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The Suzuki–Miyaura cross-coupling of organoboron nucleophiles 
with aryl halide electrophiles is one of the most widely used 
carbon–carbon bond-forming reactions in organic and medicinal 
chemistry1,2. A key challenge associated with these transformations 
is that they generally require the addition of an exogenous base, the 
role of which is to enable transmetallation between the organoboron 
nucleophile and the metal catalyst3. This requirement limits the 
substrate scope of the reaction because the added base promotes 
competitive decomposition of many organoboron substrates3–5. As 
such, considerable research has focused on strategies for mitigating 
base-mediated side reactions6–12. Previous efforts have primarily 
focused either on designing strategically masked organoboron 
reagents (to slow base-mediated decomposition)6–8 or on developing 
highly active palladium precatalysts (to accelerate cross-coupling 
relative to base-mediated decomposition pathways)10–12. An 
attractive alternative approach involves identifying combinations 
of catalyst and electrophile that enable Suzuki–Miyaura-type 
reactions to proceed without an exogenous base12–14. Here we 
use this approach to develop a nickel-catalysed coupling of aryl 
boronic acids with acid fluorides15–17, which are formed in situ 
from readily available carboxylic acids18–22. This combination 
of catalyst and electrophile enables a mechanistic manifold in 
which a ‘transmetallation-active’ aryl nickel fluoride intermediate 
is generated directly in the catalytic cycle13,16. As such, this 
transformation does not require an exogenous base and is applicable 
to a wide range of base-sensitive boronic acids and biologically 
active carboxylic acids.

The traditional Suzuki–Miyaura reaction involves the palladium- 
catalysed coupling of an aryl halide (Ar–X) with a boronic acid in the 

presence of exogenous base (MX*). The role of the base (Fig. 1b, cycle I)  
is to convert the ‘transmetallation-inactive’ [Ar–Pd–X] intermediate  
(where X = chloride, bromide or iodide) to a ‘transmetallation- 
active’ intermediate [Ar–Pd–X*] (where X* = hydroxide or fluoride). 
[Ar–Pd–X*] then participates in fast transmetallation with a boronic 
acid23–25. However, the base also mediates the off-cycle formation 
of organoboronate intermediates that competitively decompose via 
protodeboronation, oxidation and/or homocoupling4,5. Inspired by 
several literature reports13,16, we proposed that the combination of a 
nickel catalyst and an acid fluoride electrophile would directly form a 
‘transmetallation-active’ intermediate [Ar–Ni–F] via oxidative addition 
and subsequent decarbonylation (Fig. 1b, cycle II). Importantly, Ni0 is 
well-known to participate in oxidative addition reactions with carbox-
ylic acid derivatives15,26–30. Furthermore, with appropriate selection of 
supporting ligands, the resulting NiII-acyl intermediates are known to 
undergo decarbonylation26–30. This approach offers several advantages, 
which include eliminating the requirement for exogenous base; using 
highly electrophilic ArC(O)F substrates, which should undergo rapid 
oxidative addition under mild conditions (compared to, for example, 
the corresponding aryl fluorides13,31–33, esters26,28 or amides27); and 
using readily available and inexpensive carboxylic acid derivatives as 
coupling partners. Notably, a similar strategy was recently applied to 
the palladium-catalysed decarbonylative coupling of acid fluorides with 
triethyltrifluoromethylsilane16.

Stoichiometric studies were first conducted to assess the viability of 
each step of the proposed catalytic cycle. To investigate oxidative addi-
tion and decarbonylation, benzoyl fluoride 1 was reacted with Ni(cod)2 
and PCy3 (Fig. 2a) (cod, 1,5-cyclooctadiene; PCy3, tricyclohexylphos-
phine). The benzoyl nickel fluoride intermediate 2 was formed rapidly 
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Fig. 1 | Suzuki–Miyaura reaction and mechanistic design for the direct 
generation of transmetallation-active [Ar–M–X*] intermediates.  
a, Cross-coupling reactions with organoboron reagents. b, Mechanistic 

design for directly accessing transmetallation-active intermediates for the 
base-free decarbonylative coupling of acid fluorides with organoboron 
reagents. R, alkyl or aryl group; Ar, aryl group.
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(within 10 min at room temperature), and this complex underwent 
decarbonylation to afford phenyl nickel fluoride complex 3 in 90% yield 
after 15 h. To confirm that 3 is ‘transmetallation-active’, this complex 
was treated with 4-fluorophenyl boronic acid. As predicted, biaryl 5 
(the product of transmetallation and subsequent C–C bond-forming  
reductive elimination) was formed in 90% yield after 1 h at room  
temperature. An analogous reaction with 2,4,6-trifluorophenylboronic 
acid (which is known to undergo rapid protodeboronation under  
basic conditions)4,10 provided 6 in >95% yield, indicating that  
transmetallation with 3 is faster than protodeboronation. Notably, the 
analogous phenyl nickel chloride 7 and phenyl nickel bromide 8 do not 
react with aryl boronic acids to form 5 and 6, respectively, even when 
heated at 100 °C.

