the multicomponent
linchpin union developed in our laboratory specifically for the
spongistatin program.7 Initially we employed epoxide (�)-11 as the
first electrophile, as this would permit in situ protection of
the tertiary C(9) hydroxyl as a TES ether.14 Unfortunately, all at-
tempts to achieve the union of 2-lithio-2-TES-1,3-dithiane with
epoxide (�)-11, followed by HMPA induced 1,4-Brook rearrange-
ment and alkylation with epoxide (�)-10 failed to produce the
desired product 22 (Scheme 6A). Instead, products corresponding to
mono- and bis-addition of (�)-10 to the dithiane were obtained
(structures not shown). Reversal of the order of epoxide addition
only led to a 13% yield of the desired adduct 23 (Scheme 6B).
2
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ORRO ORHO

NapO

OPMB

SS

TES
NapO

S
S

(–)-10

R = TES, 22

9

Scheme 6A.
Undaunted, we turned to the stepwise alkylation of the lithiated
anion of TES dithiane with (�)-10 and (�)-11; treatment with
(�)-10 followed by addition of HMPA resulted in clean formation of
monoalkylation product (þ)-24 in 82% yield (Scheme 7). However,
attempts to carry out the analogous alkylation with (�)-11 failed.
Clearly epoxide (�)-11 was sterically too encumbered to permit
dithiane alkylation.
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Recognizing that the dithiane in epoxide (�)-11 would ulti-
mately be converted to a methylene, we attempted to alleviate the
steric hindrance by installing the methylene prior to linchpin
union. Synthesis of the requisite coupling partner (þ)-30 began
with conversion of the p-methoxybenzyl (PMB) ether of Roche’s
ester15 to the corresponding Weinreb amide employing a Merck
protocol,16 followed by addition of methylmagnesium bromide to
furnish ketone (þ)-26 (Scheme 8). Condensation with 2,4,6-triiso-
propylbenzenesulfonyl hydrazide17 proceeded efficiently to afford
the hydrazone (�)-27 as a crystalline solid. The latter underwent
efficient Shapiro reaction18 to generate the corresponding vinyl-
lithium, which upon alkylation with epoxide (�)-12 led to diol
(þ)-28. Removal of the BPS protecting group followed by epoxide
ring formation, employing the Fraser-Reid protocol,13 and hydroxyl
protection completed construction of (þ)-30.

Again, all attempts to employ (þ)-30 as the second electrophile
in the linchpin event failed to produce the desired product (Scheme
9). Instead, significant quantities of the intermediate dithiane
(þ)-24 (i.e., monoalkylation), as well as products arising from
elimination of the homoallylic TES ether (product not shown), were
observed. Steric hindrance of the epoxide was again presumed to be
the culprit. As a last resort, we explored the lithium alkoxide de-
rived from epoxide (þ)-29 as the second electrophile to lower
further the steric encumberance near the epoxide (Scheme 10). This
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tactic proved rewarding; coupled product (þ)-33 was obtained
reproducibly in 55–58% yield on large scale (ca. 10 g). The above
sequence of events provides a showcase for how multicomponent
linchpin processes can be developed.

Removal of dithiane and the silyl protecting groups with mer-
curic perchlorate as employed for spongistatin 2 (2), proceeded
with concomitant spiroketalization to furnish AB spiroketal (�)-34
as a single isomer (Scheme 11); the stereochemistry was assigned
based on NOESY NMR experiments. While this one-pot depro-
tection/spiroketalization was attractive, the reaction sequence was
not readily reproducible on large scale. We therefore adopted
a two-step sequence involving TBAF-mediated desilylation to pro-
duce tetraol (þ)-35, which in turn was readily transformed to spi-
roketal (�)-34 by iodomethane-mediated hydrolysis of the
dithiane. The two-step sequence proceeded reproducibly in 76%
yield.

At this stage all that remained to complete the AB spiroketal 5
was adjustments of the protecting groups and oxidation state
(Scheme 12). Selective acetylation of the C(5) hydroxyl followed by
protection of the tertiary C(9) hydroxyl as a TES ether quickly
afforded (�)-36. Unfortunately, attempts to remove the C(15) PMB
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protecting group under oxidative conditions resulted in competi-
tive removal of the napthyl and/or TES protecting group.

