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ABSTRACT: We describe the 3-iodopropyl acetal moiety as a 
simple cleavable unit that undergoes acid catalyzed hydroly-
sis to liberate HI (pKa ~ -10) and acrolein stoichiometrically. 
Integrating this unit into linear and network polymers gives 
a class of macromolecules that undergo a new mechanism of 
degradation with an acid amplified, sigmoidal rate. This trig-
ger-responsive self-amplified degradable polymer undergoes 
accelerated rate of degradation and agent release. 

The simultaneous growth in waste plastics, 3D-printing, 
and implantable biomaterials has challenged chemists to 
develop new polymers able to meet the demands of real-
world applications. In particular, there is increasing de-
mand for smart polymers that change their shape or prop-
erties or degrade in response to environmental stimuli.1 

Indeed, a renewed interest in degradable polymers, espe-
cially for biomedical and engineering applications has led 
to an extensive search for new mechanisms to breakdown 
polymers.2 Most degradable polymers contain functional 
groups along their main chain that cleave independently 
by chemical or photochemical reaction, in which case, the 
degradation rate remains more or less constant until the 
trigger or cleavable functionality is consumed (Figure 1a). 
The discovery of self-immolative polymers was particu-
larly exciting because one triggering event is sufficient to 
activate an entire polymer chain to degrade.3,4 These sys-
tems are stable under ambient conditions until a reactive 
unit at the polymer end is cleaved, triggering a cascade of 
fragmentation reactions that proceed sequentially along 
the polymer chain (Figure 1b).  

  

Figure	1. Schematic representation of polymer degradation mechanisms: (a) Traditional cleavage of polymer chain, (b) Self-im-
molative polymer degradation. Loss of end-cap is followed by sequential loss of end units, (c) Trigger-responsive chain-shattering 
polymer degradation mechanism, and (d) Amplified chain-shattering mechanism developed in the current work. Green linkages 
are labile under reaction conditions, whereas red are stable. 
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More recently, the development of chain-shattering pol-
ymers allows materials to spontaneously degrade along 
the main chain with a triggering event occurring at each 
monomer unit (Figure 1c).5 Both the self-immolative and 
chain-shattering approaches do have limitations in degra-
dation rate and require a stoichiometric amount of the 
triggering agent. We were interested in a less studied ap-
proach that can be referred to as an amplified chain-shat-
tering degradation. In this mechanism, a catalytic species 
accelerates chain cleavage, which in turn generates a full 
equivalent of the same agent, leading to an exponential 
degradation cascade (Figure 1d).6 For example, polyesters 
such as PLGA show mild autocatalysis because the liber-
ated carboxylic acids accelerate the hydrolysis.7 

Herein, we describe a simple, yet powerful acetal unit 
derived from 3-iodopropanal that undergoes acid cata-
lyzed, self-amplified cleavage and demonstrate how it can 
be readily integrated into both degradable polymers and 
hydrogels.  Unlike polyesters, our designed system shows 
strong autocatalysis and is more suitable to applications 
where exponential rates are needed. The acetal unit and 
acid trigger were chosen because pH gradients are ubiqui-
tous in the environment and within biological systems. 
Furthermore, polymeric acetals (polyacetals) are well 
studied, with tunable reactivities and properties.8 The 
simplest, polyoxymethylene (POM) is a widely used engi-
neering thermoplastic, whereas more complex polyace-
tals are used in a range of applications from controlled re-
lease to drug delivery. 

The acetal design was based on small molecules re-
ported by Ichimura and coworkers9 that produce p-tol-
uenesulfonic acid (pKa ≈ -2.8) in an amplified manner. 
With this starting point, various monomeric units were 
prepared and tested, ultimately leading to the 3-iodo-1,1-
dialkoxy moiety as having the most suitable properties. In 
particular, this unit is easily prepared and has good stabil-
ity, but undergoes acid amplified degradation under 
mildly acidic conditions. In this mechanism, the acetal 
likely hydrolyzes to the hemiacetal and then further to the 
aldehyde, which subsequently undergoes β-elimination to 
generate stoichiometric amounts of hydroiodic acid with 
pKa ≈ -10 and acrolein (Scheme 1). Each of the three steps 
is catalyzed by acid. 

 
Scheme	1.	Mechanism	of	3‐iodopropyl	acetal	hydrolysis	
with	stoichiometric	formation	of	HI	and	amplified	cleav‐
age.	

