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Abstract The kinetic resolution of 1,3-disubstituted unsymmetrical
allylic substrates with TMSCN as the nucleophile was realized via palladium-
catalyzed asymmetric allylic alkylation, providing optically active allylic
substrates and B,y-unsaturated nitriles in good yield and enantioselec-
tivity.
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The asymmetric catalytic cyanation reaction is a highly
important enantioselective C-C bond-construction reaction
employing cyanide as reagent. The resulting products con-
taining a cyano group are easily transformed into other chi-
ral building blocks such as natural and unnatural amino
acids, B-lactams, and diamines.? Hence the development of
an efficient asymmetric catalytic cyanation reaction has re-
ceived wide attention of organic chemists for decades.? Al-
though many asymmetric catalytic reactions such as
Strecker reaction, Michael reactions, and ring-opening reac-
tion of epoxides and aziridines have been realized using
various cyanide sources,* the development of new asym-
metric cyanation is still highly desirable.

Palladium-catalyzed asymmetric allylic alkylation is a
powerful method in organic synthesis.5>4 A wide range of
nucleophiles have been used in the reaction, affording
many different kinds of optically active products.’ The reac-
tion has also been applied successively in the kinetic reso-
lution of allyl substrates® as well as nucleophiles.” Although
TMSCN has also been reported to be used in palladium-cat-
alyzed allylic alkylation reaction,® few asymmetric versions
of the reaction have appeared.® Herein, we present a kinetic
resolution of 1,3-disubstituted unsymmetrical allylic sub-

strates via a palladium-catalyzed asymmetric allylic cyana-
tion with trimethylsilyl cyanide (TMSCN) as a nucleophile,
which provides optical active allylic substrates and optical
active B,y-unsaturated nitriles in high yield and good enan-
tioselectivity.

Initially, we examined the allylic substitution of allyl
substrate 1a utilizing TMSCN as the nucleophile in the pres-
ence of [Pd(n*-CsH;5)Cl], and (R,R)-DACH-phenyl Trost li-
gand (L) as catalyst. Delightfully, the allylation product 2c
was afforded in 24% yield with 44% enantiomeric excess
while 1a was recovered in 69% yield in 34% enantiomeric
excess (Table 1, entry 1). Under the same reaction condi-
tions, decreased reactivity was observed with allyl sub-
strate 1b, only 8% yield of 2c being obtained (Table 1, entry
2) while the use of allyl substrate 1c¢ afforded product 2c in
24% yield with 66% enantiomeric excess, and 1¢ was recov-
ered in 60% yield with 46% enantiomeric excess (Table 1,
entry 3). The screen of solvents showed that toluene was
the better choice over 1,2-dichloroethane (DCE), dioxane,
dimethoxyethane (DME), and cycloheptane (Table 1, entries
3-7). The reactivity of 1c increased when the reaction tem-
perature was elevated. The reaction at 120 °C instead of 100
°C afforded 2c in 45% yield with 55% enantiomeric excess,
and 1c was recovered in 51% yield with 88% enantiomeric
excess in two hours (Table 1, entry 8 vs. entry 3). The effect
of the reaction time and the equivalents of TMSCN on the
reaction were also investigated, but no great changes were
observed (Table 1, entries 9-11). The use of two other com-
mercially available (R,R)-ANDEN-phenyl and (R,R)-DACH-
naphthyl Trost ligands led to inferior results, while bisphos-
phine chiral ligand (R)-BINAP and chiral P,N-ligand (S)-i-Pr-
PHOX demonstrated low catalytic activity (not shown in Ta-
ble 1). The kinetic resolution of the compound 1c¢ with
K,[Fe(CN);]-3H,0 or CuCN as nucleophile under the optimal
reaction conditions was also performed, but the corre-
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Table 1 Optimization of Reaction Parameters?