Unable to unmask the C(15) hydroxyl in the presence of the 2-
napthylmethyl ether (Scheme 13), we explored the possibility of
employing an ester at C(1) in the forthcoming aldol union of the AB
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with CD spiroketals. Selective removal of the napthyl group in
(�)-36 proceeded smoothly to furnish (�)-38, which was then
subjected to a two-step oxidation to provide acid (�)-39. Conver-
sion of the acid to the corresponding TIPS ester, followed by DDQ-
mediated removal of the C(15) PMB group led to alcohol (�)-40,
which was transformed to aldehyde (�)-41 via Dess–Martin
oxidation.19,20

2.3. Construction of the ABCD aldehyde 3 continued:
synthesis of the CD ketone 6

In our (þ)-spongistatin 2 (2) venture, we discovered that the
requisite CD spiroketal fragment (cf. 6; Scheme 1), which possesses
the thermodynamically less stable axial–equatorial configuration at
the C(23) spiro center, could be generated by the treatment of the
more stable axial–axial congener with acid in the presence of CaII

ion.21 Accordingly, we anticipated that the desired spiroketal would
be available from the requisite linear precursor via a spiroketaliza-
tion/equilibration protocol involving dithiane 42, that in turn
would again arise taking advantage of our multicomponent linch-
pin tactic employing TBS-dithiane, epoxide (�)-43 [also utilized in
construction of the CD spiroketal during our (þ)-spongistatin 2
synthesis],3g and epoxide 44 (Scheme 14).
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Construction of 44 began with the synthesis of aldehyde (�)-45
(Scheme 15),22 available in three steps from L-malic acid. Efforts to
utilize the b-oxygen in (�)-45 to direct formation of the C(19)
stereocenter via Lewis acid-catalyzed allylation failed to provide
the desired adduct with an acceptable level of selectivity. Instead,
reagent control was employed using allylstannane 46, in conjunc-
tion with the Ti(Oi-Pr)4/BINOL system reported by Keck and co-
workers;23 homoallylic alcohol (�)-47 was obtained in good yield
and with excellent selectivity (ca. 20:1).24 Removal of the ketal was
then followed by sequential treatment of the resulting primary
hydroxyl with trimethylbenzenesulfonyl chloride and NaH to
generate the epoxide, and TBSCl for in situ O-TBS protection to
complete the synthesis of (�)-44.
Again, we initially investigated the stepwise construction of the
C(16)–C(28) backbone to optimize each step of the pending multi-
component union. Lithiation of 2-triethylsilyl-1,3-dithiane fol-
lowed by addition of (�)-43 and subsequent treatment with
HMPA furnished dithiane (þ)-49 in good yield (Scheme 16). How-
ever, attempts to effect deprotonation of (þ)-49 led only to
decomposition of the substrate.
To circumvent this problem, we reasoned that we could post-
pone the 1,4-Brook rearrangement until the second epoxide al-
kylation, thereby permitting a directed deprotonation of the
dithiane by the initially formed alkoxide. Toward this end, alkyl-
ation of the lithium anion of 2-TES-1,3-dithiane with (�)-43, now
in the absence of HMPA, furnished alcohol (þ)-51 (Scheme 17A).
With (þ)-51 in hand, deprotonation of the resultant alcohol fol-
lowed by addition of HMPA led to 1,4-Brook rearrangement;
subsequent C-alkylation with (�)-44 furnished (þ)-52. The yield
for the two-step sequence was 57%. With a successful stepwise
sequence in hand, we explored the one-pot scenario, in this case
employing the lithium anion derived from 2-TBS-1,3-dithiane.
Alkylation with epoxide (�)-43, followed by addition of epoxide
(�)-44 dissolved in THF/HMPA, furnished (þ)-42 (Scheme 17B).
Importantly, this reaction proceeded in 63–69% yield and could be
run reproducibly on large scale (10 g) permitting production of
>50 g of (þ)-42.

