Design, Synthesis, Antiviral Activities of Novel Phosphonate Derivatives Month 2017 Containing Quinazoline Based on Chalone Motif

Guo-Ping Zhang,^{a,b*†} Jian-Ke Pan,^{a†} Jian Zhang,^a Zeng-Xue Wu,^a Deng-Yue Liu,^a and Lei Zhao^a

^aState Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green

Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China ^bDepartment of Chemistry, Huaibei Normal University, Huaibei 235000, China

*E-mail: hbzgp-1@163.com

[†]Guo-Ping Zhang and Jian-Ke Pan contributed equally to this study. Additional Supporting Information may be found in the online version of this article.

> Received July 31, 2016 DOI 10.1002/jhet.2849

Published online 00 Month 2017 in Wiley Online Library (wileyonlinelibrary.com).

Based on the structure of natural product chalone, a series of novel phosphonate derivatives were designed and synthesized through 1,4-hydrophosphinylation of α , β -unsaturated carbonyl compounds. Their structures were characterized by IR, NMR, MS, and elemental analysis. The antiviral activities against cucumber mosaic virus were evaluated for the first time. The bioassay results indicated that most compounds exhibited good protective activities, low curative activities, and weak inactive activities. The antiviral protective activities of compounds C2 and C5 were 55.1% and 56.8%, respectively, which are slightly higher than those of the commercial Ningnanmyin (49.3%) and Dufulin (53.1%). Moreover, compounds C2 and C9 exhibited moderate curative activities (42.6% and 46.6%). Therefore, the basic motif of C1 can be used as a new lead structure for developing antivirus agents.

J. Heterocyclic Chem., 00, 00 (2017).

INTRODUCTION

Plant viruses, also named "plant cancer," have caused severe economic losses to agriculture worldwide [1]. Among them, cucumber mosaic virus (CMV), a member of the family Bromoviridae, is a major agronomic threat that infects more than 1000 plant species [2]. At present, the commercial antiviral agent such as ningnanmycin and dufulin displayed 30-60% in vivo curative effect at 500 µg/mL against CMV [3]. Because of poor field efficacy and huge economic loss, it is still necessary to the development of economically viable antiviral chemicals for application in agriculture.

Natural products have been demonstrated to be used as ideal lead structure to develop agrochemicals, due to its good compatibility, biodegradability and low toxicity [4]. It is well known that chalcone is the precursor of flavonoids and isoflavonoids, which possesses promising biological activities such as antifungal [5], anticancer [6], anti-retroviral [7], anti-inflammatory [8], antioxidant [9], and antimalarial [10]. In our previous study, a series of chalcone derivatives with heterocycle were designed and synthesized, exhibiting moderate to good anti-plant viral activity in vivo [11-14]. These findings inspire us to further modify chalcone motif.

In addition, phosphonates and their phosphonic derivatives possess intriguing biological and pharmacological properties, which have been mainly focused on antibiotic activity [15], antibacterial activity [16], enzyme inhibitors [17], and herbicides [18], and can be used as inhibitors of renin [19] or HIV proteases [20]. Moreover, phosphonate derivatives were also found to exhibit good antiviral activities against plant virus [21]. In our previous study, a series of phosphonates with heterocycle [22], thiourea [23], cyanoacrylate [24], and amide [25], respectively, were designed and synthesized, exhibiting moderate to good antiviral activity in vivo. Meanwhile, quinazolin-4(3H)-one is a heterocycle moiety exhibiting extensive biological activities such as antifungal [26], antibacterial [27], and antitumor [28].

Moreover, we also found that quinazoline derivatives [29,30] possessed excellent antiviral activities *in vivo*.

Herein, a series of novel phosphonate derivatives containing quinazoline were designed and synthesized through 1,4-addition reactions of diethyl phosphite to chalone. Their antiviral activities *in vivo* against CMV were subsequently evaluated, and preliminary structure–activity relationship of these compounds against CMV was discussed.

RESULTS AND DISCUSSION

Synthesis and spectroscopy. The synthesis procedures for intermediates **A**, **B**, and target compound **C** were shown in Scheme 1. Intermediate **A** was synthesized referring to the literature [31] with mainly optimized reaction condition (Scheme 1). The method can efficiently obtain to compound **A** in 96% yield after THF solvent instead of ethanol without adding few drops of conc. HCl. Intermediate **B** can be synthesized classically by Claisene-Schmidt condensation between compound **A** and aromatic aldehyde employing potassium hydroxide as catalyst [31].

Target compound **C** were synthesized through 1,4hydrophosphinylation of α , β -unsaturated carbonyl compounds. The reaction base had a great influence on the reaction yield in our experiment. As shown in Table 1, the hydrophosphonylation reaction of chalcones derivatives containing quinazoline **B1** with diethyl phosphite was chosen as a model reaction to optimize reaction conditions. In initial studies, different bases were screened in THF as the solvent (5 mL) in room

 Table 1

 Optimized reaction condition of 1,4-addition.

Entry ^a	Base	Solvent	Time (h)	Yield ^b (%)
1	KOH	THF	12	5
2	NaOEt	THF	12	17
3	NaNH ₂	THF	12	48
4	NaH	THF	12	55
5	NaH	Toluene	12	10
6	NaH	DMSO	12	25
7	NaH	DMF	12	0

^aReaction conditions: **B1** (1 mmol), diethyl phosphite (1.5 mmol), base (1.5 mmol), solvent (5 mL), r.t, 12 h;

^bIsolated yields.

temperature for 12 h (Table 1, entry 1–4), When the reaction was carried out with NaH as the base, it could afford the product C1 in good yield (Table 1, entry 4). The effects of solvents were then evaluated by using NaH as the base (Table 1, entry 4–7). THF (Table 1, entry 4) was found to be an optimal solvent, giving C1 in a good yield (up to 55%). With the optimized reaction conditions in hand, the target compounds C1–C14 were synthesized.

Compound **C** were identified by melting point, ¹H NMR, ¹³C NMR, ³¹P NMR, IR, elemental analyses, and MS spectra. In ¹H NMR, the CH-P proton appeared at δ 3.44–4.96 as m or d, the NH proton appeared at δ 10.02–10.04 as a singlet. In the ¹³C NMR spectra of compound **C**, the typical carbon resonance at δ 195.1–195.7 was indicative of a carbonyl group (C=O). In the ³¹P NMR spectra of compound **C**, the typical phosphorus resonance at δ 25.80–28.90 was indicative of a phosphorus group. The IR spectra of compound **C** showed bands at 1670–1683 cm⁻¹ for C=O stretching.

Scheme 1. The synthetic routes of the title compound C.