	

 
The key 3-iodopropyl acetals 1-3 used in this study are 

shown in Scheme 2. The synthesis of iodo-acetal monomer 
1 was achieved by treatment of acrolein with TMSBr and 
acetalization with alcohol 4 to afford 5.10 Conversion of 
bromo acetal 5 to the iodo acetal 1 proceeded in good 
yield under standard Finkelstein conditions. Iodo acetals 
2 and 3 were prepared in analogous fashion or by using 

HCl in place of TMSBr, the diol units in 2 obtained by dihy-
droxylation (see Supporting Information). 

The ability of the 3-iodopropyl acetal unit to undergo 
acid amplified cleavage was examined by monitoring the 
hydrolysis of 3 using 1H NMR under different conditions. 
A solution of 3 in D2O at pD = 5.5 at 70 ºC showed an in-
duction period of about 15-20 minutes at which time the 
acetal underwent a rapidly accelerating degradation (Fig-
ure 2a). The reaction was largely complete after about 45 
min. Consecutive 1H NMR spectra taken over 1 h were con-
sistent with the formation of hemiacetal 7, further hydrol-
ysis to aldehyde 8, which subsequently undergoes β-
elimination to generate hydroiodic acid (Figure 2b and 
Figure S1). The stoichiometric generation of the strong 
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Figure	2.	(a) Percent conversion of 3 in D2O at initial pD = 5.5, 
with [3] = 48 mM at 70 °C in presence (green diamonds) and 
absence (blue circles) of 0.1 M acetate buffer. (b) Proposed 
mechanism of acetal hydrolysis with stoichiometric formation
of HI and amplified cleavage. (c) Change in solution pH over 
time of a solution, [3] = 48 mM in nanopure water. Blue points,
[H+]; green points pH. Triangle, 50 °C, circle 70 °C, square, 90
°C. Connected lines are added to guide the eye. 
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acid HI can accelerate each of the previous steps and pro-
duce the nonlinearity observed for the process. Consistent 
with these observations, performing the same hydrolysis 
reaction in the presence of 0.1 M acetate buffer dramati-
cally suppressed the hydrolysis rate as seen in Figure 2a. 

The acid amplified degradation of 3 was further charac-
terized by measuring the pH over time. Thus, 48 mM aque-
ous solutions of 3 in nanopure water, which was slightly 
acidic (pH = 5.5) due to dissolved atmospheric CO2, were 
heated at three temperatures (50, 70, and 90 °C) and the 
pH was measured at regular intervals (Figure 2c). The 
proliferation of acid was almost instantaneous at 90 °C, 
whereas an induction period of ca. 2 h and 5 min was ob-
served at 50 °C and 70 °C, respectively. The release of acid 
at 50 °C could be made instantaneous by starting the reac-
tion in a pH 3 solution by adding p-toluenesulfonic acid 
monohydrate. Both of the higher temperature reactions 
rapidly leveled off at pH ≈ 1.5, with the final [H+] value be-
ing consistent with near quantitative conversion of 3 to HI.  

Final support for the autocatalytic, acid amplification 
mechanism comes from successfully fitting the degrada-
tion data of 3 at 70 ºC to an autocatalytic kinetic model 
(Equation S1).11 In this model, rate constants k1 and k2 de-
scribe the non-autocatalytic hydrolysis step and autocata-
lytic HI-accelerated steps, respectively. As expected for an 
autocatalytic reaction, k1 (1.9 x 10-4 min−1) ≪ k2c0 (3.0 x 
10-2 min−1) (Table 1). Additional support for this model in-
volves a linear fit of the data over time using Equation S3 
and shown in Figure S6. 

 
Table	1.	Calculated	 rate	 constants	 for	 the	non‐auto‐
catalytic	and	autocatalytic	pathways	of	 the	degrada‐
tion	of	3,	10,	and	13	at	various	temperatures.	Average	
and	 standard	deviation	values	are	 listed	 from	 three	
measurements.	

 Temp (ºC) k1 (103 min-1) k2 (M-1min-1) 

3 70 0.19 ± 0.26 6.2 ± 1.2 

10  70 0.16 ± 0.19 2.9 ± 0.6 

13 90 37 ± 6 7250 ± 3810 

 

Using Grubb’s 1st generation catalyst, monomer 1 un-
derwent successful acyclic diene metathesis (ADMET) 
polymerization providing polymer 9 with Mn ≈ 10,000. 
Upjohn-dihydroxylation was subsequently used to con-
vert 9 to 10 which significantly increased its water solu-
bility (Scheme 2). However, polymer 10 exhibits thermo-
responsiveness in pure aqueous solution with an LCST 
above room temperature. Therefore, a 40% (v/v) CD3CN 
in D2O (pD0 = 5.5) mixture was used for degradation stud-
ies, which were monitored by 1H NMR spectroscopy and 
gel permeation chromatography (GPC).  