Letter

1 CN
ORy [Pd(n3-CaHs)Cll2 (2.5 mol%) OR ;
2 (R,R)-L (6.0 mol%) NP A
+ TMSCN +
temp, solvent
1a: R' = COMe 1 2¢
1b: R' = CO,t-Bu o) ) o] recovered
1c: R' = CO,iBu NH HN
PPh, PhyP
(RA)-L
Entry 1 TMSCN (equiv) Solvent Time (h) Temp (°C) Yield of 1 (%)P/ee (%)<  Yield of 2¢ (%)°/ee (%)¢
1 1a 1.0 toluene 10 100 69/34 2444
2 1b 1.0 toluene 10 100 85/8 8/70
3 1c 1.0 toluene 10 100 60/46 24/66
4 1c 1.5 DCE 12 100 31/0 2/~
5 1c 1.5 dioxane 12 100 61/20 1/-
6 1c 1.5 DME 12 100 49/39 22/51
7 1c 1.0 cycloheptane 12 100 66/20 13/64
8 1c 1.0 toluene 2 120 51/88 45/59
9 1c 1.0 toluene 1 120 65/43 35/65
10 1c 1.5 toluene 2 120 17/99 75/14
11 1c 0.7 toluene 7 120 51/51 28/70

2 Reaction conditions: 1/[Pd(n3-C3Hs)Cl],/L = 100/2.5/6, 1 (0.2 mmol) in solvent (2.0 mL).

b Isolated yield.
¢ Determined by HPLC.

sponding product 2¢ was not formed. Instead, (E)-buta-1,3-
dien-1-ylbenzene derived from B-H elimination of com-
pound 1c was observed (not shown in Table 1).

On the basis of the optimal reaction conditions, the sub-
strate scope of the kinetic resolution of 1,3-disubstituted
unsymmetrical allylic substrates with TMSCN was investi-
gated (Table 2).'° Generally, the reactions provided optically
active B,y-unsaturated nitrile products 2 in 31-50% yields
and 25-65% enantiomeric excess with recovered allyl start-
ing materials 1 in 21-57% yields and 24-99% ee, S factors
being between 2.3-10.7. Various substituents on the phe-
nyl ring of allyl substrates 1 are tolerated, and the R group
of allyl substrates 1 can be the methyl, ethyl, and cyclohexyl
group. When unsymmetrical allyl substrates 1 have substit-
uents at para and meta position of the phenyl ring, moder-
ate S value was realized (Table 2, entries 2-8). When the
substituents were located at ortho position of the phenyl
ring of 1, the S value was lower (Table 2, entries 9 and 13).
If the phenyl group of 1 was changed to naphthyl, a lower
S value was obtained (Table 2, entry 10 vs. entry 1). Replac-
ing the methyl group of 1c¢ with the ethyl or cyclohexyl
group had little effect on the kinetic resolution (Table 2, en-

tries 11 and 14 vs. entry 1). The use of 1,3-diphenylallyl ac-
etate as the substrate was tested, however, no reaction oc-
curred in 12 hours, and the 1,3-diphenylallyl acetate was
recovered in 96% yield. The reaction time affects the reac-
tion results significantly. Long reaction time gave product 2
in high yield but with low enantiomeric excess accompany-
ing the formation of B-H elimination product. The absolute
configuration of the product 2¢ was determined to be S by
comparing its optical rotation and HPLC trace with that re-
ported by RajanBabu.!’ The absolute configuration of the
recovered 1c was determined to be S by comparing the op-
tical rotation of its corresponding allyl alcohol to that of lit-
erature reports.'?

To further understand the mechanistic pathway of the
reaction,'® we carried out the reaction of cis-disubstituted
substrate 3 with TMSCN under the standard reaction condi-
tions of Table 2 (Scheme 1). trans-Product 4 was obtained in
61% yield. The results indicated the reaction proceeds
through the attack of cyanide to the palladium instead of al-
lyl moiety of the m-allylpalladium intermediate followed by
stereoselective reductive elimination. These results are
agreement with that reported by the Tsuji group.sP
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Table 2 Substrate Scope for Kinetic Resolution®'°

0CO,Bu [Pd(na-CaHs)Cllz (2.5 mol%) 0CO,i-Bu N
(R,R)-L (6.0 mol%) /'\ X
X + TMSCN Ar/\ R + A R
Ar R toluene, 120 °C
(x)-1c-p 1c—p 2¢c—p