Antivirus activities. The antiviral activities of the target compounds C1-C14 against CMV were assayed. The commercial agent ningnanmycin and dufulin were used as controls. Results of the bioassay shown in Table 2 indicated that the title compounds exhibited good protective activities, low curative activities, and weak inactive activities in vivo against CMV. Among them, compounds C2 and C5 showed good protective activities against CMV at 500 µg/mL, with the inhibition rates of 55.1% and 56.8%, respectively, which were slightly higher than that of ningnanmycin (49.3%) and similar to that of dufulin (53.1%); Meanwhile, compounds C1, C7, C9, C10, C11, C12, C13, and C14 exhibited the similar protective activities against CMV (48.0%, 52.1%, 48.7%, 47.8%, 48.1%, 47.4%, 51.2%, and 51.8%, respectively) to that of ningnanmycin. Moreover, compounds C3, C4, and C6 exhibited weak protective activities in vivo against CMV (10.7%, 9.3%, and 12.2%, respectively). Among them, compounds C2 and C9 showed moderate curative activities. However, other compounds exhibited weak curative activities and inactive activities.

To further investigate the action of introducing phosphonate moiety on title compounds, the title compounds C1, C2, and C5 (48.0%, 55.1%, and 56.8%) with typically high protective activities were selected and were compared with those of the accordingly intermediates B1, B2, and B5 (17.7%, 12.2%, and 25.6%, respectively). The results indicated that the introduction of phosphonate moiety can effectively improve the antiviral activity of title compounds. Meanwhile, the group at the phenyl ring (R) of the title compounds greatly affects the *in vivo* anti-CMV protective activity. When the group at ortho position is a fluorine moiety, C2 exhibits good

protective activities against CMV. When the group at meta or para positions is a bromine moiety, C5 and C7 also exhibited good protective activities against CMV. However, when the group at ortho or para position is a chlorine moiety, C3, C6, and C8 showed poor anti-CMV activities. Accidentally, compound C9 with chlorine moiety exhibited good an-CMV activity mainly for the influence of fluoride group. Meanwhile, C10–C14 with heterocycle moiety exhibited good activity against CMV. In short, the presence of fluorine, bromine, or heterocycle groups could improve the antiviral activity of the compound more than that of other groups.

In summary, a series of novel phosphonates containing quinazoline based on chalone motif have been synthesized via 1,4-addition reaction in moderate yields and structurally confirmed. Bioassay results showed that the title compounds exhibited good protective activities, low curative activities, and weak inactive activities in vivo against CMV. Among them, C2 and C9 also exhibited moderate curative activity. Moreover, C2 and C5 exhibited slightly high protective activities than that of the controls. Therefore, the basic motif of C1 can be used as a leading compound for further structural optimization to develop a potential antivirus agent.

EXPERIMENTAL

Materials and methods. Nuclear magnetic resonance spectra were recorded on a JEOL ECX-500 spectrometer (JEOL, Tokyo, Japan). Infrared spectra were recorded on Bruker VECTOR 22 spectrometer (Bruker, Karlsruhe, Germany) using KBr disks. The electron impact (EI) mass

In vivo antivirus activity data of title compounds at 500 μ g/mL.					
Compd.	R	Curative effect (%) ^a	Protective effect (%) ^a	Inactive effect (%) ^a	
C1	C ₆ H ₅	33.8 ± 2.3	48.0 ± 2.0	11.5 ± 1.4	
C2	$2-FC_6H_4$	40.5 ± 1.5	55.1 ± 2.3	21.0 ± 0.9	
C3	$2-ClC_6H_4$	15.8 ± 0.5	10.7 ± 1.6	15.9 ± 1.0	
C4	$2-CF_3C_6H_4$	15.0 ± 0.8	9.3 ± 2.7	26.2 ± 1.8	
C5	$3-BrC_6H_4$	14.7 ± 0.9	56.8 ± 2.6	35.9 ± 3.5	
C6	$4-ClC_6H_4$	26.0 ± 0.9	12.2 ± 3.0	22.4 ± 2.2	
C7	$4-BrC_6H_4$	10.9 ± 1.2	52.1 ± 1.9	14.3 ± 0.7	
C8	2,6-Cl ₂ C ₆ H ₃	29.6 ± 1.8	33.4 ± 2.1	15.7 ± 1.1	
С9	2-F-6-ClC ₆ H ₃	46.6 ± 2.0	48.7 ± 1.9	25.9 ± 3.7	
C10	2-thiophene	6.1 ± 0.7	47.8 ± 2.5	19.4 ± 0.5	
C11	2-furan	17.8 ± 0.6	48.1 ± 1.0	13.3 ± 3.2	
C12	2-pyridine	8.8 ± 1.0	47.4 ± 1.4	15.9 ± 0.8	
C13	3-pyridine	14.9 ± 1.4	51.2 ± 2.3	21.5 ± 1.2	
C14	4-pyridine	11.6 ± 1.7	51.8 ± 3.0	22.5 ± 1.9	
Control b		51.2 ± 1.8	49.3 ± 2.5	73.2 ± 2.1	
Dufulin ^c		52.4 ± 1.2	53.1 ± 1.6	78.4 ± 0.7	

Table 2 In vivo antivirus activity data of title compounds at 500 μg

^aAverage of three replicates.

^bNingnanmycin was used as the control.

^cDufulin was also used as the control.

spectra were recorded on a Finnigan Mat SSQ 7000 (70 eV) mass spectrometer (Blue Lion Biotech, LLC, Snoqualmie, WA, USA). Silica gel GF_{254} -coated glass plates (Branch Qingdao Haiyang Chemical Co., Qingdao, China) were used for thin-layer chromatography under detection at 254 nm. Silica gel 200–300 mesh (Branch Qingdao Haiyang Chemical Co., Qingdao, China) was applied to column chromatography. Unless otherwise stated, all reagents were purchased from Aladdin Chemicals Co. (Aladdin, Shanghai, China) and used without further purification. All solvents used in the reactions were distilled from appropriate drying agents prior to use.

General synthetic procedure. According to the literature [32], methyl anthranilate was treated with $HCONH_2$ in the presence of HCOOH and then chlorinated to obtain 4-chloroquinazoline.

Preparation of intermediate N-(4-acetyl-phenyl)-quinazolin-4-amine (A). Referring to the literature [31] by a modified method, to a solution of 4-chloroquinazoline (3 mmol) in 10 mL THF was added 4aminoacetophenone (3 mmol) (Scheme 1). The mixture was stirred under reflux for 2 h with TLC monitoring. The reaction mixture was filtered and washed with THF, the filter cake is compound A as a pale yellowish solid (0.72 g, yield 91%), mp 256–257°C (lit³² mp 255–257°C).

Preparation of intermediate substituted chalcones derivatives with quinazoline (B). Referring to the literature [31] with minor improvement, a mixture of A (1 mmol) and aromatic aldehydes (1 mmol) was stirred in ethanol (30 mL) and water (1 mL) and then KOH (1 mmol) added to it. The mixture was kept overnight at room temperature and then it was poured onto crushed ice, stirred, and acidified with dilute HCl (pH = 1.0). The solid separated was filtered and recrystallized from ethanol to obtain the intermediates **B**. Among them, characterization data of new compounds are given as follows:

B1: yellow solid, yield 78%; **B2**: yellow solid, yield 81%; **B3**: yellow solid, yield 79%; **B5**: yellow oil, yield 71%; **B6**: yellow solid, yield 81%; **B7**: yellow solid, yield 79%.