Having established both a reliable and scalable method for
construction of the C(16)–C(28) backbone, we turned to elaboration
of ketone 6 (Scheme 14). With the C(21) hydroxyl in (þ)-42 already
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differentiated by the linchpin event, installation of the requisite
methyl ether was easily achieved employing iodomethane and
sodium hydride in the presence of 15-crown-5 to furnish (�)-53
(Scheme 18), which in turn was converted to triol (þ)-54 upon
treatment with p-TsOH. Removal of the dithiane proved to be even
more difficult than previously observed for (þ)-33, en route to the
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AB spiroketal precursor. Standard mercuric perchlorate condi-
tions25 resulted in significant amounts of decomposition. We sur-
mised that the culprit was the C(17) alkene. To circumvent this
issue we examined a number of conditions to effect dithiane re-
moval with concomitant spiroketalization. In the end, we settled on
ceric ammonium nitrate (CAN), which furnished a mixture of spi-
roketals (þ)-55 and (�)-56 (ca. 4:1). As expected, NOESY NMR
experiments revealed that the major product was the undesired
axial–axial spiroketal (þ)-55 (Fig. 1).
O
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Figure 1. Critical NOESY NMR correlations for spiroketal (þ)-55.
As discussed previously, a key discovery during our (þ)-spon-
gistatin 2 synthesis3g,h comprised an effective protocol to achieve
conversion of the CD axial–axial (AA) spiroketal to the axial–
equatorial (AE) congener in the presence of CaII ion, when appro-
priate chelation functionality was available. We surmised that the
methylene moiety in (þ)-55 and (�)-56 could be utilized to gen-
erate the required functionality. Toward this end, the mixture of
spiroketals was dihydroxylated with OsO4. Acid equilibration of the
diol mixture mediated by CaII, followed by oxidative cleavage of the
diols led to a mixture of spiroketals favoring the desired axial–
equatorial (AE) spiroketal (�)-58 (ca. 4:1; Scheme 19); confirma-
tion of both structures was achieved by NOESY NMR analysis upon
separation (Fig. 2).26
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Intrigued by the possibility that the C(17) configuration might
play a significant role in the equilibration process, we prepared the
C(17) diastereomeric diols. Sharpless asymmetric dihydroxy-
lation27 with AD-mix-a provided access to a mixture (5:1) favoring
the S-isomer 59 at C(17) (Scheme 20).28 Alternatively, AD-mix-
b proved highly selective, producing triol 60 (10:1); the latter
clearly represents a matched case.
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Exposure of the mixture enriched in the S-isomer (59) to the
now standard CaII equilibration conditions,3g,h followed by oxida-
tive cleavage of the diol, produced a 1:3 mixture of spiroketals
favoring the required axial–equatorial ketone (�)-58 (Scheme 21).
Alternatively, exposure of the diol mixture rich in the R-isomer (60)
to the identical conditions furnished a mixture (5:1) of di-
astereomers, once again favoring the desired (�)-58. Taken to-
gether, these results suggest that the configuration at C(17) plays
only a minor role in the outcome of the equilibration event. For
material advancement, as well as cost considerations, we employed
dihydroxylation with OsO4/NMO, followed by oxidative cleavage to
furnish (þ)-57 and (�)-58 (1:4) in 90% yield.
Completion of CD ketone (�)-6 was achieved by protection of the
free hydroxyl in (�)-58 as the TBS ether (Scheme 22). The overall
sequence to (�)-6 proceeded in 16 steps from L-malic acid with an
overall yield of 20%. A total of 15 g of spiroketal (�)-6 was prepared.
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2.4. Fragment union and completion of the C(1)–C(28)
ABCD aldehyde (3)

Having ample quantities of both (�)-41 and (�)-6, we pro-
ceeded to the Evans aldol to unite the two fragments. As antici-
pated, the aldol reaction3c proceeded smoothly to afford the
desired ABCD product (�)-61 (Scheme 23), both in good yield and
with high diastereoselectivity (9:1). Acetylation followed by re-
moval of the benzyl group furnished alcohol (�)-63, which was
readily oxidized to (�)-3.29 From the preparative perspective,
construction of the ABCD subunit (�)-3 now entails a longest linear
sequence of 22 steps and proceeds with an overall yield of 6.5%.
This sequence is 15 steps shorter than our approach to the epimeric
C(23) ABCD aldehyde employed in our spongistatin 2 synthesis, and
as such represents a major synthetic advance.
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2.5. Synthesis of the EF Wittig salt 4: a most challenging
synthetic target

Development of effective synthetic routes to appropriately
functionalized EF Wittig salts for the spongistatins has proved
challenging to all who have engaged in the spongistatin synthetic
enterprise. We report here three strategically different syntheses of
this advanced intermediate, each taking advantage of the stereo-
controlled E ring construction developed in our spongistatin 2
synthetic venture,5 involving cerium(III) mediated addition of
dithiane (�)-6430 to an appropriate F-ring aldehyde employing
zinc(II) chelation control. The first approach (Scheme 24) entailed
introduction of a fully functionalized side chain via alkylation of
ketone 7 with allyl iodide 8. Further analysis of 7 reveals pro-
genitors dithiane (�)-64 and aldehyde 65. The requisite allyl iodide
side chain in turn would arise ultimately by allylation of chlor-
odiene aldehyde 66 with allyl(diisopinocampheyl)borane 67, fol-
lowed by functional group adjustments.