1c: Ar=Ph, R=Me 1j: Ar = 3-CICgHy4, R = Me

1d: Ar = 4-MeCgHy, R=Me  1k: Ar = 2-MeCgH,4, R = Me

1e: Ar = 4-BrCgH,4, R = Me 1I: Ar=1-Np, R = Me

1f. Ar = 4-CICgHy4, R = Me 1m: Ar=Ph, R=Et

1g: Ar = 4-F;CCgHs, R=Me  1n: Ar = 3-FCgHa, R = Et

1h: Ar = 3-MeCgHs, R=Me  10: Ar = 2-MeOCgH,, R = Et

1i: Ar = 3-MeOCgHy, R=Me 1p: Ar=Ph, R=Cy

Entry Time (h) Yield of recovered 1 (%)°/ee (%)° Yield of 2 (%)/ee (%)¢ Sd

1 2 1c51/88 2c 45/59 10.7
2 3 1d 33/74 2d 33/52 6.7
3 2 1e57/59 2e 35/65 8.4
4 2 1f37/54 2f 42/47 4.6
5 3 1g 54/51 2g 35/55 5.6
6 3 1h39/73 2h 50/57 7.7
7 3 1i48/74 2i42/60 8.6
8 3 1j47/31 2j 44/52 42
9 3 1k 21/37 2k 50/25 23
10 3 114324 2131/42 3.1
11 1 1m 40/99 2m 48/39 10.1
12 3 1n39/91 2n 44/50 8.8
13 3 1030/66 2042/43 4.7
14 2 1p 34/97 2p 39/43 9.3

2 Reaction conditions: 1/TMSCN/[Pd(n3-C5Hs)Cl],/L = 100:100:2.5:6, 1 (0.2 mmol) in toluene (2.0 mL).

b Isolated yield.
¢ Determined by HPLC.

9 Calculated according to the method described by Kagan,® S = In[(1 - C/100)(1 - ee/100)]/In[(1 = C/100)(1 + ee/100)] (C = ee/ee + ee’; ee = enantiometric

excess of recovered substrate; ee’ = enantiometric excess of product).

OCO,M CN
2\ [PA(P-CaHs)Cllp (2.5 mol%) 3
(R,R)-L (6.0 mol%)
+ TMSCN - || m
Ph toluene, 120 °C Ph
3 4
yield: 61%
Scheme 1

In summary, we have realized the kinetic resolution of
1,3-disubstituted unsymmetrical allylic substrates with
TMSCN as the nucleophile via palladium-catalyzed asym-
metric allylic alkylation, which provides optically active al-
lylic substrates and B,y-unsaturated nitriles in good yield
and enantioselectivity. Further investigations on the palla-
dium-catalyzed asymmetric allylic cyanation are in prog-
ress in our laboratory.
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(30), 115 (100), 102 (10), 91 (11), 89 (12), 77 (20), 63 (14), 51
(22). IR (film): v = 2985 (w), 2242 (w), 1496 (w), 1449 (m), 1399
(m), 964 (m), 745 (s), 692 (s) cm!. HPLC (Chiralcel OD-H,
hexane-2-PrOH = 95:5, 0.7 mL/min, 214 nm): t; (major) = 12.14
min; tg (minor) = 13.46 min. HRMS: m/z calcd for C;;H;(N [M*]:
157.0891; found: 157.0889.

Compound 1c: Yield 51%; 88% ee. [a]p2° = -75.8 (c 0.8, CHCl5).
TH NMR (400 MHz CDCl;): 8 = 7.24-7.40 (m, 4 H), 6.63-6.67 (d,
J=16.0 Hz, 1 H), 6.18-6.24 (dd, J = 16.0, 7.2 Hz, 1 H), 5.36 (m, 1
H),3.92 (dJ=6.8 Hz, 2 H), 1.97 (m, 1 H), 1.46 (d,J = 5.6 Hz, 3 H),
0.95 (d, J = 7.2 Hz, 6 H). MS (EI): m/z (rel. intensity) = 248 (8.0)
[M*], 205 (7), 192 (1), 148 (39), 131 (100), 115 (43), 105 (31), 91
(59), 77 (16), 57 (46), 51 (8). HPLC (Chiralcel OD-H, hexane-2-
PrOH = 99:1, 0.7 mL/min, 214 nm): t; (major) = 7.18 min; ty
(minor) = 7.80 min.