B4: The compound was obtained in 88.2% yield as yellowish solid; mp more than 300°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.08 (s, 1H, NH), 8.71 (s, 1H, quinazoline-2-H), 8.60 (d, J = 8.2 Hz, 1H, quinazoline-8-H), 8.31 (d, J = 7.8 Hz, 1H, Ar-H), 8.20 (dd, J = 25.1, 8.9 Hz, 4H, CH = CH + Ar-H), 8.04 (d, J = 15.3 Hz, 1H, Ar-H), 7.95 (dd, J = 15.4, 2.1 Hz, 1H, Ar-H), 7.88 (t, J = 7.6 Hz, 1H, Ar-H), 7.84–7.74 (m, 3H, Ar-H), 7.70–7.61 (m, 2H, Ar-H); ¹³C NMR (126 MHz, DMSO- d_6) δ 187.71 (s), 157.98 (s), 154.72 (s), 150.41 (s), 144.97 (s), 137.70 (s), 133.91 (s), 133.54 (d, J = 4.8 Hz), 132.21 (s), 130.94 (s), 130.31 (s), 129.29 (s), 128.51 (s), 128.12 (s), 127.89 (s), 127.18 (s), 126.81

(s), 126.72 (d, J = 5.0 Hz), 125.85 (s), 123.63 (s), 121.41 (s), 115.91 (s); ¹⁹F NMR (471 MHz, DMSO- d_6) δ –57.21 (s). HRMS (ES) m/z for C₂₄H₁₆F₃N₃O [M + Na]⁺ Calcd. 442.1137. Found: 442.1129.

B8: The compound was obtained in 76.7% yield as yellowish solid; mp 192–194°C. ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.07 (s, 1H, NH), 8.70 (s, 1H, quinazoline-2-H), 8.59 (d, J = 8.2 Hz, 1H, quinazoline-8-H), 8.14 (dd, J = 36.4, 8.8 Hz, 4H, CH = CH + Ar-H), 7.89–7.78 (m, 3H, Ar-H), 7.70–7.61 (m, 2H, Ar-H), 7.55 (d, J = 8.1 Hz, 2H, Ar-H), 7.38 (t, J = 8.1 Hz,1H, Ar-H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 187.78 (s), 157.94 (s), 154.66 (s), 150.39 (s), 145.05 (s), 136.72 (s), 134.67 (s), 133.86 (s), 132.75 (s), 131.98 (s), 131.45 (s), 131.02 (s), 130.16 (s), 129.64 (s), 128.48 (s), 127.13 (s), 123.64 (s), 121.47 (s), 115.91 (s). HRMS (ES) m/z for C₂₃H₁₅Cl₂N₃O [M + Na]⁺ Calcd. 442.0485. Found: 442.0481.

B9: The compound was obtained in 85.3% yield as light-brown solid; mp 224–226°C. ¹H NMR (500 MHz, DMSO-d₆) δ 10.07 (s, 1H, NH), 8.69 (s, 1H, quinazoline-2-H), 8.59 (d, J = 8.2 Hz, 1H, quinazoline-8-H), 8.17 (d, J = 8.4 Hz, 2H, CH = CH), 8.08 (d, J = 8.7 Hz, 2H, Ar-H), 7.88–7.73 (m, 4H, Ar-H), 7.64 (t, J = 7.4 Hz, 1H, Ar-H), 7.50–7.38 (m, 2H, Ar-H), 7.34 (t, J = 10.0 Hz, 1H, Ar-H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 187.94 (s), 162.78 (s), 160.76 (s), 157.94 (s), 154.66 (s), 150.37 (s), 144.99 (s), 135.58 (d, J = 4.7 Hz), 133.85 (s), 133.09 (s), 132.47 (d, J = 10.6 Hz), 132.08 (s), 130.05 (s), 129.16 (d, J = 12.0 Hz), 128.46 (s), 127.12 (s), 126.80 (s), 123.65 (s), 122.00 (d, J = 14.4 Hz), 121.47 (s), 115.99 (d, J = 10.0 Hz); ¹⁹F NMR (471 MHz, DMSO-d₆) δ -107.80 (s). HRMS (ES) m/z for $C_{23}H_{15}CIFN_3O [M + Na]^+$ Calcd. 426.0780. Found: 426.0772.

B10: The compound was obtained in 92.2% yield as yellowish solid; mp 253–255°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.05 (s, 1H, NH), 8.70 (s, 1H, quinazoline-2-H), 8.60 (d, J = 8.3 Hz, 1H, quinazoline-8-H), 8.14 (q, J = 2.3 Hz, 4H, CH = CH + Ar-H), 7.90–7.86 (m, 2H, Ar-H), 7.82 (d, J = 8.1 Hz, 1H, Ar-H), 7.75 (d, J = 5.0 Hz, 1H, Ar-H), 7.68–7.65 (m, 2H, Ar-H), 7.59 (d, J = 15.3 Hz, 1H, thiophene-3-H), 7.17 (dd, J = 5.0, 3.6 Hz, 1H, thiophene-4-H); ¹³C NMR (126 MHz, DMSO- d_6) δ 187.57 (s), 157.99 (s), 154.74 (s), 150.40 (s), 144.54 (s), 140.43 (s), 136.64 (s), 133.88 (s), 133.17 (s), 132.65 (s), 130.77 (s), 129.90 (s), 129.25 (s), 128.50 (s), 127.14 (s), 123.64 (s), 121.46 (s), 120.91 (s), 115.90 (s). HRMS (ES) m/z for C₂₁H₁₅N₃OS [M + Na]⁺ Calcd. 380.0829. Found: 380.0821.

B11: The compound was obtained in 87.2% yield as yellowish solid; mp 232–235°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.05 (s, 1H, NH), 8.71 (s, 1H, quinazoline-2-H), 8.60 (d, J = 8.2 Hz, 1H, quinazoline-8-H), 8.14 (q,

 $J = 8.9 \text{ Hz}, 4\text{H}, \text{CH} = \text{CH} + \text{Ar-H}, 7.92-7.84 \text{ (m, 2H, Ar-H)}, 7.82 \text{ (d, } J = 8.3 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.67 \text{ (t, } J = 7.6 \text{ Hz}, 1\text{H}, \text{Ar-H}), 7.60-7.51 \text{ (m, 2H, Ar-H)}, 7.08 \text{ (d, } J = 3.4 \text{ Hz}, 1\text{H}, \text{furan-3-H}), 6.67 \text{ (dd, } J = 3.4, 1.8 \text{ Hz}, 1\text{H}, \text{furan-4-H}); ^{13}\text{C} \text{ NMR} (126 \text{ MHz}, \text{DMSO-}d_6) \delta 187.54 \text{ (s)}, 157.98 \text{ (s)}, 154.74 \text{ (s)}, 151.81 \text{ (s)}, 150.40 \text{ (s)}, 146.61 \text{ (s)}, 144.54 \text{ (s)}, 133.89 \text{ (s)}, 123.68 \text{ (s)}, 130.45 \text{ (s)}, 129.83 \text{ (s)}, 128.50 \text{ (s)}, 127.16 \text{ (s)}, 123.63 \text{ (s)}, 121.47 \text{ (s)}, 119.29 \text{ (s)}, 117.29 \text{ (s)}, 115.89 \text{ (s)}, 113.65 \text{ (s)}. \text{HRMS} \text{(ES) m/z for } C_{21}\text{H}_{15}\text{N}_{3}\text{O}_{2} \text{ [M + Na]}^+ \text{ Calcd. 364.1056}. \text{Found: 364.1048}.$