These stoichiometric studies were next translated to a nickel- 
catalysed decarbonylative coupling between acid fluoride 9 and 
4-methoxyphenyl boronic acid (10). The use of 10 mol% Ni(cod)2 
and 20 mol% PCy3 as catalyst afforded biaryl 11 along with a 
ketone by-product 12 (11:12 = 85:15). Triethylphosphine afforded 
poorer selectivity (11:12 = 30:70), whereas methyl(diphenyl)phos-
phine (PPh2Me) provided 11 as a single detectable product in 95% 
yield. These changes in selectivity as a function of phosphine arise 
from ligand effects on the decarbonylation step (see Supplementary 
Information for details).

A key advantage of acid fluoride electrophiles is that they are directly 
accessible from carboxylic acids via deoxyfluorination. Evaluation 

of various deoxyfluorinating reagents and bases revealed that the  
combination of tetramethylfluoroformamidinium hexafluorophosphate  
(TFFH) and 1,8-bis(dimethylamino)naphthalene converts carboxylic  
acid 13 to acid fluoride 9 within 15 min at room temperature. The 
subsequent addition of nickel catalyst and boronic acid 10 to the same 
pot and heating for 16 h at 100 °C then affords biaryl product 11 in 
86% yield. Various aromatic and heteroaromatic carboxylic acids  
participate in this one-pot nickel-catalysed coupling with arylboronic 
acids (Fig. 3). Esters, nitriles, trifluoromethyl groups, methyl- and 
phenyl ethers, sulfonamides, amides, alkenes, imidazoles, oxazoles 
and pinacolboronate esters are tolerated. Aryl chlorides and phenyl 
esters26,28—common electrophiles in other nickel-catalysed cross- 
coupling reactions—are also compatible, demonstrating the ortho
gonality of the current method. Moderate yields were obtained with 
acid fluorides bearing electron-donating substituents (products 17–23)  
as well as those with ortho-substituents (products 20–23). For the 
former, analysis of the crude reaction mixtures by gas chromatogra-
phy coupled with mass spectrometry showed ketone side products, 
indicating that decarbonylation is relatively slow with electron-rich 
substrates. With the latter, unreacted starting material remained, sug-
gesting that oxidative addition is sluggish when the acid fluoride is 
sterically hindered. Heteroaromatic carboxylic acids, including thio-
phene, benzofuran, indole, pyridine and quinoline derivatives, are also 
effective coupling partners. Finally, various carboxylic acid-containing 
bioactive molecules, including probenecid, bexarotene, tamibarotene, 

Fig. 2 | Discovery of transmetallation-active nickel fluoride 
intermediates generated from decarbonylation enables Suzuki–
Miyaura reaction of carboxylic acids and aryl boronic acids.  
a, Oxidative addition and decarbonylation of acid fluoride 1 at room 
temperature generates an Ar–Ni–F intermediate 3. b, Transmetallation 
and reductive elimination of 3 and aryl boronic acids. c, Base-free nickel-

catalysed decarbonylative Suzuki–Miyaura-type reaction. d, Direct 
conversion of aryl carboxylic acid to Suzuki–Miyaura biaryl product 
via in situ generation of acid fluoride. Yields are based on 19F NMR 
spectroscopy (a, b) and gas chromatography (c). Cy, cyclohexyl; RT, room 
temperature; THF, tetrahydrofuran. For details on reaction conditions, see 
Supplementary Information.
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telmisartan, flavone and febuxostat, participate in this one-pot decar-
bonylative cross-coupling.

The generality of this method with respect to the boronic acid  
coupling partner was explored using probenecid as the substrate 
(Fig. 4a). Aryl boronic acids containing fluorine, ester and methyl 
ketone substituents were compatible. Alkenyl boronic acids underwent 
coupling to generate 45 and 46. Cyclopropyl, allyl and benzyl boronic 
acids reacted under the optimized conditions to afford moderate 
yields of 47–49. Additionally, without any modification on the condi-
tions, arylstannane nucleophiles afforded the flavone and febuxostat  
analogues 36 and 37 (Fig. 3). Base-sensitive α-heteroaryl boronic acids, 
including furans, thiophenes and pyrroles, also underwent coupling 
(Fig. 4b). Finally, highly base-sensitive ortho-difluorophenyl boronic 
acids4,10 underwent high-yielding coupling with probenecid acid 
fluoride.

A final set of studies focused on eliminating the need for air- 
sensitive Ni(cod)2 as the nickel source in these transformations. These 
investigations revealed that the combination of air-stable, commercially 
available Ni(o-tolyl)(PPh2Me)2Cl (63, 10 mol%) and CsF (10 mol%) 
affords a relatively comparable yield to the original catalyst system of 
Ni(cod)2 and PPh2Me in the formation of product 61 (Fig. 4c), as well 
as in related transformations (Supplementary Fig. 9). All of the cata-
lysts and reagents for the reactions with Ni(o-tolyl)(PPh2Me)2Cl and 
CsF were weighed on the benchtop, without the requirement for an 
inert-atmosphere glove box. As such, this advance should render these 
coupling reactions even more practical and accessible to a wide variety 
of synthetic and medicinal chemistry researchers.

Data availability
The main data supporting the findings of this study are available within the  
article and its Supplementary Information. Additional data are available from  
the corresponding author upon request. Metrical parameters for the structures  
of complexes 2b and 3 (see Supplementary Information) are available free of 
charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.
cam.ac.uk/) under reference numbers CCDC 1837039 and CCDC 1837038, 
respectively.
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