The hydrolysis of 10 was observed in NMR by watching 
the disappearance of the acetal proton. A plot of normal-
ized acetal conversion vs. time showed a distinctive sig-
moidal shape that can be linearized (Figure 3a, Figure S7). 
This data fits well to our autocatalytic model and the ex-
tracted values for 10	agree with those observed for the 
degradation of 3	(Table 1). An autocatalytic, acid-ampli-
fied polymer degradation process should also be accom-
panied by a sigmoidal decrease in molar mass of 10. As 
seen in Figure 3b, a solution of 10 heated to 70 °C was 
monitored at regular time intervals using GPC. Due to self-
amplified degradation, there are only small changes in the 

GPC traces at first, followed by a rapid increase in reten-
tion time, and then much smaller changes.  

Upon successful demonstration of the acid triggered 
self-amplified degradation behavior of the small molecule 
and linear polymer, we were interested in developing a 
degradable hydrogel containing the 3-iodopropyl acetal 
moiety. Treatment of 1 with HCl and acetalization with 
TMS-protected N-hydroxyethyl acrylamide gave 11, 
which was converted to acrylamide crosslinker 12 con-
taining a central 3-iodopropyl acetal unit. Finally, de-
gradable hydrogel 13 was synthesized by free radical 
polymerization using 3 mol% of 12 as the crosslinker and 
the monomer acrylamide (AAm) with diethoxyacetophe-
none (DEAP) as the photo-initiator (Scheme 3 and S6). An 
additional example of polyol hydrogel synthesis and visual 
observation of its degradation can be found in the Supple-
mental Information. 

 
 

 

 
Figure	4. (a) Visual observation of the degradation of 13 
compared to polyacrylamide control at 90 ºC. Pictures are of 
the gel in a scintillation vial submerged in an oil bath. (b) 
Storage modulus of 13 at 70 ºC, 13 with and without 0.1 M 
acetate buffer at 90 ºC, and the polyacrylamide hydrogel at 
90 ºC. 

 

Figure	3.	(a) Monitoring the disappearance of acetal func-
tionality of 10 by 1H NMR as a 3 mM solution in D2O/CD3CN 
at 70 ºC. Dashed line is fit of the data to Equation S4 and dot-
ted line is provided as a guide for the eye. (b) GPC traces of 
the degradation of 10	in a 0.3 M solution in H2O/CH3CN over 
time at 70 ºC. 	
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Scheme	3.	Synthesis	of	degradable	hydrogel	13.	

 

 
Hydrogel 13 was studied and compared to gels pre-

pared with a nondegradable crosslinker (N,N'-meth-
ylenebisacrylamide) in the same mole ratio (Scheme S7). 
Visual observation of hydrogel degradation over time 
shows that 13 has a delay period of ~30 min and then de-
grades rapidly to give a solution, whereas the polyacryla-
mide control did not show any sign of degradation (Figure 
4a). The degradation process was also characterized using 
rheology. The storage modulus was measured, and mini-
mal degradation was seen from the polyacrylamide con-
trol (PAAm) at 90 ºC, 13 at 70 ºC, and 13 at 90 ºC in 0.1 M 
acetate buffer. However, upon heating to 90 ºC, 13 under-
goes the rapid degradation that is characteristic of auto-
catalytic reactions (Figure 4b). This degradation profile 
was quantified using the autocatalytic rate equations de-
scribed above and in the Supporting Information, includ-
ing an interrelation between elastic modulus and concen-
tration to compare the apparent chemical rate constants 
(Figure S8).	The increase of k1 and k2 for 13 can be at-
tributed to increased hydrolysis and amplification rates at 
higher temperatures (Table 1).  

In conclusion, we demonstrated a novel class of trigger-
responsive self-amplified-degradable materials. The spe-
cific moiety developed here, the 3-iodopropyl acetal 
group, produces two products stoichiometrically: (1) hy-
droiodic acid, a very strong acid that accelerates further 
degradation, and (2) acrolein, a potent biocide and mer-
captan scavenger. We anticipate that this acid amplifying 
motif could serve as a unique method for the controlled 
delivery of protic acid for various biological and chemical 
applications. These materials may also serve as benign 
carriers that undergo amplified release of biocidal acro-
lein in acidic solution. Investigations in these directions 
are currently in progress in our laboratory. We are further 
developing polymers for the self-amplified release of 
other reagents as well as other architectures with differ-
ent rates and byproducts to expand the toolbox for poten-
tial applications. 
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