B12: The compound was obtained in 91.4% yield as yellowish solid; mp 265–267°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.07 (s, 1H, NH), 8.71 (s, 1H, quinazoline-2-H), 8.66 (d, J = 8.3 Hz, 1H, quinazoline-8-H), 8.60 (d, J = 8.3 Hz, 1H, pyridine-6-H), 8.24–8.05 (m, 5H, CH = CH + Ar-H), 7.93–7.76 (m, 4H, Ar-H), 7.74–7.61 (m, 2H, Ar-H), 7.45–7.34 (m, 1H, Ar-H); ¹³C NMR (126 MHz, DMSO- d_6) δ 188.31 (s), 157.97 (s), 154.72 (s), 153.47 (s), 150.56 (s), 150.40 (s), 144.82 (s), 142.96 (s), 137.73 (s), 133.87 (s), 132.47 (s), 130.08 (s), 128.50 (s), 127.14 (s), 125.69 (s), 125.42 (s), 125.26 (s), 123.64 (s), 121.49 (s), 115.90 (s). HRMS (ES) m/z for C₂₂H₁₆N₄O [M + Na]⁺ Calcd. 375.1217. Found: 375.1221.

B13: The compound was obtained in 93.2% yield as yellowish solid; mp 263-265°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.06 (s, 1H, NH), 9.01 (d, J = 2.1 Hz, 1H, pyridine-2-H), 8.71 (s, 1H, quinazoline-2-H), 8.63-8.51 (m, 2H, quinazoline-8-H+ pyridine-6-H), 8.34 (d, J = 8.0 Hz, 1H, Ar-H), 8.20 (dd, J = 27.5, 8.9 Hz, 4H, CH = CH+ Ar-H), 8.10 (d, J = 15.7 Hz, 1H, Ar-H), 7.88 (t, J = 7.6 Hz, 1H, Ar-H), 7.82 (d, J = 8.3 Hz, 1H,Ar-H), 7.74 (d, J = 15.7 Hz, 1H, Ar-H), 7.67 (t, J = 7.6 Hz, 1H, Ar-H), 7.47 (dd, J = 7.9, 4.8 Hz, 1H, Ar-H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 187.85 (s), 157.99 (s), 154.74 (s), 151.44 (s), 150.85 (s), 150.41 (s), 144.78 (s), 140.40 (s), 135.61 (s), 133.90 (s), 132.48 (s), 131.20 (s), 130.20 (s), 128.52 (s), 127.17 (s), 124.48 (s), 124.46 (s), 123.63 (s), 121.41 (s), 115.90 (s). HRMS (ES) m/z for $C_{22}H_{16}N_4O$ [M + Na]⁺ Calcd. 375.1217. Found: 375.1213.

B14: The compound was obtained in 95.1% yield as yellowish solid; mp more than 300°C. ¹H NMR (500 MHz, DMSO- d_6) δ 10.08 (s, 1H, NH), 8.72 (s, 1H, quinazoline-2-H), 8.65 (d, J = 6.0 Hz, 2H, pyridine-2,6-2H), 8.60 (d, J = 8.2 Hz, 1H, quinazoline-8-H), 8.27–8.13 (m, 5H, CH = CH + Ar-H), 7.89 (t, J = 7.5 Hz, 1H, Ar-H), 7.85–7.78 (m, 3H, Ar-H), 7.72–7.60 (m, 2H, Ar-H). ¹³C NMR (126 MHz, DMSO- d_6) δ 187.97 (s), 157.99 (s), 154.73 (s), 150.90 (s), 150.41 (s), 144.97 (s), 142.50 (s), 140.92 (s), 133.94 (s), 132.25 (s), 130.32 (s), 128.52 (s), 127.20 (s), 126.96 (s), 123.63 (s), 123.03 (s), 121.42 (s), 115.90 (s). HRMS (ES) m/z for C₂₂H₁₆N₄O [M + Na]⁺ Calcd. 375.1217. Found: 375.1209.

General procedure for the synthesis of the target compound C. To a solution of compound B (1 mmol) and diethyl phosphite (1.5 mmol) in 5 mL THF was added NaH (1 mmol) (Scheme 1). The mixture was stirred at room temperature with TLC monitoring. The reaction mixture was poured into water (20 mL) and extracted with dichloromethane (20 mL \times 3). The dichloromethane solution was dried with anhydrous Na₂SO₄ and evaporated in vacuum. The residue was purified by silica gel column eluted with methanolethyl acetate (V : V = 1 : 100) to obtain the target compound C. Their characterization data of compound C are given as follows (their spectra data seen in Supporting Information).

C1: The compound was obtained in 56.7% yield as yellowish solid; mp 169-170°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.03 (s, 1H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.61-8.51 (m, 1H, quinazoline-8-H), 8.14-8.04 (m, 2 H, Ar-H), 8.03-7.93 (m, 2 H, Ar-H), 7.92-7.59 (m, 3 H, Ar-H), 7.41-7.08 (m, 5 H, Ar-H), 4.02-3.90 (m, 2 H,CH₂CO), 3.88-3.66 (m, 4 H, 2 CH₂O), 3.58–3.45 (m, 1 H, CHP), 1.15 (t, J = 7.00 Hz, 3 H, CH₃), 1.01 (t, J = 7.10 Hz, 3 H, CH₃); ¹³C NMR $(126 \text{ MHz}, \text{DMSO-}d_6) \delta$: 195.7, 158.0, 154.7, 150.4, 144.7, 136.9, 133.9, 131.5, 129.7, 129.5, 128.7, 128.5, 127.4, 127.1, 123.6, 121.3, 115.8, 62.5, 62.2, 38.6, 38.3, 16.7, 16.2; ³¹P NMR (202 MHz, DMSO-*d*₆) δ: 28.90; IR (KBr, cm⁻¹) v: 3315, 1673, 1233, 1179, 1051; Anal. Calcd. for C₂₇H₂₈N₃O₄P: C, 66.25; H, 5.77; N, 8.58; Found: C, 66.45; H, 5.63; N, 8.51; MS (ESI) m/z: 490.2 $([M + H]^+)$, 512.2 $([M + Na]^+)$.

