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Introduction

Host-guest chemistry has been applied in various areas of 
scientific research, such as molecular recognition,1–4 molecular 
machines,5,6 biological-system analogues,7 and catalysts.8 
Investigations into the structure formation and selectivity of host-
guest complexes focus primarily on the thermodynamic stability, 
or Gibbs free energy of reaction (ΔG°), of the complexes.9 
Furthermore, when considering the chemical reactions in host-
guest chemistry, the inclusion of kinetic studies, or Gibbs free 
energy of activation (ΔG‡), has revealed that characteristics of 
these host-guest systems are based on the dynamics of their 
complexing.10 In particular, guest exchange dynamics have 
recently attracted attention, and an artificial model system has 
been developed that mimics the transport and trapping phenomena 
observed in biological systems.11,12 Several groups have reported 
on the relationship between the structures and kinetics of host-
guest complexes, mainly pseudo[2]rotaxane formation, by using 
steric hindrance,13–16 guest solvation,17 and the introduction of 
long-chain substituents18 were studied. Furthermore, these studies 
demonstrated the successful control of the transition free energy 
(ΔG‡) of host-guest complex formation. In many cases, 
introducing larger substituents onto the host or guest slows down 
the host-guest formation reaction due to the steric hindrance. 
However, an intriguing system was reported in which the 
elongation of the substituent accelerated the formation reaction.18 
Overall, the complexing of host and guest is a rapid process; hence, 
kinetic analyses are not as sufficiently carried out as 
thermodynamic analyses.

A pseudo[1]rotaxane composes of a ring and an axle covalently 
bonded. This structure not only plays an important role in protein 
transport, such as for Sec proteins,19 but also forms an interesting 

lasso-peptide analogue that exhibits various physiological 
activities.20 The design of pseudo[1]rotaxanes allows for control 
over their dynamics timescales, because the connection between 
the ring and the axle limits both of their mobilities. This control 
makes it possible to study the kinetics of these complexes, which 
provides a simplified, convenient model for the quantitative 
understanding of host-guest dynamics. Nevertheless, only a couple 
of papers have been reported on the kinetics of pseudo[1]rotaxane 
formation.21,22

 Our group have reported the syntheses and applications of 
[1]rotaxane structures from permethyl α-cyclodextrin (PM α-CD) 
linked to diphenylethynylene derivatives.23,24 In this study, to 
clarify the relationship between the dynamics and structures 
during the pseudo[1]rotaxane formation (i.e., the inclusion 
reaction), we systematically investigated how flexible chain 
substituents introduced onto the diphenylethynylene group would 
affect the formation kinetics. The diphenylethynylene moiety was 
expected to not only form a stable host-guest complex with PM α-
CD, but also regulate the rate of the inclusion reaction due to its 
rigidity.22 In addition, the flexible chain was expected to function 
as a damper that would alter the inclusion kinetics.25 It was 
revealed that the rate of the pseudo[1]rotaxane formation only 
decreased over chain length regions of 1–3 or >12, but increased 
over a region of 4–8.

Results and Discussion

As shown in Scheme 1, compound 3 was synthesized by the 
Sonogashira-Hagihara coupling of a substituted iodobenzene 
containing a PM α-CD derivative 1 with p-ethynyl phenol (2). 
Subsequent reaction of 3 with linear alkyl iodides of varying chain 
lengths afforded the corresponding PM α-CD derivatives CD-
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Herein, we report the kinetics of pseudo[1]rotaxane formation from permethyl α-cyclodextrin 
attached to a flexible-chain-substituted diphenylethynylene. When the chain is an alkyl group, the 
rate of formation shows different trends over three regions of chain length: deceleration (chain 
length = 1–3), acceleration (4–8), and re-deceleration (> 12). This behavior is driven by a relative 
decrease in the ΔH‡ of the transition.
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alkyl-n, where n represents the number of carbon atoms in the 
alkyl chain (n = 1, 2, 3, 4, 6, 8, 12, and 18). Also shown in Scheme 
1 are PM α-CD derivatives with a polyethylene glycol (PEG) 
chain, CD-PEG-n (n = 4, 7, 13, and 25), that were synthesized 
from compound 3 and PEG methyl ether tosylates with varying 
chain lengths. 26

