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Abstract
The stereoselectivity of a Diels–Alder reaction within the periphery of hierarchically assembled titanium(IV) helicates formed from
mixtures of achiral, reactive and chiral, unreactive ligands was investigated in detail. Following the pathway of the chiral induction,
the chiral ligands, solvents as well as substituents at the dienophile were carefully varied. Based on the results of the stoichiometric
reaction, a secondary amine-catalyzed nitro-Michael reaction is performed as well which afforded reasonable diastereoselectivities.
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Introduction
Carbon–carbon (C–C) bond-forming reactions play a key role in
organic chemistry. Hereby the stereoselectivity of the reaction
is highly important due to the different behavior of stereoiso-
mers in human metabolism [1,2]. Stereocontrol was achieved
either via an auxiliary [3-7] or a catalyst [8], both providing the
stereoinformation necessary for induction during the C–C bond
formation. Catalytic approaches for C–C bond-forming reac-
tions even found their way into the relatively young field of
supramolecular chemistry, e.g., regioselective Diels–Alder reac-
tions within supramolecular hosts as described by Fujita et al.
[9-11] or stereoselective nucleophilic substitutions by Raymond

et al. [12] are important examples in this context. Recently, we
described the use of hierarchically assembled helicates as tem-
plates for stereoselective Diels–Alder reactions via a post-func-
tionalization process [13]. Catechol ligands L-H2 with an ester
functionality in the 3-position were prepared via conversion of
the acid chloride of 2,3-dihydroxybenzoic acid to the corre-
sponding esters. These ligands underwent a complexation with
titanoyl(IV) bisacetylacetonate and lithium carbonate initially
forming a mononuclear “Werner-type” triscatecholate
titanium(IV) complex. Two of these monomers dimerized in a
consecutive step to obtain a non-covalently linked helicate

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:markus.albrecht@oc.rwth-aachen.de
https://doi.org/10.3762/bjoc.16.195


Beilstein J. Org. Chem. 2020, 16, 2338–2345.

2339

Scheme 1: Formation of hierarchically assembled lithium-bridged titanium(IV) helicates as well as the ligands used for the stereoselective Diels–Alder
reaction.

(Scheme 1). The dimerization took place via the coordination of
three lithium cations acting as bridges between two monomeric
complex units [13-20].

Enantioselectivities up to 25% ee at elevated temperature
(32% ee at 0 °C) depending on the substrate were achieved in a
Diels–Alder reaction by introducing two different substituted
catechol ester ligands during the complex formation: (1) A
diene-substituted ligand 1-H2 for the Diels–Alder reaction
[21,22] and (2) a chiral ligand 2-H2 for the stereocontrol [13].
Cleaving the complex under acidic conditions resulted in the
desired enantiomerically enriched product 9 and enabled the
recovery of the chiral ligand 2-H2 (Scheme 2) [13].

The solvent choice allowed on/off-switching of the stereoselec-
tivity of the Diels–Alder reaction. In THF the stereochemically
locked dimer of the hierarchical helicate was present. Here
stereoselectivity was turned on. On the other hand, the highly

dynamic and fast diastereomerizing/epimerizing monomer was
the major species in DMF switching off the stereoselectivity
[13].

Herein we investigated the induction pathway and significantly
optimized the stereoselectivity of the reaction. Furthermore, a
catalytic approach was introduced which paves the way to the
final goal of supramolecular stereoselective catalysis with hier-
archical helicates as homogeneous catalysts.

Results and Discussion
Stereoselective Diels–Alder reactions in the
periphery of hierarchically assembled
helicates
Elucidating the induction pathway of the Diels–Alder reaction
is vital for the optimization of the system described above and
for the development of future processes based on the principle
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Scheme 3: Elucidating the pathway of the stereoinduction of the Diels–Alder reaction. Ten equivalents of chiral ammonium salt are added to the hier-
archical helicate in methanol and stirred for two weeks. Afterwards methanol is removed and the residue is dissolved in THF to perform a Diels–Alder
reaction at the side chain.

Scheme 2: Previously reported on/off switch for “remote-controlled”
[23-31] stereoselectivity of a Diels–Alder reaction by use of different
solvents. The heteroleptic complexes are mixtures with an average
ligand distribution as shown [13].

to use self-assembled coordination platforms (or as in the
present case mixtures thereof) to control stereoselective C–C
bond-forming reactions. Stereoinduction usually relies on
spatial proximity of the prochiral carbon atoms and a chiral

information of, e.g., a chiral auxiliary, Lewis acid or catalyst. In
the previously reported system two different induction path-
ways were conceivable: (1) A chiral ligand is located close to
the diene and controls the stereochemistry of the cycloaddition.
(2) The chiral ligand controls the helicity of the helicate (ΔΔ or
ΛΛ) and the helix induces the stereoselectivity of the
Diels–Alder reaction.