C2: The compound was obtained in 55.6% yield as yellowish solid; mp 143-145°C. ¹H NMR (500 MHz, DMSO-d₆) δ : 10.04 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 7.9 Hz, 1 H, quinazoline-8-H), 8.23-8.04 (m, 2 H, Ar-H), 8.05-7.93 (m, 2 H, Ar-H), 7.94–7.60 (m, 3 H, Ar-H), 7.55–6.99 (m, 4 H, Ar-H), 4.13 (d, J = 10.10 Hz, 1 H, Ar-H, CHP), 4.04-3.92 (m, 2 H, CH₂CO), 3.92-3.71 (m, 4 H, 2 CH_2O), 1.17 (t, J = 7.0 Hz, 3 H, CH_3), 1.03 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) δ 195.3, 158.0, 154.7, 150.4, 144.7, 133.9, 131.3, 130.0, 129.6, 128.5, 127.2, 123.6, 121.3, 115.7, 62.6, 62.4, 37.7, 30.4, 16.7,16.6; ³¹P NMR (202 MHz, DMSO-*d*₆) δ: 27.80; ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ: -116.4; IR (KBr, cm^{-1}) v:3313, 1683, 1238, 1184, 1044; Anal. Calcd. for C₂₇H₂₇FN₃O₄P: C, 63.90; H, 5.36; N, 8.28; Found: C, 63.76; H, 5.23; N, 8.17; MS (ESI) m/z: 508.2 $([M + H]^+)$, 530.2 $([M + Na]^+)$.

C3: The compound was obtained in 63.5% yield as yellowish solid; mp 175–177°C. ¹H NMR (500 MHz, DMSO- d_6) δ : 10.02 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.57 (d, J = 8.20 Hz, 1 H, quinazoline-8-H), 8.07 (t, J = 11.61 Hz, 2 H, Ar-H), 7.98 (d,

 $J = 8.80 \text{ Hz}, 2 \text{ H}, \text{ Ar-H}, 7.91-7.50 \text{ (m, 4 H, Ar-H)}, 7.47-7.07 \text{ (m, 3 H, Ar-H)}, 4.39 \text{ (d, } J = 9.80 \text{ Hz}, 1 \text{ H}, \text{CHP}), 4.07-3.92 \text{ (m, 2 H, CH}_2\text{CO}), 3.89-3.48 \text{ (m, 4 H, 2 CH}_2\text{O}), 1.18 \text{ (t, } J = 7.01 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 1.01 \text{ (t, } J = 7.01 \text{ Hz}, 3 \text{ H}, \text{CH}_3), 1.01 \text{ (t, } J = 7.01 \text{ Hz}, 3 \text{ H}, \text{CH}_3); 1^{3}\text{C}$ NMR (126 MHz, DMSO- d_6) δ : 195.4, 158.0, 154.7, 150.4, 144.7, 134.9, 133.9, 131.3, 130.0, 129.8, 129.6, 129.0, 128.5, 127.6, 127.2, 123.6, 121.3, 62.6, 62.5, 35.7, 34.6, 16.8, 16.5; ³¹P NMR (202 MHz, DMSO- d_6) δ : 27.80; IR (KBr, cm⁻¹) v: 3285, 1681, 1234, 1177, 1053; *Anal.* Calcd. for C₂₇H₂₇ClN₃O₄P: C, 61.89; H, 5.19; N, 8.02; Found: C, 61.95; H, 5.36; N, 8.11; MS (ESI) m/z: 524.2 ([M + H]⁺), 546.1 ([M + Na]⁺).

C4: The compound was obtained in 55.6% yield as yellowish solid; mp 179-181°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.03 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 8.21 Hz, 1 H, quinazoline-8-H), 8.09 (d, J = 8.5 Hz, 2 H, Ar-H), 7.98 (d, J = 8.6 Hz, 2 H, Ar-H), 7.84 (m, 3 H, Ar-H), 7.74–7.55 (m, 3 H, Ar-H), 7.54–7.30 (m, 1 H, Ar-H), 4.31–4.12 (m, 1 H, CHP), 4.07-3.88 (m, 2 H, CH₂CO), 3.85-3.47 (m, 4 H, 2 CH₂O), 1.14 (t, J = 7.00 Hz, 3 H, CH₃), 0.92 (t, J = 7.00 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO-d₆) δ 195.1, 158.0, 154.7, 150.4, 144.7, 136.3, 133.9, 132.9, 131.3, 131.0, 129.6, 128.5, 128.0, 127.1, 123.6, 121.3, 115.9, 62.7, 62.5, 35.4, 34.4, 16.7, 16.39; ³¹P NMR (202 MHz, DMSO-*d*₆) δ: 27.40; IR (KBr, cm⁻¹) v: 3336, 1676, 1235, 1177, 1050; Anal. Calcd. for C₂₈H₂₇F₃N₃O₄P: C, 60.32; H, 4.88; N, 7.54; Found: C, 60.19; H, 4.95; N, 7.67; MS (ESI) m/z: 558.2 $([M + H]^+)$, 580.2 $([M + Na]^+)$.

C5: The compound was obtained in 49.3% yield as yellowish solid; mp 96–98°C. ¹H NMR (500 MHz, DMSO-d₆) 5: 10.04 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 8.20 Hz, 1 H, quinazoline-8-H), 8.09 (d, J = 8.90 Hz, 2 H, Ar-H), 8.00 (d, J = 8.90 Hz, 2 H, Ar-H), 7.91–7.52 (m, 4 H, Ar-H), 7.49-7.15 (m, 3 H, Ar-H), 4.04-3.92 (m, 2 H, CH₂CO), 3.92-3.73 (m, 4 H, 2 CH₂O), 3.61-3.44 (m, 1 H, CHP), 1.16 (t, J = 7.01 Hz, 3 H, CH₃), 1.04 (t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO-*d*₆) δ: 195.5, 158.0, 154.7, 150.4, 144.7, 140.0, 133.9, 132.4, 131.3, 130.7, 130.3, 129.6, 128.8, 128.5, 127.2, 123. 6, 121.9, 121.3, 115.8, 62.6, 62.4, 39.3, 38.2, 16.6,16.7; ³¹P NMR (202 MHz, DMSO- d_6) δ : 28.10; IR (KBr, cm⁻¹) v: 3318, 1676. 1234, 1182, 1042; Anal. Calcd. for C₂₇H₂₇BrN₃O₄P: C, 57.05; H, 4.79; N, 7.39; Found: C, 57.18; H, 4.87; N, 7.25; MS (ESI) m/z: 570.2 $([M + H]^+)$, 592.1 $([M + Na]^+)$.