Construction of (þ)-65 began via Brown crotylboration31 of
known aldehyde (�)-6832 to furnish homoallylic alcohol (�)-69,
followed by protection as a benzyl ether and exposure to cam-
phorsulfonic acid (CSA) in methanol to deliver diol (�)-70 in 55%
yield (three steps; Scheme 25). Selective sulfonation of the primary
alcohol with 2,4,6-triisopropylbenzenesulfonyl chloride (TrisCl)
and protection of the secondary alcohol as a PMB ether afforded
alkene (þ)-71, that was in turn converted to the F-ring pyran via
Sharpless asymmetric dihydroxylation27 and base promoted cycli-
zation to furnish alcohol (þ)-72 in 85% yield. Parikh–Doering33

oxidation then completed construction of (þ)-65.
At this stage, we explored a model alkylation study prior to

attempted union of aldehyde (þ)-65 with dithiane (�)-64. Con-
version of the primary hydroxyl in (þ)-72 to the TBS ether, followed
by transfer hydrogenolysis to remove the benzyl group and
treatment with TESCl led to pyran (þ)-73. Oxidative removal of the
PMB moiety, followed by the Swern protocol34 then furnished
model F-ring ketone (þ)-74 (Scheme 26).

Initial attempts to effect alkylation of (þ)-74 employing kinetic
deprotonation and treatment with either allyl bromide or allyl io-
dide failed to provide the desired adduct 75 (Scheme 27). Silyl enol
ether 76, however, could be prepared by deprotonation of (þ)-74
with LiHMDS, followed by addition of TMSCl. Pleasingly, alkylation
with allyl iodide promoted by silver trifluoroacetate then furnished
75 as a mixture of isomers (ca. 7.5:1), favoring the desired equa-
torial product.
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Encouraged by these results, we turned to construction of the
requisite fully functionalized side chain (þ)-8 (Scheme 28), begin-
ning with oxidative cleavage of l,2,5,6-di-O-isopropylidene-D-
mannitol to provide aldehyde (þ)-77. Brown allylboration9

furnished homoallylic alcohol (þ)-78, which was subjected to
a protection/deprotection sequence to yield diol (þ)-79. Cleavage of
the diol, followed by indium-mediated allylation35 provided 80 as
an inconsequential mixture of alcohols (ca. 1:1). Without separa-
tion, elimination of the hydroxyl groups furnished triene (�)-81,
which upon Riley oxidation with SeO2,36 employing a reductive
workup led to alcohol (þ)-82, albeit in low yield (24%, 49% BORSM).
Notwithstanding the modest yield, conversion of the allylic alcohol
to the corresponding mesylate, followed by in situ displacement
with LiI completed the synthesis of what proved to be an unstable
iodide (þ)-8. Unfortunately, attempts to alkylate enol ether 76 with
(þ)-8, employing the model conditions, proved unsuccessful
(Scheme 29).37
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Recognizing the instability of allyl iodide (þ)-8, we turned
instead to a Lewis acid promoted addition of an allylstannane to
a glucal epoxide for side chain attachment, as employed in the
Evans (þ)-spongistatin 2 synthesis.3a–d However, given the an-
ticipated sensitive nature of both the glucal and the side chain,
we decided to first construct the E ring, again employing the
tactic used in our spongistatin 2 synthesis. To this end, addition
of the cerium salt of dithiane (�)-64 to aldehyde (þ)-65 pro-
vided (þ)-84 in a highly stereocontrolled fashion (51%, dr>20:1)
via the aforementioned chelation-controlled process (Scheme
30).

Hydrolysis of the acetonide and in turn removal of the dithiane
proceeded as expected with concomitant cyclization to furnish
(þ)-85 (Scheme 31). Acid-catalyzed methyl ketal installation was
then achieved in near quantitative yield to furnish (þ)-86 as a sin-
gle isomer. Protection of the axial C(35) hydroxyl as the TBS ether,
however, proved more difficult than initially anticipated due to
extensive elimination of the methyl ketal to furnish the corre-
sponding dihydropyran (structure not shown).

After extensive experimentation, we decided to install the
mixed methyl ketal at a later stage. Pleasingly, protection of the
C(35) hydroxyl in (þ)-85 proceeded selectively to furnish (þ)-87
(Scheme 32). Selective removal of the benzyl groups was then
achieved using transfer hydrogenolysis in methanol employing
2,6-lutidine38 to provide (þ)-88 as a mixture of methyl and
hemiketals. Exposure of this mixture to PPTS in methanol led to
complete mixed methyl ketal formation; exhaustive silylation
then led to TES ether (þ)-89 in high yield. Removal of the PMB
group was next achieved using medium-pressure hydro-
genolysis (500 psi) to furnish alcohol (þ)-90, which was con-
verted without purification to the corresponding triflate and
then to coupling partner (þ)-91 by treatment with LDA. The
overall yield of (þ)-91, requiring 17 steps from known aldehyde
(�)-68, was 3%.