 CD-alkyl-n quantitatively formed a pseudo[1]rotaxane 
structure in a highly polar solvent, CD3OD/D2O (see SI, Fig. S26, 
S27), and the equilibrium for this inclusion reaction is shown in 
Fig. 1A. To thoroughly follow the rotaxane formation, we ran 1H 
NMR experiments on CD-alkyl-n in CD3OD at 298 K and 
measured the changes in the spectra over time (Fig. 1B and S29). 
The ratio of included compound to non-included compound was 
calculated from the integral ratio of their aromatic region protons. 
The abundance ratio over elapsed time is expressed as Eq. 1, 
assuming a reversible first-order reaction (see SI),

              (Eq. 1)
[included]

[nonincluded] =
𝑘 ― 𝑘𝑒 ― (𝑘 + 𝑘')𝑡

𝑘' + 𝑘𝑒 ― (𝑘 + 𝑘')𝑡

  where k is the forward for the formation of pseudo[1]rotaxane, 
k' is the reverse reaction rate constant, [included] and 
[nonincluded] are the concentration of the inclusion are non-
inclusion compounds, respectively. The value of k for the inclusion 
reaction of CD-alkyl-n was calculated by fitting the measured 
abundance ratio over elapsed time to Eq. 1 (see Fig. S28, S29). 
The relationship between k and the alkyl chain lengths of CD-
alkyl-n is shown in Fig. 2. From the results of the 1H NMR spectra 
measurements, CD-alkyl-1 was estimated to have a k > 2.0 × 10 −2 
s−1 (Fig. S31). The values of k for CD-alkyl-2 and CD-alkyl-3 
were 2.8 × 10−4 s−1 and 2.6 × 10−4 s−1, respectively; therefore, k 
decreased as the alkyl chain length increased. This suggested that 
alkyl chain elongation caused steric hindrance, which increased 
the ΔG‡ during the pseudo[1]rotaxane formation process. 
Meanwhile, when n = 4–8, k unexpectedly increased, where the 
values for CD-alkyl-4, CD-alkyl-6, and CD-alkyl-8 were 2.8 × 
10−4 s−1, 13 × 10−4 s−1, and 21 × 10−4 s−1, respectively. Specifically, 
k of CD-alkyl-8 was 8 times larger than that of CD-alkyl-3. 
Furthermore, the k values of CD-alkyl-12 and CD-alkyl-18 were 

⊿H‡ /kJ mol-1 ⊿S‡ /J mol-1 K-1 –T⊿S‡ /kJ mol-1

(303 K)
⊿G‡ /kJ mol-1

(303 K)

CD-Alkyl-4 69.8 –75.2 22.8 92.6

CD-Alkyl-8 49.2 –131.0 39.7 88.8

Fig. 1 (A) Equilibrium of the inclusion reaction to form CD-alkyl-n, (B) Changes over time in the 1H NMR spectra of CD-alkyl-2 in CD3OD at 298 K (aromatic 
region; a: 10 min; b: 53 min; c: 107 min; d: 272 min.).

Fig. 2 Dependence of k on alkyl chain length n for CD-alkyl-n at 298 K in 
CD3OD.

Scheme 2. Synthesis of CD-alkyl-n and CD-PEG-n
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21 × 10−4 s−1 and 17 × 10−4 s−1, respectively, indicating that k 
decreased again when n > 12.27

 To investigate this behavior, variable-temperature NMR 
experiments were conducted on CD-alkyl-4 and CD-alkyl-8 over 
a range of 298-308 K (Fig. S32-S34). Table 1 shows the ΔG‡, the 
enthalpy of activation (ΔH‡), and the entropy of activation (ΔS‡) 
of the inclusion reactions at 303 K, which were obtained from the 
Eyring plot. As the alkyl chain length increased, ΔH‡ decreased 
(CD-alkyl-4: 69.8 kJ mol−1, CD-alkyl-8: 49.2 kJ mol−1), whereas 
–TΔS‡ increased (CD-alkyl-4 : 22.8 kJ mol−1, CD-alkyl-8 : 39.7 
kJ mol−1). Therefore, the decrease in ΔG‡ is due to the decrease in 
ΔH‡, not –TΔS‡.

 For further investigation, experiments were also conducted on 
CD-PEG-n, which possess PEG chains that are more hydrophilic 
than alkyl chains. The abundance ratio of the included compound 
to the non-included compound was determined using 1H NMR 
spectroscopy. The sample was run in CD3OD at 305 K, and the 
integrations of the aromatic protons were compared. The k for the 
inclusion reaction was determined using Eq. 1, similar to the k of 
CD-alkyl-n (Fig. S30, Table S1). Fig. 3 indicates the relationship 
between the number of atoms in the PEG chain and k. The 
dependence of k on the chain length in CD-PEG-n is significantly 
different than that in CD-alkyl-n; that is, k decreases 
monotonically as the PEG chain is elongated. Hence, the 
remarkable dependence of k on the chain length for the CD-alkyl-
n was related to it specifically being an alkyl chain.