To find out which of the induction pathways takes over the
control of the Diels–Alder reaction in the periphery of the heli-
cates, a specific helicity was induced at an achiral diene bear-
ing helicate. It has been described before that an addition of
chiral ammonium salts leads to the preference of a specific twist
at the helicate [32]. As inductor, (R)-1-phenylethylammonium
chloride was added to the racemic hexadiene-substituted heli-
cate [Li3(1)6Ti2]−. The chiral salt influences the helicity of the
monomeric complexes and which dimerize to the right-handed
(ΔΔ) helicate [32]. As the process is slow, the mixture of the
ammonium salt and complex was stirred for two weeks at room
temperature in methanol. Thereafter, the solvent was removed
and the Diels–Alder reaction with N-benzylmaleimide was per-
formed at elevated temperature in THF. The reaction yielded
the racemic product after purification. Scheme 3 is showing that
the induction of stereochemistry of the Diels–Alder reaction
depends on the chirality at the chiral ligand and not at the helix.
This allows improvement of the stereoselectivity by using more
appropriate sterically hindered or rigid chiral ligands. In addi-
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Table 1: Optimization of the stereoselectivity achieved of the Diels-Alder reaction at hierarchical helicates with solvent and chiral ligand screening.

Entry L* 9 R solvent T
[°C]

yield
[%]

ee
[%]

1 2 e Bz THF 70 77 [13] 21 [13]
2 2 e Bz dioxane 105 53 17
3 2 e Bz acetone 60 50 14
4 2 e Bz MeCN 86 44 8
5 2 e Bz DCM 44 50 25
6 2 e Bz CHCl3 65 50 32
7 3 e Bz CHCl3 65 71 44
8 4 e Bz CHCl3 65 64 58
9 5 e Bz CHCl3 65 61 46
10 6 e Bz CHCl3 65 64 16
11 7 e Bz CHCl3 65 11 −8
12 4 a Me CHCl3 65 76 43
13 4 b Et CHCl3 65 79 39
14 4 c t-Bu CHCl3 65 82 18
15 4 d Cy CHCl3 65 80 49

aReactions performed in closed tubes.

tion, a solvent screening was performed in which solvents were
used which favor the dimer. This is imminent for good enantio-
selectivities because the presence of a high amount of stereola-
bile monomer switches off the selectivity [13].

Solvent dependence
Initially the solvent dependence of the stereochemical induc-
tion of the Diels–Alder reaction by the phenylethyl-derived
ligand 2 was studied using N-benzylmaleimide (8e) as dieno-
phile (Table 1). The solvents dioxane (17% ee) and acetone
(14% ee) showed a slight decrease of the enantioselectivity
compared to THF (21% ee). The yields of the reactions were
rather moderate. On the other hand, the use of acetonitrile had
no significant influence on the yield compared to acetone while
the enantioselectivity dramatically dropped to 8% ee. In this
case the lower selectivity correlated with the increasing lithium
solvating capability of the solvent resulting in a higher propor-
tion of the monomer and thus in lower stereoselectivities. In
contrast to this, less polar solvents such as dichloromethane and
chloroform resulted in increasing stereoselectivities in the

Diels–Alder reaction due to their poor ability to stabilize lithi-
um cations. Chloroform showed the best induction with 32% ee
followed by dichloromethane with 25% ee, both with 50% yield
(Table 1).