2.6. Side chain construction, union with the EF fragment (D)-
91, and elaboration to Wittig salt (D)-103

Having secured a viable route to the EF dihydropyran (þ)-91, we
turned to construction of the requisite stannane side chain required
for the proposed Evans coupling. Although we had in hand
a pathway to access the corresponding iodide (þ)-8 (Scheme 28),
the route proved inefficient for large-scale synthesis. We therefore
designed an alternative approach.

We began with BiCl3-mediated allylation39 of ethyl glyoxalate to
furnish homoallylic alcohol 92 as an inconsequential mixture (ca.
1:1) of isomers (Scheme 33). Conversion of the alcohol to a mesy-
late, followed by DBU-mediated elimination to provide 93, and
a two-step reduction/oxidation sequence furnished aldehyde 94.
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Initial attempts to couple 94 with allylstannane 95 employing the
Keck protocol23 produced (�)-96 with excellent selectivity (98%
ee); however, the yield was at best modest (33%). Employing a bis-
zirconium catalyst,40 in place of the Keck catalyst, led to marked
improvement (69%) without loss of selectivity. Silylation with
TMSCl then furnished (þ)-97, which was converted to the primary
2,4-dichlorobenzoate (þ)-98 in two steps. Displacement of the
benzoate with Bu3SnAlEt2 mediated by Pd0 employing the
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conditions of Trost41 completed construction of allylstannane
(þ)-99.42 The overall yield for the 10-step sequence from ethyl
glyoxalate was 7.4%.

Having secured both coupling partners, we turned to the
Evans union.3a–c Epoxidation of (þ)-91 with dimethyldioxirane
followed without purification by treatment with stannane
(þ)-99 in the presence of Bu3SnOTf furnished (þ)-100 as a single
isomer in excellent yield (Scheme 34). Removal of the sterically
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more accessible TES and the TMS protecting groups generated
tetraol (þ)-101, which was selectively converted to (þ)-102 upon
treatment with TrisCl, DMAP, and Dt-BMP (2,6-di-tert-butyl-4-
methylpyridine). Interestingly, use of Et3N or Hünig’s base
resulted in lower yields of the primary sulfonate, in conjunction
with loss of the methyl ketal. Conversion of the trisylate to the
corresponding iodide, global TMS protection, and displacement
of the primary iodide with PPh3 completed the synthesis of the
EF Wittig salt (þ)-103.

2.7. Fragment union and elaboration to (D)-spongistatin 1:
a first-generation synthesis

In our spongistatin 2 synthesis, we employed the Kishi ti-
tration protocol3m to effect the critical union between (þ)-4a
(X¼H) and (�)-3; however, in our hands the yield was less than
satisfactory. In an effort to improve this transformation, we
examined the modified conditions of Paterson (THF/HMPA) to
unite (þ)-103 with (�)-3.3j seco-Acid (þ)-104 was obtained in
64% yield, after treatment with KF in methanol (Scheme 35).
Selective protection of the side chain hydroxyl as the TES ether,
followed by Yamaguchi macrolactonization43 employing 2,4,6-
trichlorobenzoyl chloride (2,4,6-TCBCl) and global deprotection
with HF completed the synthesis of (þ)-spongistatin 1, which
was identical in all respects (500 MHz 1H NMR, 125 MHz 13C
NMR, HRMS, IR, and chiroptic properties) with literature
data.3i,m The synthesis proceeded with a longest linear se-
quence of 29 steps (based on the EF subunit) with an overall
yield of 0.5%. Importantly, this route represents a significant
improvement over our spongistatin 2 synthesis (ca. 18 fewer
steps)!
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2.8. Second- and third-generation scalable syntheses of (D)-
spongistatin 1

While our first-generation synthesis entailed a significant im-
provement over our spongistatin 2 (2) synthetic venture, two
significant obstacles remained prior to initiating a large-scale
synthetic campaign. These include the modest yield observed
during the dehydration required to furnish dihydropyran (þ)-91,
and the overall length and inefficiency required to access the
highly unstable stannane (þ)-99. Since both problems were en-
countered during construction of the EF side chain, redesign of
this fragment was imperative. Two new strategies were developed
(e.g., second- and third-generation syntheses). The modified tar-
get, EF Wittig salt 105, employed in both was envisioned to differ
from (þ)-103 in that the side chain hydroxyl would now be
protected as a TBS ether, in order to permit selective endgame
deprotection to reveal the seco-acid and thereby eliminate
a reprotection step. With this scenario in mind, initial dissection
of Wittig salt 105 at C(46)–C(47) revealed allyl bromide 107 and
aldehyde 106 (Scheme 36). By not employing a fully elaborated
side chain, a number of options for bond construction would be
possible, including both nucleophilic allylation or use of an
umpolung44 tactic (vide infra) without having to significantly
reengineer the coupling fragments. Such a scenario was of course
appealing.