Based on these results, our proposed mechanism of the 
inclusion process is displayed in Fig. 4. The formation of 
pseudo[1]rotaxane from the non-included compound involves 
threading only via the alkyl chain side, since the inclusion reaction 
k showed a chain length dependence. Additionally, it is known that 

threading from the acetamide group side has a high activation 
energy barrier.28 The k values decreased over the regions of n = 
1–3 and >12 for both CD-alkyl-n and CD-PEG-n, but increased 
in the region of n = 4–8 only for CD-alkyl-n. This remarkable 
acceleration originates from the contribution of the dominant ΔH‡. 

Hence, the rate-determining step would be Fig. 4-C, which is 
the most strained state, and involves the strong interaction of the 
chain substituent with the PM α-CD (SI Chapter 5). We focused 
on the enthalpy change between the alkyl chains and both the PM 
α-CD and the methanol solvent. Hydrophobic chains, like these 

alkyl chains, have a low affinity for polar solvents, such as 
methanol, but have a high affinity for PM α-CD. In other words, 
the longer the alkyl chain length is, the greater the chain can 
stabilize (decrease in ΔH‡) in the PM α-CD, which is what occurs 
in the transition state. This is observed for the CD-alkyl-n with 
chain lengths in the region of n = 4–8. On the other hand, for chains 
with n > 12, the alkyl chain cannot gain further enthalpy 
stabilization by inclusion. Furthermore, and because –TΔS‡ 
increases with the increase in the chain length, the ΔG‡ increases 
for these CD-alkyl-n with n > 12. Meanwhile, PEG chains are 
more hydrophilic than alkyl chains and tend to be strongly solvated 
in polar solvents like methanol; although, they have a lower 
affinity for the PM α-CD than the alkyl chains.29,30 Therefore, the 
PEG substituents of CD-PEG-n complexes do not stabilize as 
much as the alkyl substituents of CD-alkyl-n. This is what causes 
the observed decrease in k as the PEG chain length increased. By 
comparing the enthalpies of the different substituents in the initial 
and transition states, the dependence of the rotaxane formation rate 
on the chain length is clearly demonstrated. 

Conclusion

To determine the effect of structure on the dynamics of 
pseudo[1]rotaxane formation, our group systematically 
investigated the effects of flexible chain substituents of a PM α-
CD-linked diphenylethynylene group on the kinetics. The results 
revealed that the k of rotaxane formation from CD-alkyl-n showed 
different trends over three regions of chain length: deceleration (n 
= 1–3), acceleration (n = 4–8), and re-deceleration (n > 12). That 
is, the alkyl chains behaved as dampers or accelerators depending 
on their length. This behavior contrasts with that seen in CD-PEG-
n, where a continuous decrease in k was observed as n increased. 
This was due to the lack of interaction between the PEG chains 
and inside of PM α-CD in the transition state. This study 
demonstrated that the kinetics of pseudo[1]rotaxane formation are 
dictated by structure and that the guest molecule has different 

 Table 1 Measurements of ΔG‡, ΔH‡, and ΔS‡ at 303 K during 
the inclusion reactions for CD-alkyl-4 and CD-alkyl-8

Fig. 3 Dependence of k on alkyl chain length n for CD-PEG-n at 305 K in 
CD3OD.

Fig. 3 Dependence of k on alkyl chain length n for CD-PEG-n at 305 K in 
CD3OD.

Fig. 4 A proposed mechanism. The first 3 atoms of the chain substituent are represented in black, the next 5 atoms in ash, 
and the next 10 atoms in red.
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affinities for the host and the solvent. Our findings not only guide 

the process of forming new host-guest complexes, but also help to 
elucidate the mechanisms of these complex biological phenomena 
relating to non-equilibrium states.
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Highlights

 The k of pseudo[1]rotaxane formation　
showed 　 different trends over three 
regions of flexible chain length

 The alkyl chains behaved as dampers 
or accelerators depending on their 
length 

 The kinetics of pseudo[1]rotaxane 
formation are dictated by structure 

 The findings guide 　 the process of 
forming new host-guest complexes