Ligand screening
In a second optimization step, the chiral ligands have been
varied. An increase of stereoselectivity was achieved by using
the hel icates  with a  s tat is t ical  l igand dis tr ibut ion
Li[Li3(1)3(L*)3Ti2] (L* = 3–7-H2). The given formula only de-
scribes the ratio of the ligands but in fact a statistical mixture of
c o m p l e x e s  L i [ L i 3 ( L * ) 6 T i 2 ] ,  L i [ L i 3 ( 1 ) ( L * ) 5 T i 2 ] ,
Li[Li3(1)2(L*)4Ti2], Li[Li3(1)3(L*)3Ti2], Li[Li3(1)4(L*)2Ti2],
Li[Li3(1)5(L*)1Ti2], and Li[Li3(1)6Ti2] is present. Expanding
the aromatic unit to a naphthyl group in 3-H2 resulted in an
increase of the enantioselectivity to 44% ee. Even better selec-
tivities were obtained with 4-H2 bearing an indanyl [33,34] sub-
stituent which combines a stereogenic center implemented in a
ring system providing rigidity as well as an aromatic residue.
The enantioselectivity increased to 58% ee (Table 1).
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Besides the aromatic ligands, terpenyl-substituted ligands were
investigated, too. The largest ligand 7-H2 with a cholesteryl
moiety favored the opposite enantiomer, however, only with
−8% ee in only 11% yield. The low yield may be attributed to
the poor solubility of the helicate. The other terpene [35,36]
derived systems Li[Li3(1)3(5)3Ti2] and Li[Li3(1)3(6)3Ti2]
showed a different behavior. The (1S,2S,3S,5R)-3-pinanyl-
substituted Li[Li3(1)3(5)3Ti2] yielded 46% ee, while the com-
plex bearing a ʟ-(−)-borneyl residue Li[Li3(1)3(6)3Ti2] showed
only 16% ee. The yields were higher than 60%. A possible
reason for the significant drop in enantioselectivity by switching
from ligand 5 to 6 was due to the different dimerization behav-
ior. The homoleptic helicate Li[Li3(6)6Ti2] shows a lower
dimerization tendency compared to Li[Li3(5)6Ti2] [35,36].
Thus, the higher amount of undesired monomer in solution of
Li[Li3(1)3(6)3Ti2] resulted in a partial switch-off of the stereo-
selectivity.

Screening of the dienophile
The variation of the dienophile was studied in chloroform using
the helicate Li4[(1)3(4)3Ti2]. N-Maleimides 8a and 8b with a
methyl and an ethyl residue showed higher yields and a lower
induction in comparison to the benzyl derivative 8e with
43% ee and 39% ee (Table 1). The poorest result was obtained
by using dienophile 8c with a tert-butyl substituent (82% yield,
18% ee). This maleimide gave the lowest induction in our
previous work, too [13]. Thus, no improvement was made in
comparison to the 15% ee [13] achieved with chiral ligand 2-H2
in THF as solvent. The cyclohexyl-substituted dienophile 8d
showed a higher induction (49% ee and 80% yield) than 8a and
8b, but could not reach the results of 8e. The described optimi-
zation of the reaction conditions based on solvent, chiral ligand,
and substituent at the dienophile resulted in a nearly threefold
increase of the enantioselectivity compared to the earlier de-
scribed results [13].

The screening showed the opportunity to use hierarchically
formed helicates with mixtures of ligands as platforms to
control the stereochemistry of C–C bond-forming reactions.
However, it would be of great advantage to transfer the find-
ings to catalytic C–C bond-forming reactions which are cata-
lyzed by hierarchical helicates containing chiral ligands for
stereocontrol and achiral catalytically active ligands.

Enamine-catalyzed nitro-Michael reactions
The nitro-Michael reaction [37-40] seemed to be suitable to be
performed at hierarchically assembled helicates due to the reac-
tion’s “benchmark character” [41]. Therefore, ligands bearing
secondary amine residues were introduced instead of the diene
ligands. Again helicates with a statistical distribution of chiral
ligands and of the new amine ligands in the complex were in-

vestigated as catalysts. The ligands with potential catalytic ac-
tivity were synthesized in a three-step approach (Scheme 4).
Initially the amino alcohols 10a–d were protected with a Boc
group [42,43]. Esterification of the protected alcohols 11a–d
[33,44] with 2,3-dioxosulfinylbenzoyl chloride obtained from
2,3-dihydroxybenzoic acid and thionyl chloride afforded the
N-Boc-substituted catechol ligands 12a–d [33,36]. They were
deprotected under acidic conditions with hydrochloric acid
yielding ligands 13a–d-H2 [33,36] as ammonium chloride salts.

Scheme 4: Synthesis of the ligands with secondary amine-containing
substituents.

The obtained ligands 13a–d-H2 were used together with the
chiral ligands 2,4,5-H2 for the formation of hierarchical heli-
cates with a statistical ligand ratio which were formed from
1 equivalent of 13-H2 and 5 equivalents of 2-H2, 4-H2, and
5-H2.