Continuing with this analysis, disconnection of 107 led to
dithiane (�)-64 and aldehyde 108. We first envisioned 108 to
arise from cis-4-heptanal and acid 109 via a Petasis–Ferrier45

union/rearrangement (path A), an effective tactic developed in
our phorboxazole synthetic program to access 2,6-cis-di-
substituted tetrahydropyrans.46 Alternatively, an organocatalyzed
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aldol approach (path B), patterned after the elegant work of
MacMillan and co-workers47 for the preparation of carbohydrates,
held promise of a viable approach to the F ring pyran 108.
2.9. Path A: the Petasis–Ferrier union/rearrangement
approach

Preparation of aldehyde 108 began with the TMSOTf-promoted
condensation48 of acid (�)-109 (prepared in two steps employing
the Evans oxazolidinone chemistry) with cis-4-heptanal to furnish
dioxanone (�)-113 (Scheme 37). Methylenation49 and exposure of
the enol ether to Me2AlCl led via Petasis–Ferrier rearrangement to
pyranone (�)-114 as a single isomer. After considerable experi-
mentation, introduction of the C(42) hydroxyl was achieved by
treatment of the potassium enolate of (�)-114 with the Davis
oxaziridine (þ)-11550 to provide alcohol (þ)-116 in good yield after
epimerization of the C(40) methyl substituent. Silylation of the
newly generated hydroxyl was then followed by selective axial-
reduction and desilylation to furnish diol (þ)-117, which was con-
verted to F-ring aldehyde (þ)-108 in three additional steps: diol
protection, removal of the p-methoxyphenyl (PMP) group, and
oxidation.

2.10. Path B: the organocatalytic aldol approach

While the Petasis–Ferrier approach to the F-ring pyran suc-
cessfully led to 700 mg of the desired EF ring system [ca. 80 mg of
(þ)-spongistatin 1 from 450 mg], we were intrigued that the two-
step MacMillan47 carbohydrate synthesis might further shorten our
route to (þ)-108. Initially, we sought to combine the MacMillan
cross-aldol reaction of aldehyde 118 with a Mukaiyama aldol re-
action involving silyl enol ether 111 to access 110 (Scheme 38).
Lactol 110 would then be elaborated to the desired F-ring pyran 108
in four chemical operations. Unfortunately, the Mukaiyama aldol
reaction on large scale (ca. 100 g) was hampered both by the in-
stability of the intermediate b-hydroxyaldehyde 11251 and the ap-
parent sensitivity to impurities generated in the organocatalytic
aldol process.

However, encouraged by the efficiency of the organocatalytic
anti-aldol reaction (Scheme 39), 112 was directly subjected as
a syn/anti (w1/5) mixture to a Horner–Wadsworth–Emmons
reaction with methyl (triphenylphosphoranylidene)acetate to
provide ester 119. Sharpless asymmetric dihydroxylation, fol-
lowed by lactonization then led to lactone (�)-120, which was
isolated as a single isomer in good yield. Only the desired
product arising from the anti-aldol reaction underwent cycli-
zation, thereby permitting facile separation from the syn-aldol
byproduct. Bis-benzylation was then followed by addition of
the Grignard derived from bromide 122, reduction of the re-
sultant lactol with Et3SiH/BF3$Et2O,52 the latter occurring with
concomitant removal of the O-TBDPS protecting group, and
Parikh–Doering oxidation to furnish aldehyde (þ)-108. This
eight-step reaction sequence proceeded with an overall yield of
50% from BPS-protected aldehyde 118. In contrast, the Petasis–
Ferrier approach, requiring a total of 12 steps from
p-methoxyphenoxy acetaldehyde [two steps to (�)-109], pro-
ceeded in 26% overall yield. Clearly, the organocatalytic route
would be more applicable for the gram-scale production of
(þ)-spongistatin 1 (1).3j

