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[3+1] Cocyclizations of Methylenecyclopropanes
with Carbon Monoxide**
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The activation of carbon–carbon s bonds under the influence
of transition metals remains a fundamental challenge in
organometallic chemistry.[1] Methylenecyclopropane and its
derivatives were among the first substrates for which involve-
ment of C�C single bonds in transition-metal-catalyzed
cycloaddition reactions was observed.[2] In particular, the
cycloadditions of methylenecyclopropanes as a C3 component
across C�C multiple bonds have been thoroughly investi-
gated.[3] Surprisingly, only a limited number of transition
metals such as Ni, Pd, and Pt have been explored. In recent
years, cobalt complexes have been demonstrated to facilitate
new types of C�H and C�C bond activation.[4,5] Alper et al. as
well as other groups have shown that cobalt-catalyzed
carbonylative ring expansions of epoxides and aziridines are
useful and efficient procedures for the synthesis of b-lactones
and b-lactams, respectively.[6]

In connection with our recently reported cobalt-catalyzed
[5+1] cocyclization of vinylcyclopropanes with carbon mon-
oxide leading to cyclohexenones, we found carbonylcobalt
complexes to show the highest activity among the transition-
metal complexes examined.[7] In view of the observed unique
reactivity of the octacarbonyldicobalt complex, we have set
out to further explore carbonylative ring-expansion reactions,
and here we report a novel [3+1] cocyclization of methyl-
enecyclopropanes with carbon monoxide under cobalt catal-
ysis.

Initially, heptylidenecyclopropane (1a) was treated with
one equivalent of octacarbonyldicobalt in THF at 50 8C for
12 h, and this led to a mixture of (2E)- and (2Z)-2-
heptylidenecyclobutanone (2a) in 85% yield (Table 1).[8] In
other solvents such as toluene, dichloroethane, hexane, and
acetonitrile the yields were lower. Among the carbonylmetal
complexes examined, octacarbonyldicobalt gave the best
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yield of this product. With [Cr(CO)6], [Mo(CO)6], [W(CO)6],
and [Fe(CO)5] the yields were very low (5, 8,
< 1, and < 1%, respectively). The reactivity of methylenecy-
clopropanes with an electron-withdrawing group in the 1’
position was lower, and the reaction of [Co2(CO)8] with
(phenylmethylene)cyclopropane (1b) at 50 8C gave only a
trace amount of the corresponding benzylidenecyclobuta-
none 2b. However, at elevated temperature (100 8C) 1b
furnished the product 2b in 80% yield with a diastereomeric
excess of 96%. More electron-deficient methylenecyclopro-
panes such as (bromomethylene)cyclopropane and tert-butyl
methylenecyclopropane-1’-carboxylate did not react with
[Co2(CO)8] even at 100 8C. Sterically encumbered 1’,1’-
disubstituted methylenecyclopropanes such as 1c and 1d
reacted sluggishly to give 2c and 2d in 5 and 27% yield,
respectively. With the alkenyl-substituted methylenecyclo-
propane 1e, [Co2(CO)8] reacted at the methylenecyclopro-
pane moiety selectively to give the corresponding cyclo-
butanone 2e in moderate yield. Unsubstituted methylenecy-
clopropane and bicyclopropylidene also reacted with

[Co2(CO)8] even at 25 8C, yet no
low-molecular-weight products
could be isolated.

Methylenecyclopropanes 3 with
substituents at the 2- and 3-posi-
tions were also tested (Table 2).
Indeed, 2-hexyl- (3 f) and 2-phenyl-
methylenecyclopropane (3g)
reacted with [Co2(CO)8] to give
the corresponding 3- and 4-substi-
tuted 2-methylenecyclobutanones
4 f/5 f and 4g/5g in 84 and 71%
yield, respectively. In both cases, the
regioisomer of type 4 predominated
by a factor of about four. 2-Methyl-
2-phenyl- (3h) and (2,2,3,3-tetrame-
thyl)methylenecyclopropane (3 i)
also readily reacted to furnish the
di- and tetrasubstituted 2-methyle-
necyclobutanones in good yields.

The reaction tolerates ester functionalities and other C�C
double bonds as exemplified by the successful transforma-
tions of 3j and 3k to 4j/5j and 4k/5k, respectively. Even the
unprotected 4-(hydroxymethyl)methylenespiropentane (3 l)
reacted with [Co2(CO)8] to give the regioisomeric
methylenespiro[2.3]hexanones 4 l and 5 l in a ratio of 86:14
in 66% yield (Scheme 1).