C6: The compound was obtained in 51.5% yield as yellowish solid; mp 166–168°C. ¹H NMR (500 MHz, DMSO- d_6) δ : 10.03 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.61–8.52 (m, 1 H, quinazoline-8-H), 8.16–8.04 (m, 2 H, Ar-H), 8.03–7.94 (m, 2 H, Ar-H),

7.92–7.58 (m, 3 H, Ar-H), 7.51–7.23 (m, 4 H, Ar-H), 4.02–3.91 (m, 2 H, CH₂CO), 3.91–3.71 (m, 4 H, 2 CH₂O), 3.52–3.54 (m, 1 H, CHP), 1.16 (t, J = 7.01 Hz, 3 H, CH₃), 1.04 (t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) &: 195.5, 158.0, 154.7, 150.4, 144.7, 136.1, 133.9, 132.1, 131.5, 131.4, 129.6, 128.6, 128.4, 127.2, 123.6, 121.3, 62.6, 62.3, 39.1, 38.1, 16.8, 16.6; ³¹P NMR (202 MHz, DMSO- d_6) &: 28.30; IR (KBr, cm⁻¹) v: 3327, 1676, 1235, 1176, 1043; *Anal*. Calcd. for C₂₇H₂₇ClN₃O₄P: C, 61.89; H, 5.19; N, 8.02; Found: C, 61.97; H, 5.31; N, 8.17; MS (ESI) m/z: 524.2 ([M + H]⁺), 546.2 ([M + Na]⁺).

C7: The compound was obtained in 46.9% yield as vellowish solid; mp 174-176°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.03 (s, 1H, NH), 8.68 (s, 1H, quinazoline-2-H), 8.62-8.50 (m, 1H, quinazoline-2-H), 8.16-8.04 (m, 2H, Ar-H), 8.04-7.93 (m, 2H, Ar-H), 7.92-7.58 (m, 3H, Ar-H), 7.54-7.27 (m, 4H, Ar-H), 4.01-3.92 (m, 2H, CH₂CO), 3.91-3.69 (m, 4H, 2 CH₂O), 3.58-3.44 (m, 1H, CHP), 1.16 (t, J = 7.01 Hz, 3 H, CH₃), 1.05 (t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO-d₆) δ: 195.5, 158.0, 154.7, 150.4 144.7, 136.6, 133.9, 131.9, 131.5, 129.6, 128.5, 127.2, 123.6, 121.3, 120.6, 62.6, 62.4, 39.7, 38.1, 16.8, 16.6; ³¹P NMR (202 MHz, DMSO-*d*₆) δ: 28.10; IR (KBr, cm⁻¹) v: 3329, 1674, 1234, 1178, 1042; Anal. Calcd. for C₂₇H₂₇BrN₃O₄P: C, 57.05; H, 4.79; N, 7.39; Found: C, 57.11; H, 4.71; N, 7.36; MS (ESI) m/z: 570.1 $([M + H]^{+}), 592.1 ([M + Na]^{+}).$

C8: The compound was obtained in 55.2% yield as yellowish solid; mp 164-166°C. ¹H NMR (500 MHz, DMSO- d_6) δ : 10.03 (s, 1H, NH), 8.68 (s, H, quinazoline-2-H), 8.57 (d, J = 8.20 Hz, H, quinazoline-8-H), 8.10 (d, J = 8.80 Hz, H, Ar-H), 7.97 (d, J = 8.80 Hz, 2 H, Ar-H), 7.90-7.58 (m, 3 H, Ar-H), 7.55-7.16 (m, 3 H, Ar-H), 4.96 (m, 1 H, CHP), 4.10-3.97 (m, 4 H, 2 CH₂O), 3.96-3.83 (m, 2 H, CH₂CO), 1.18 (t, J = 7.0 Hz, 3 H, CH₃), 1.05 (t, J = 7.0 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO-d₆) δ: 195.4, 158.0, 154.7, 150.4, 144.7, 137.3, 135.3, 133.9, 133.4, 131.1, 130.6, 129.8, 129.4, 128.5, 127.1, 123.6, 121.4, 115.9, 62.5, 62.4, 37.5, 35.6, 16.8, 16.5; ³¹P NMR (202 MHz, DMSO-*d*₆) δ : 26.20; IR (KBr, cm⁻¹) v: 3311, 1673, 1233, 1179, 1051; Anal. Calcd. for C27H26Cl2N3O4P: C, 58.08; H, 4.69; N, 7.53; Found: C, 58.17; H, 4.54; N, 7.46; MS (ESI) m/z: 558.2 ($[M + H]^+$), 580.1 ($[M + Na]^+$).

C9: The compound was obtained in 53.7% yield as yellowish solid; mp 167–169°C. ¹H NMR (500 MHz, DMSO- d_6) δ : 10.04 (s, 1H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 8.01 Hz, 1 H, quinazoline-8-H), 8.10 (d, J = 8.90 Hz, 2 H, Ar-H), 7.96 (d, J = 8.84 Hz, 2 H, Ar-H), 7.91–7.59 (m, 3 H, Ar-H), 7.41–6.96 (m, 3 H, Ar-H), 4.51–4.55 (m, 1 H, CHP), 4.07–3.96 (m, 2 H, CH₂CO), 3.95–3.64 (m, 4 H, 2

CH₂O), 1.17 (t, J = 7.00 Hz, 3 H, CH₃), 1.07 (t, J = 7.00 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) δ : 195.5, 158.0, 154.7, 150.4, 144.8, 133.9, 131.1, 130.0, 129.4, 128.5, 127.2, 126.1, 123.6, 121.4, 115.9, 62.7, 62.5, 37.0, 33.7, 16.8, 16.6; ³¹P NMR (202 MHz, DMSO- d_6) δ : 26.30; IR (KBr, cm⁻¹) v: 3279, 1672, 1245, 1176, 1058; *Anal.* Calcd. for C₂₇H₂₆ClFN₃O₄P: C, 59.84; H, 4.84; N, 7.75; Found: C, 59.61; H, 4.75; N, 7.70; MS (ESI) m/z: 542.2 ([M + H]⁺), 564.2 ([M + Na]⁺).

C10: The compound was obtained in 55.1% yield as yellowish solid; mp 156-158°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.04 (s, 1H, NH), 8.69 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 8.40 Hz, 1 H, quinazoline-8-H), 8.10 (d, J = 8.80 Hz, 2 H, Ar-H), 8.00 (d, J = 8.90 Hz, 2 H, Ar-H), 7.93–7.58 (m, 3 H, Ar-H), 7.44–6.80 (m, 3 H, thiophene-H), 4.13 (d, J = 9.7 Hz, 1 H, CHP), 4.04–3.79 (m, 4 H, 2 CH₂O), 3.76–3.43 (m, 2 H, CH₂CO), 1.23–1.13 (t, J = 7.01 Hz, 3 H, CH₃), 1.10 $(t, J = 7.01 \text{ Hz}, 3 \text{ H}, \text{ CH}_3);$ ¹³C NMR (126 MHz, DMSO-d₆) δ: 195.2, 158.0, 154.7, 150.4, 144.8, 138.9, 133.9, 131.3, 129.6, 128.5, 127.2, 127.1, 125.5, 123.6, 121.4, 115.9, 62.8, 62.5, 35.1, 34.0, 16.8, 16.7; ³¹P NMR (202 MHz, DMSO- d_6) δ : 26.80; IR (KBr, cm⁻¹) v: 3313, 1678, 1236, 1177, 1046; Anal. Calcd. for C₂₅H₂₆N₃O₄PS: C, 60.60; H, 5.29; N, 8.48; Found: C, 60.71; H, 5.42; N, 8.41; MS (ESI) m/z: 496.2 $([M + H]^+)$, 518.1 $([M + Na]^+)$.