2.11. Construction of ring E

As with our earlier approaches to the spongistatins, fragment
union to furnish (þ)-124 was achieved via addition of the cerium
dithiane anion derived from (�)-64 to aldehyde (þ)-108 premixed
with zinc chloride. Although providing the desired adduct, a sig-
nificant amount of what was presumed to be b-isomer 125 resulted
(Scheme 40). Subsequent experiments revealed that by increasing
the amount of metal additives, in conjunction with decreasing the
amount of HMPA, the amount of 125 could be reduced. However, in
the process we began to observe a third product (126) of un-
determined stereochemistry at C(38). Eventually, we discovered
that formation of both 125 and 126 could be suppressed by
warming the initially generated aldehyde (þ)-108–ZnII reaction
mixture to �20 �C prior to addition of the cerium dithiane, using
a minimal amount of HMPA (1.5 equiv). Under these conditions,
(þ)-124 was reproducibly generated in 65–68% yield on large scale
(cf. 10 g).

With a reliable route to (þ)-124 securely in hand, we turned to
elaborate ring E. Hydrolysis of the acetonide, followed by iodo-
methane-mediated dithiane removal proceeded with concomitant
hemiketalization to furnish EF diol (þ)-127 in 77% for the two
steps (Scheme 41). Selective silylation of the C(35) hydroxyl, fol-
lowed by exposure to methanolic PPTS then led to methyl ketal
(þ)-128. Removal of the benzyl protecting groups via hydro-
genolysis, however, proved to be more challenging than we had
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anticipated, being plagued with competitive olefin reduction. Use
of LiDBB, however, proved highly effective to furnish (þ)-129 in
96% yield.

To set the stage for final elaboration of the F-ring side chain,
(þ)-129 was globally protected as the tetra-TES ether (þ)-130
(Scheme 42). Ozonolysis employing reductive workup, followed
without purification by treatment with Eschenmoser’s salt53 next
furnished (þ)-131. Selective 1,2-reduction with DIBAL-H then led to
alcohol (þ)-132, which was converted to bromide (þ)-107 with
CBr4 in the presence of PPh3. Alternatively, the corresponding
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iodide (þ)-133 could be prepared by treatment with I2 in the
presence of PPh3.

2.12. Elaboration of the EF side chain

Our initial approach focused on a tin-mediated Barbier allylation
protocol54 between known chlorodiene aldehyde 10655 and bro-
mide (þ)-107 (Scheme 43). To this end, treatment of a premixed
solution of bromide (þ)-107 and aldehyde 106 with SnCl2$2H2O in
the presence of NaI proceeded to furnish 134 as a mixture (1:1) of
C(47) alcohols. The yield, however, was only modest (ca. 42%). We
therefore turned to an umpolung approach.56

In this scenario, we envisioned addition of an O-protected
cyanohydrin57 to either bromide (þ)-107 or iodide (þ)-133
(Scheme 42). Accordingly, aldehyde 106 was treated with trime-
thylsilyl cyanide in the presence of ZnI2 to furnish cyanohydrin
135 (Scheme 44).58 Attempts to deprotonate 135 and trap the
resulting ion with either (þ)-107 or (þ)-133, however, resulted
only in decomposition of the cyanohydrin or recovery of the allyl
halide.
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Reasoning that the extended conjugation of the cyanohydrin
might be responsible for decomposition via an elimination path-
way, we opted to mask the olefin as a protected b-hydroxyl.
Construction of the revised cyanohydrin 141 began with an aldol
reaction between the lithium enolate of tert-butyl acetate 137 and
aldehyde 138 (generated in situ via Swern oxidation of the cor-
responding alcohol)59 to furnish racemic 139 (Scheme 45). Pro-
tection of the alcohol without purification with TESCl provided
140, which was converted to cyanohydrin 141 in two additional
steps.

Pleasingly, cyanohydrin 141 underwent clean deprotonation
and union with allylic iodide (þ)-133 to furnish diol 142, after
removal of the silyl groups at C(29) and C(49) (Scheme 46).
Conversion of the C(29) hydroxyl to the corresponding iodide then
fortuitously proceeded with concomitant elimination of the C(49)
hydroxyl to provide (þ)-143, which upon Corey reduction60 with
(R)-Me-CBS afforded allylic alcohol (þ)-144 with good diaster-
eoselectivity (dr>10:1). Protection of the free hydroxyl, followed
by treatment with PPh3 completed construction of Wittig salt
(þ)-105.