These transformations of methylenecyclopropanes to 2-
methylenecyclobutanones, which are essentially insertions of
carbon monoxide into the proximal C�C single bonds of the
methylenecyclopropanes 1 and 3, also proceed in the presence
of only 5 mol% of [Co2(CO)8]

[9] under an atmosphere of

Table 1: [Co2(CO)8]-mediated and -catalyzed [3+1] cocyclization of 1’-substituted methylenecyclopro-
panes with carbon monoxide.[8]

Substrate R1 R2 T [8C] t [h] Prod. Yield [%] E/Z[a]

1a n-C6H13 H 50 12 2a 85 73:27
1a n-C6H13 H 60 12 2a 88[b] 71:29
1b Ph H 100 12 2b 80 98:2
1b Ph H 60 12 2b <1[b]

1c -(CH2)5- 50 24 2c 5
1d Me Me 50 24 2d 27
1d Me Me 60 48 2d 15[b]

1e H 50 24 2e 53 98:2

[a] The diastereomer ratio was determined by integration of corresponding 1H NMR signals for the
crude product. [b] Reaction carried out with a catalytic amount (5 mol%) of [Co2(CO)8] under an
atmosphere of CO (balloon).

Table 2: [Co2(CO)8]-mediated and -catalyzed [3+1] cocyclization of 2- and 2,3-substituted methylenecyclopropanes and carbon monoxide.

Substrate R3 R4 R5 R6 T [8C] t [ h] Prod. Yield [%] 4/5[a]

3 f n-C6H13 H H H 50 12 4 f + 5 f 84 81:19
3 f n-C6H13 H H H 60 12 4 f + 5 f 90[b] 85:15
3g Ph H H H RT 12 4g + 5g 71 83:17
3g Ph H H H 40 12 4g + 5g 62[b] 82:18
3h Ph Me H H 50 12 4h + 5h 67 89:11
3 i Me Me Me Me 50 12 4 i 81
3 i Me Me Me Me 60 24 4 i 75[b]

3 j AcOCH2 H H H 50 12 4 j + 5 j 62 78:22

3k H H H 50 24 4k + 5k 58 95:5

[a] The ratio of regioisomers 4 :5 was determined by integration of corresponding 1H NMR signals for the crude product. [b] Reaction carried out with a
catalytic amount (5 mol%) of [Co2(CO)8] under an atmosphere of CO (balloon).

Scheme 1. [Co2(CO)8]-mediated and -catalyzed [3+1] cocyclization of 3 l
and carbon monoxide.
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carbon monoxide (provided by a balloon). For example, 1a
thus reacted at 60 8C to furnish 2a in 88% yield.[8] 1’-
Phenylmethylenecyclopropane (1b) did not yield the cyclo-
butanone 2b at 60 8C under these conditions. Even at elevated
temperature (100 8C in dioxane) only a trace amount of the
product 2b was identified. The 1’,1’-disubstituted methylene-
cyclopropane 1d reacted sluggishly to give 2d in 15% yield.
But 2-substituted and 2,3-oligosubstituted methylenecyclo-
propanes such as 3 f and 3g did give the corresponding
products 4 f/5 f and 4g/5g, respectively, in good yields. Even
the tetrasubstituted methylenecyclopropane 3 i readily pro-
vided the product 4 i in 75% yield.

Mechanistically, this formation of cyclobutanones 2 from
methylenecyclopropane 1 is initiated by exchange of one or
two CO ligands of the [Co2(CO)8] complex with a methyl-
enecyclopropane ligand. The resulting alkene complex,
resembling a cobaltaspiropentane 8B,[10] can either undergo
migratory CO insertion to give the cobaltaspiro[2.3]hexanone
7 or a (cyclopropylmethyl)metal-to-homoallylmetal rear-
rangement[11] to yield an alkylidenecobaltacyclobutane 9.
Subsequent (cyclopropylmethyl)metal-to-homoallylmetal
rearrangement[10] of 7 or migratory CO insertion in 9 leads
to an alkylidenecobaltacyclopentanone 6, which undergoes
reductive elimination to give the alkylidenecyclobutanone 2
(Scheme 2).

In conclusion, a new cobalt-mediated and -catalyzed
[3+1] carbonylative cocyclization of methylenecyclopropanes
to give 2-alkylidenecyclobutanones under mild conditions has
been developed. Thus, for the first time cobalt has been
demonstrated to be an efficient transition metal for the
activation of strained carbon–carbon s bonds.[12] In compar-
ison with rhodium, ruthenium, and nickel complexes, which
are usually used for the activation of carbon–carbon bonds,
octacarbonyldicobalt is significantly less expensive.
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Scheme 2. Mechanistic rationalization of the cobalt-catalyzed [3+1]
cocyclization of methylenecyclopropanes with carbon monoxide.
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