The catalytic activity of the amine ligands was tested first by
using the uncoordinated ligand 13a-H2 substituted with a
N-methylethylamine moiety. The reaction was performed in
DMSO-d6 due to solubility limitations of the ligand. Fast and
easy measurement of the yield and the diastereoselectivity was
possible by NMR spectroscopy. The nitro-Michael reaction of
3 equivalents propanal (14) and β-nitrostyrene (15) with
25 mol % of 13a-H2 after 2 days at room temperature resulted
in 45% yield of product 16 and a nearly 1:1 diastereomeric ratio
(Table 2).
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Table 2: Enamine-catalyzed nitro-Michael reaction with hierarchically assembled helicates.a

Entry catalyst mol % T
[°C]

t
[d]

yield
[%]

dr

1b 13a-H2 25 rt 2 45c 52:48c

2 Li4[(13a)1(2)5Ti2] 15 rt 3 0 –
3 Li4[(13b)1(2)5Ti2] 15 rt 3 88 83:17
4 Li4[(13b)1(2)5Ti2] 15 0 7 71 87:13
5 Li4[(13b)1(2)5Ti2] 7.5 70 1 48 65:35
6 Li4[(13c)1(2)5Ti2] 15 rt 3 0 –
7 Li4[(13d)1(2)5Ti2] 15 rt 3 0 –
8 Li4[(13b)1(4)5Ti2] 15 rt 3 13 80:20
9 Li4[(13b)1(5)5Ti2] 15 rt 3 27 80:20

aNo enantioselectivity was achieved. bReaction was performed in DMSO-d6 (0.26 M) due to solubility limitations of the free ligand with 3 equiv of
propanal. cValues determined by integration of the crude NMR spectrum of the reaction.

Catalysis at the “statistical” helicates was carried out with
5 equivalents of propanal (14) in order to gain a higher conver-
sion. Beside a significant control over the diastereomeric ratio
no enantioselectivity was achieved with helicates as catalysts.
Catalysts at concentrations of 15 mol % were used in CDCl3 at
room temperature and 0 °C with three or seven days of reaction
time. The conversion was controlled by NMR spectroscopy and
TLC. The helicate Li4[(13a)1(2)5Ti2] did not lead to any
conversion at room temperature (Table 2). The catalyst
Li4[(13b)1(2)5Ti2] with an ethyl-substituted amine worked well
resulting in 88% yield and 66% de at room temperature. The
diastereomeric excess increased slightly to a maximum of 74%
de (dr 87:13) at 0 °C. A dramatic decrease to 30% de was ob-
served by lowering the catalyst loading to 7.5 mol % while in-
creasing the temperature to 70 °C. No enantioselectivity was
observed using the helicate Li4[(13b)1(2)5Ti2] as catalyst. The
helicates Li4[(13c)1(2)5Ti2] and Li4[(13d)1(2)5Ti2] with an iso-
propyl-substituted ethylamine and a cyclic secondary amine
ligand as catalytically active unit showed no conversion in the
nitro-Michael reaction. Solubility problems were the supposed
reason for this observation. Thus, the amine ligand 13b-H2
seemed to be an appropriate component to make helicates from
ligand mixtures which possess catalytic activity.

Exchange of the chiral ligand 2 by other chiral ones resulted in
the corresponding complexes Li4[(13b)1(4)5Ti2] and
Li4[(13b)1(5)5Ti2], but did not lead to a control of enantioselec-

tivity. A reasonable diastereoselectivity of 60% de was ob-
served for both catalysts. The limited solubility of these com-
plexes caused a significant reduction of the yield at room tem-
perature and due to this the reaction was not performed at lower
temperatures.

Conclusion
An optimization of the Diels–Alder reaction taking place in the
periphery of hierarchically assembled helicates was carried out.
It was based on the elucidated induction pathway showing that
the stereoselectivity was due to the proximity of the chiral units
of ligand 2 to the diene unit. The helicity of the helicate did not
have a significant influence. After optimization of solvent,
chiral ligand, and substituent at the dienophile stereoselectivity
was nearly tripled. Up to 58% ee was achieved in the
Diels–Alder reaction in chloroform with the indanyl-substi-
tuted chiral ligand 4-H2 and N-benzylmaleimide (8e) as the
dienophile.

In addition, the transition from the stoichiometric Diels–Alder
reaction to a catalytic nitro-Michael reaction was described
utilizing secondary amine ligands as catalysts. Only amine
ligand 13b-H2 seemed suitable in the catalysis with the corre-
sponding statistical helicates. With other complexes solubility
problems arose. Li4[(13b)1(2)5Ti2] was the most efficient cata-
lyst discussed in this study and provided good yields of up to
88% at room temperature. Suitable diastereoselectivities were
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obtained with up to 74% de (dr 87:13) at 0 °C and 66% de (dr
83:17) at room temperature. Enantioselectivity was not
achieved even with the chiral ligands 4-H2 and 5-H2.

Nevertheless, the successful implementation of diastereoselec-
tive catalysis by hierarchically assembled helicates was a big
step forward and will draw our focus on the development of
new systems possessing catalytic activity with improved solu-
bility.
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