Comparison of the three approaches to the EF Wittig salts [cf.
(þ)-103 and (þ)-105] from the prospective of step economy reveals
near equivalency; the Evans glucal epoxide approach 24 steps, the
Petasis–Ferrier tactic 26 steps, and organocatalytic aldol approach 24
steps. However, the efficiencies are markedly different, being 1.8, 8.3,
and 9.4%, respectively, in overall yields from known starting materials.
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2.13. Fragment union and completion of the second- and
third-generation total syntheses

Having improved our approach to EF Wittig salt (þ)-105, all
that remained was union with aldehyde (�)-3 and final elabo-
ration to the natural product (Scheme 47). Wittig reaction be-
tween (þ)-105 and (�)-3 proceeded smoothly to provide alkene
(þ)-145 as a single isomer in 62% yield when utilizing LHMDS61

or in 64% when relying on MeLi$LiBr.62 Removal of the TES and
TIPS protecting groups was then achieved with TBAF in THF3m,n

to furnish seco-acid (þ)-146, which upon regioselective Yama-
guchi macrolactonization3c furnished macrolactone (þ)-147 in
85% yield.

Completion of the total synthesis now only required global
deprotection. While we had previously relied upon dilute HF/
acetonitrile in our first-generation synthesis of (þ)-spongistatin 1
(1), yields were highly variable. We therefore explored the
Heathcock conditions,3m,n calling on a higher concentration of
acid at lower temperature, as developed in their (þ)-spongistatin
2 synthesis. These conditions furnished an 87% yield of
(þ)-spongistatin 1 (1). As such, the third-generation synthesis
requires a longest linear sequence of 31 steps and proceeds with
an overall yield of 3.1%. Using this protocol we have been able to
prepare 80 mg of (þ)-spongistatin 1 (1) via Petasis–Ferrier union
tactic and 929 mg via the organocatalytic aldol strategy for a total
of 1.009 g of synthetic (þ)-spongistatin 1 (1). Importantly, this
quantity of (þ)-spongistatin 1 comprises more of the natural
product than has arisen from all the isolation and synthetic
studies combined.
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3. Conclusion

Three stereocontrolled total syntheses of (þ)-spongistatin 1
have been achieved. Comparison of the three routes reveals that the
third-generation route is roughly four times more efficient in terms
of overall yield than the first-generation route. Given that the
endgames of all three routes are similar, the differences in the
overall efficiencies reside in the tactics employed to arrive at
the subtargets. For the ABCD aldehyde (�)-3, our dithiane-medi-
ated multicomponent linchpin coupling proved to be an extremely
powerful method for construction of the AB and CD subunits.
Clearly, the different fragment union protocols played a critical role
in the outcome of the different syntheses. For example, the Julia
union/methylenation process proceeded in high yield in our origi-
nal (þ)-spongistatin 2 (2) synthesis, a result of the simplified nature
of the coupling partners. A large number of transformations,
however, were required after fragment union to complete the ABCD
aldehyde. By comparison, the boron aldol approach in the
(þ)-spongistatin 1 (1) synthesis permitted advancement with more
highly functionalized fragments, thereby increasing both the con-
vergency and overall efficiency for the ABCD aldehyde, as evi-
denced by an increase in the overall yield of this fragment from 1.4%
to 6.5%.

An even more dramatic improvement in terms of efficiency can
be seen in the diverse strategies to construct the EF Wittig salt. In
both our (þ)-spongistatin 2 (2) and (þ)-spongistatin 1 (1) synthe-
ses, ring F was constructed from a linear precursor, coupled to an E-
ring fragment precursor and then subjected to cyclization prior to
side chain introduction. Unfortunately, side chain installation in the
(þ)-spongistatin 2 (2) synthesis was compromised by an un-
expected low yield of the Julia union/methylenation tactic. This
information in conjunction with the extensive number of trans-
formations required to evolve the fully elaborated EF side chain in
the (þ)-spongistatin 2 synthesis proved inefficient. In contrast,
elaboration of the partially functionalized side chain prior to union
to the EF ring system proved more efficient as evidenced by the
increase in the overall yield of this fragment from 0.3% in our
(þ)-spongistatin 2 synthesis to 1.8% in our first-generation ap-
proach to (þ)-spongistatin 1. Despite these improvements, the te-
dious nature of the EF dihydropyran construction, in conjunction
with the sensitivity of the side chain, compromised large-scale
advancement of the material. We therefore developed an approach,
which incorporated an efficient cyanohydrin alkylation to complete
the F-ring side chain. This approach proved to be much more ef-
fective than the earlier two tactics, removing the need to perform
extensive manipulations on advanced intermediates and/or the
synthesis of highly sensitive coupling partners. The improved effi-
ciency is best exemplified by the fact that that we can now con-
struct the EF Wittig salt with an overall yield of 9.5% from known
materials. Finally, the integrity of the C(23) spiroketal stereocenter
was maintained throughout the synthesis.
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