C11: The compound was obtained in 57.0% yield as yellowish solid; mp 172-174°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.04 (s, 1H, NH), 8.69 (s, 1 H, quinazoline-2-H), 8.58 (d, J = 8.0 Hz, 1 H, quinazoline-8-H), 8.19-8.06 (m, 2 H, Ar-H), 8.05-7.96 (m, 2 H, Ar-H), 7.94–7.62 (m, 3 H, Ar-H), 7.57–7.41 (m, 1 H, furan-H), 6.45-6.20 (m, 2 H, furan-H), 4.05-3.79 (m, 4 H, 2 CH₂O), 3.77–3.64 (m, 2 H, CH₂CO), 3.51–3.38 (m, 1 H, CHP), 1.18 (t, J = 7.01 Hz, 3 H, CH₃), 1.12 (t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO-d₆) δ: 195.2, 158.0, 154.7, 150.3, 144.8, 142.7, 133.9, 131.2, 129.6, 128.5, 127.2, 123.6, 121.4, 115.8, 111.3, 108.0, 62.7, 62.4, 36.7, 32.7, 16.8; ³¹P NMR (202 MHz, DMSO- d_6) δ : 25.80; IR (KBr, cm⁻¹) v: 3311, 1680, 1239, 1178, 1043; Anal. Calcd. for C₂₅H₂₆N₃O₅P: C, 62.63; H, 5.47; N, 8.76; Found: C, 62.79; H, 5.51; N, 8.70; MS (ESI) m/z: 480.2 ([M + H]⁺), 502.2 ([M + Na]⁺).

C12: The compound was obtained in 50.0% yield as yellowish solid; mp 187–189°C. ¹H NMR (500 MHz, DMSO- d_6) δ : 10.03 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.62–8.52 (m, 1 H, quinazoline-8-H), 8.46–8.31 (m, 1 H, pyridine-6-H), 8.22–8.05 (m, 2 H, Ar-H), 8.04–7.94 (m, 2 H, Ar-H), 7.93–7.56 (m, 4 H, Ar-H), 7.50–7.11 (m, 2 H, Ar-H), 4.26–4.00 (m, 2 H, CH₂CO), 4.00–3.82 (m, 4 H, 2 CH₂O), 3.54–3.36 (m, 1 H, CHP), 1.15 (t, J = 7.01 Hz, 3 H, CH₃), 1.10

(t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) δ : 195.8, 158.0, 154.7, 150.4, 149.15, 144.6, 136.7, 133.9, 131.5, 129.4, 128.5, 127.1, 125.4, 123.6, 122.5, 121.4, 115.9, 62.4, 42.0, 36.6, 16.7; ³¹P NMR (202 MHz, DMSO- d_6) δ : 27.70; IR (KBr, cm⁻¹)v: 3316, 1670, 1234, 1181, 1051; *Anal.* Calcd. for C₂₆H₂₇N₄O₄P: C, 63.67; H, 5.55; N, 11.42; Found: C, 63.48; H, 5.69; N, 11.51; MS (ESI) m/z: 491.2 ([M + H]⁺), 513.2 ([M + Na]⁺).

C13: The compound was obtained in 52.9% yield as yellowish solid; mp 86-88°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.04 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.62-8.32 (m, 3 H, quinazoline-8-H + pyridine-2,6-2H), 8.14–8.04 (m, 2 H, Ar-H), 8.02-7.96 (m, 2 H, Ar-H), 7.91-7.74 (m, 3 H, Ar-H), 7.71–7.18 (m, 2 H, Ar-H), 4.05–3.94 (m, 2 H, CH₂CO), 3.93-3.76 (m, 4 H, 2 CH₂O), 3.66-3.52 (m, 1 H, CHP), 1.16 (t, J = 7.01 Hz, 3 H, CH₃), 1.05 (t, J = 7.01 Hz, 3H, CH₃); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 195.4, 158.0, 154.7, 150.9, 150.4, 148.5, 136.7, 133.9, 133.0, 131.3, 129.6, 128.5, 127.1, 123.8, 123.6, 121.3, 115.9, 62.7, 62.5, 37.8, 36.2, 16.8, 16.6; ³¹P NMR (202 MHz, DMSO- d_6) δ 27.75; IR (KBr, cm⁻¹) v: 3305, 1679, 1233, 1179, 1049; Anal. Calcd. for C₂₆H₂₇N₄O₄P: C, 63.67; H, 5.55; N, 11.42; Found: C, 63.52; H, 5.76; N, 11.47; MS (ESI) m/z: 491.2 ($[M + H]^+$), 513.2 ($[M + Na]^+$).

C14: The compound was obtained in 47.0% yield as yellowish solid; mp 173-175°C. ¹H NMR (500 MHz, DMSO-d₆) δ: 10.03 (s, 1 H, NH), 8.68 (s, 1 H, quinazoline-2-H), 8.57 (d, J = 8.2 Hz, 1 H, quinazoline-8-H), 8.45 (d, J = 5.8 Hz, 2 H, pyridine-2,6-2 H), 8.09 (d, J = 8.91 Hz, 2 H, Ar-H), 8.00 (d, J = 8.82 Hz, 2 H,Ar-H), 7.92-7.58 (m, 3 H, Ar-H), 7.49-7.31 (m, 2 H, Ar-H), 4.05–3.94 (m, 2 H, CH₂CO), 3.94–3.79 (m, 4 H, 2 CH₂O), 3.64–3.51 (m, 1 H, CHP), 1.16 (t, J = 7.01 Hz, 3 H, CH₃), 1.07 (t, J = 7.01 Hz, 3 H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) δ : 195.3, 158.0, 154.7, 150.4, 149.8, 146.4, 144.8, 133.9, 131.3, 129.6, 128.5, 127.1, 125.0, 123.6, 121.3, 115.9, 62.8, 62.6, 38.3, 37.5, 16.8, 16.6; ³¹P NMR (202 MHz, DMSO-*d*₆) δ: 27.30; IR (KBr, cm⁻¹) v: 3323, 1676, 1239, 1181, 1046; Anal. Calcd. for C₂₆H₂₇N₄O₄P: C, 63.67; H, 5.55; N, 11.42; Found: C, 63.83; H, 5.47; N, 11.28; MS (ESI) m/z: 491.2 $([M + H]^{+}), 513.2 ([M + Na]^{+}).$

The *in vivo antivirus activity assay.* Using the Scott's method [33], cucumber mosaic virus was purified. The biological activity of the title compounds against CMV were evaluated using a half-leaf method according to the previous references [34]. At first, growing *Nicotiana tabacum* L. leaves of the same age were selected. All of the leaves were previously scattered with silicon carbide. General procedure for curative effects of compound **C** is illustrated as follows: purified virus smeared both sides of the leaves after inoculation for 0.5 h, the compound

solution was smeared on the left side of the leaves, and the solvent was smeared on the right side for control. General procedure for protective effects of compound C was shown as follows: the compound solution was smeared on the left side of the leaves, and the solvent was smeared on the right side for control. After 12 h, two sides of the leaves were inoculated with purified virus. General procedure for inactive effects of compound C was shown as follows: the virus was inhibited after it was mixed with a compound solution of the same volume for 30 min. The compound solution with the virus for 30 min was smeared on the left side of the N. tabacum L. leaves; the right side of the N. tabacum L. leaves was then inoculated with the virus without the compound C. The number of local lesions was recorded 3 to 4 days after the inoculation. Three replications were reproduced for each compound. The inhibitory rate of the compound was calculated according to the references [34].