Compound 2i: Yield 42%; 60% ee. [a]p2° = 8.4 (¢ 0.8, CHCl;).
THNMR (400 MHz,CDCl,): § = 7.21-7.26 (m, 1 H), 6.97 (d, ] = 7.6
Hz, 1H),6.90 (s, 1 H), 6.83 (dd, J = 8.4, 2.4 Hz, 1 H), 6.66-6.70 (d,
J=15.6 Hz, 1 H), 6.06 (dd, ] = 16.0, 6.4 Hz, 1 H), 3.82 (m, 1 H),
3.51(m, 1 H), 1.5 (d,J = 7.2 Hz, 3 H). 3C NMR (101 MHz, CDCl,):
0=159.8,137.1,132.4, 129.7, 124.6, 120.9, 119.1, 113.9, 111.9,
55.3,28.4, 19.0. MS (EI): m/z (rel. intensity): 187 (100) [M*], 186
(57), 172 (23), 156 (22), 144 (94), 128 (20), 115 (48), 102 (24),
91 (22), 77 (22), 63 (23), 51 (18). IR (film): v = 2938 (m), 2836
(m), 2241 (m), 1599 (s), 1579 (s), 1453 (m), 1263 (m), 1041 (m),
964 (s), 775 (s), 688 (s) cm'. HPLC (Chiralpak PA-2, hexane-2-
PrOH = 99:1, 1.0 mL/min, 214 nm): t; (major) = 27.98 min; t;
(minor) = 31.74 min. HRMS: m/z calcd for C;,H{3NO [M*]:
187.0994; found: 187.0997.

Compound 1i: Yield 48%; 74% ee. [a]?° = -60.4 (¢ 1.3, CHCl;). 'H
NMR (400 MHz,CDCl5): 8 = 7.21-7.26 (m, 1 H), 6.97 (d,J = 7.6
Hz, 1 H), 6.90 (s, 1 H), 6.83 (dd, J = 8.0, 2.0 Hz, 1 H), 6.66-6.70 (d,
J =16.0 Hz, 1 H), 6.06 (dd, J = 16.0, 6.4 Hz, 1 H), 5.36 (m, 1 H),
3.92(d,J=6.8Hz,1H),3.91(s,3H),1.97 (m, 1 H),1.46 (d,]=6.4
Hz, 2 H), 0.92 (d, J = 6.4 Hz, 9 H). MS (EI): m/z (rel. intensity):
278 (32) [M*], 235 (2), 178 (33), 161 (75), 145 (42), 135 (100),
129 (18), 117 (26), 91 (34), 77 (14), 57 (51). HPLC (Chiralpak OJ-
H, hexane-2-PrOH = 99.5:0.5, 0.7 mL/min, 214 nm): t; (major) =
23.67 min; tz (minor) = 29.92.

Compound 2p: Yield 39%; 43% ee. [a]p%° = 2.4 (¢ 0.85, CHCl;). 'H
NMR (400 MHz,CDCl;): § = 7.25-7.40 (m, 5 H), 6.81-6.72 (d, ] =
16.0 Hz, 1 H), 6.01 (dd, ] = 16.0, 6.8 Hz, 1 H), 3.36 (m, 1 H), 1.67-
1.82 (m, 6 H), 1.19-1.26 (m, 5 H). '*C NMR (101 MHz, CDCl;):
0=135.8, 133.9, 128.7, 128.1, 126.5, 122.1, 119.4, 41.1, 40.8,
31.0, 29.6, 26.0, 25.8. MS (EI): m/z (rel. intensity): 225 (8) [M"],
143 (100), 128 (2), 115 (25), 102 (2), 91 (4), 83 (13), 65 (3), 55
(46). IR (film): v = 2922 (m), 2854 (m), 2233 (w), 1449 (m), 974
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(m), 746 (s), 691 (m) cm™!. HPLC (Chiralpak AD-H, hexane-2- 141 (11), 133 (100), 117 (35), 91 (25), 83 (16), 57 (41), 55 (32).
PrOH = 99:1, 0.7 mL/min, 214 nm): t; (minor) = 20.65 min; tg HPLC (Chiralpak OD-H, hexane-2-PrOH = 99.5:0.5, 0.7 mL/min,
(major) = 30.04 min. HRMS: m/z calcd for CigH;gN [M*]: 214 nm): tz (minor) = 20.65 min; tz (major) = 30.04 min.
225.1514; found: 225.1517. (11) Saha, B.; RajanBabu, T. V. Org. Lett. 2006, 8, 4657.

Compound 1p: Yield 34%; 97% ee. [a]p® = -29.5 (¢ 1.0, CHCl;). (12) (a) Li, D. R.; He, A.; Falck, J. R. Org. Lett. 2010, 12, 1756. (b) Akai,
H NMR (400 MHz, CDCl3): 8 = 7.25-7.40 (m, 5 H), 6.65 (d, J = S.; Hanada, R.; Fujiwara, N.; Kita, Y.; Egi, M. Org. Lett. 2010, 12,
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