Acknowledgments. We gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (Nos. 21132003 and 21362004).

REFERENCES AND NOTES

[1] Bos, L. Crop Prot 1982, 1, 263.

[2] Palukaitis, P.; Roossinck, M. J.; Dietzgen, R. G.; Francki, R. I. Adv Virus Res 1992, 41, 281.

[3] Zhang, G. P.; Hao, G. F.; Pan, J. K.; Zhang, J.; Hu, D. Y.; Song, B. A. J Agric Food Chem 2016, 64, 4207.

[4] Mann, R. S.; Kaufman, P. E. Mini-Rev Org Chem 2012, 9, 185.

[5] Zhao, P. L.; Liu, C. L.; Huang, W.; Wang, Y. Z.; Yang, G. F. J Agric Food Chem 2007, 46, 1163.

[6] Mahapatra, D. K.; Bharti, S. K.; Asati, V. Eur J Med Chem 2015, 98, 69.

[7] Mahapatra, D. K.; Asati, V.; Bharti, S. K. Eur J Med Chem 2015, 92, 839.

[8] Chen, M.; Christensen, B. S.; Zhai, L.; Rasmussen, M. H.; Theander, T. G.; Frøkjaer, S.; Steffansen, B.; Davidsen, J.; Kharazmi, A. J Infect Dis 1997, 176, 1327.

[9] Mishra, L.; Sinha, R.; Itokawa, H.; Bastow, K. F.; Tachibana, Y.; Nakanishi, Y.; Kilgore, N.; Lee, K. Bioorg Med Chem 2001, 9, 1667.

[10] Israf, D. A.; Khaizurin, T. A.; Syahida, A.; Lajis, N. H.; Khorizah, S. Mol Immunol 2007, 44, 673.

[11] Chen, M. H.; Li, P.; Hu, D. Y.; Zeng, S.; Li, T. X.; Jin, L. H.; Xue, W.; Song, B. A. Bioorg Med Chem Lett 2016, 26, 168. [12] Song, B. A.; Chen, Z. W.; Hu, D. Y.; Xue, W.; Jin, L. H.; Dong, L. R.; Zhang, W. Y.; Pan, J. K.; Luo, L. Z. China Patent, 104,628,631A, 2015; Chem Abstr 2015, 163, 21647.

[13] Song, B. A.; Xie, Y.; Hu, D. Y.; Xue, W.; Wu, F.; Wan, Z. H.; Li, X. Y.; Du, X. L. China Patent 103,755,646A, 2014; Chem Abstr 2014, 160, 665592.

[14] Hu, D. Y.; Wan, Z. H.; Song, B. A.; Xue, W.; Jin, L. H.; Li, X. Y.; Xie, D. D.; Zhang, W. Y. China Patent 104,592,132A, 2015; Chem Abstr 2015, 162, 657019.

[15] Allenberger, F.; Klare, Y. Antimicrob Chemother 1999, 43, 211.

[16] Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature 1978, 272, 56.

[17] Patel, D. V.; Rielly-Gauvin, K.; Ryono, D. E. Tetrahedron Lett 1990, 31, 5587.

[18] Bader, A. Aldrichimica Acta 1988, 21, 15.

[19] Dellaria, J. F. J.; Maki, R. G.; Stei, H. H.; Cohen, J.; Whittern, D.; Marsh, K.; Hoffman, D. J. J.; Plattner, J.; Perun, T. J. J Med Chem 1990, 33, 534.

[20] Stowasser, B.; Budt, K. H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. Tetrahedron Lett 1992, 33, 6625.

[21] Song, B. A.; Zhang, G. P.; Hu, D. Y.; Pang, L. L.; Yang, S.; Liu, G.; Wang, H. China Patent 1,687,088 A, 2005.

[22] Wu, L. T.; Song, B. A.; Bhadury, P. S.; Yang, S.; Hu, D. Y.; Jin, L. H. J Heterocycl Chem 2011, 48, 389.

[23] Chen, M. H.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Cai, X. J.; Hu, D. Y.; Xue, W.; Zeng, S. J Agric Food Chem 2009, 57, 1383.

[24] Long, N.; Cai, X. J.; Song, B. A.; Yang, S.; Chen, Z.; Bhadury, P. S.; Hu, D. Y.; Jin, L. H.; Xue, W. J Agric Food Chem 2008, 56, 5242.

[25] Hu, D. Y.; Wan, Q. Q.; Yang, S.; Song, B. A.; Bhadury, P. S.; Jin, L. H.; Yan, K.; Liu, F.; Chen, Z.; Xue, W. J Agric Food Chem 2008, 56, 998.

[26] Bartroli, J.; Turmo, E.; Algueró, M.; Boncompte, E.; Vericat, M. L.; Conte, L.; Ramis, J.; Merlos, M.; Gracía-Rafanell,

J.; Forn, J. J Med Chem 1998, 41, 1869.
 [27] Zhu, S.; Wang, J.; Chandrashekar, G.; Smith, E.; Liu, X.;
 Zhang, Y. Eur J Med Chem 2010, 45, 3864.

[28] Al-Rashood, S. T.; Hassan, G. S.; El-Messery, S. M.; Nagi, M. N.; Habib, E. S. E.; Al-Omary, F. A. M.; El-Subbagh, H. I. Bioorg Med Chem Lett 2014, 24, 4557.

[29] Liu, G.; Song, B. A.; Yang, S.; Jin, L. H. China Patent 1,597,671A, 2005; Chem Abstr 2005, 144, 192278.

[30] Ma, J.; Li, P.; Li, X. Y.; Shi, Q. C.; Wan, Z. H.; Hu, D. Y.; Jin, L. H.; Song, B. A. J Agric Food Chem 2014, 62, 8928.

[31] Bhagat, M. P.; Shantakumar, S. M.; Salahuddin, M. Int J Pharm Sci Lett 2014, 4, 454.

[32] Margaret, M. E.; Emily, W.; Marie, L. M.; Mary, L. S. J Am Chem Soc 1946, 94, 1299.

[33] Scott, H. Virology 1963, 20, 103.

[34] Song, B. A.; Zhang, H. P.; Wang, H.; Yang, S.; Jin, L. H.; Hu, D. Y.; Pang, L. L.; Xue, W. J Agric Food Chem 2005, 53, 7886.