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Introduction

Insertion of proviral DNA into the host chromosome is 
a crucial step in the HIV replication cycle. This process 
is catalyzed by virally encoded and packaged enzyme, 
namely HIV integrase (IN)1,2. The recent approval of 
Raltegravir (Figure 1)3–5 by FDA and the encouraging 
late-stage clinical trials with Elvitegravir (Figure 1)6,7 have 
validated IN as a novel HIV therapeutic target.

Elvitegravir and its derivatives, firstly reported by Sato 
et al. in 2006, have emerged as promising therapeutic IN 
inhibitors, due to their high activity and favorable phar-
macokinetic property8. Subsequent chemical modifica-
tions of their quinolone core focused on N-1, C-6, 7 and 
8 position have been introduced in order to obtain more 
potent and selective IN inhibitors9–11. However, very few 
modifications have been carried out at the C-5 position.

Considering the above facts, we have focused our 
attention on the introduction of the substituent at the 
C-5 position. Very recently, we identified a series of 
5-hydroxylquinolone-3-carboxylic acids (Figure 1) with 

low micromolar to submicromolar EC
50

 values against 
HIV-1 virus12,13. Among these 5-hydroxylquinolone ana-
logues, the most active compound 3e characterized by a 
hydroxymethyl moiety at the 1S-position of the isobutyl 
group exhibited 0.13 μM EC

50
 value12. As part of our ongo-

ing effort to find potent anti-HIV 5-substitued-quinolone 
analogues, as well as the incorporation of fluorine into 
the target molecules could affect a variety of properties 
(e.g., enhanced binding interactions, metabolic stability, 
changes in physical properties, and selective reactivities) 
due to its special nature such as the high electronega-
tivity, small size, and its van der Waals radius closer to 
that of oxygen14–16, a series of new 5-fluoroquinolone-3-
carboxylic acids (Figure 1) were synthesized and evalu-
ated as potential IN inhibitors.
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N-aryl-substituted compounds 4f–n) were synthesized 
similar to our previously reported protocol12,13 as 
depicted in Scheme 1. Compound 8 were prepared 
starting from 2, 6-difluoro-3-iodobenzoate according 
to reported procedures12. Condensation of 8 with N, 
N-dimethylformamide dimethyl acetal and followed by 
substitution with appropriate amines led to acrylates  
9a–n, which were then cyclized using 1,8-Diaza
bicycloundec-7-ene as a base to furnish quinolone esters 
10a–n. Ester hydrolysis of 10a–n with satd aq LiOH 
afforded the target compounds.

Results and discussion

Biological evaluation
All the target compounds were evaluated by 3-(4, 
5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bro-
mide assay17,18 for cytotoxicity and antiviral activity in 

C8166 cells infected with the wild-type HIV-1 (LAI strain 
IIIB) and HIV-1 mutant virus (A17). Elvitegravir and 3e12 
were included as the reference compounds. The results, 
expressed as EC

50
, CC

50
 and SI, are illustrated in Table 1.

The newly synthesized quinolone-3-carboxylic acids 
4a–n exhibited EC

50
 values against HIV-1 IIIB in the range 

of 0.032–29.85 μM. Compound 4a, bearing a propyl 
group at N-1 position of quinolone core, showed antiviral 
activity with 13.44 μM EC

50
 value. The replacement of 

straight chain alkyl group of 4a with branched (4b) 
or cyclic one (4c) led to an improvement of antiviral 
activity against wild-type HIV-1 IIIB. Compound 4d with 
an i-butyl group at N-1 position showed more potent 
than i-propyl counterparts (4b). The introduction of a 
hydroxymethyl group at the 1S-position of butyl moiety 
significantly further enhanced its potency. Compound 
4e was the most active of this new series and was more 
potent than the reference compound 3e. These results 

Figure 1.  Chemical structures of HIV-1 IN inhibitors.

Scheme 1.  Reagents and conditions.
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are consistent with the SAR for the 5-hydroxylquinolone 
analogues that the replacement of straight chain alkyl 
group with branched ones caused an increase in antiviral 
activity and the introduction of a hydroxymethyl group 
at the 1S-position of butyl moiety resulted in significant 
improvement of activity12.

For the N-aryl-substituted compounds 4f–n, p-chloro 
compound 4h showed higher activity against both 
wild-type HIV-1 IIIB and HIV-1 mutant virus A17 than 
o-chloro (4f) and m-chloro (4g) compounds. Since the 
effect of the introduction of a withdrawing group at the 
para position was marked, a fluoro (4i), a bromo (4j), 
or a trifluoromethyl (4k) was introduced. Among these 
compounds, only 4k exhibited slightly increased activity 
against HIV-1 IIIB compared to 4h. The introduction of a 
methyl group at the para position resulted in 4m, which 
showed less potent than 4h; however, the introduction of 
dual methyl group at ortho position (4n) led to compa-
rable activity to 4h.

Molecular modeling calculations
In an attempt to investigate the binding model of our 
newly synthesized compounds with IN, molecular dock-
ing study was performed.

Compound 4e, which displayed the most activity 
against both wild-type HIV-1 and the mutant virus A17, was 
docked into our previously constructed model of the HIV-1 
IN catalytic core domain (CCD)/viral DNA complex12 using 
SURFLEX-DOCK SYBYLX 1.1. For comparison, the bind-
ing modes of Elvitegravir and 3e were also investigated. All 
the molecules were energy minimized by the conjugated 
gradient method with Gasteiger-Hückel charge until a con-
vergence value of 0.01 kcal/(Å mol), using the Tripos force 
field. After the hydrogen atoms were added to the HIV-1 

IN CCD/DNA complex, atomic charges were recalculated 
by Kollman all-atom for the protein and Gasteiger-Hückel 
for ligand. The protomol generated using a threshold of 
0.50 and bloat of zero (default values). Other parameters 
were set as defaults for Surflex-Dock. The docking results 
showed that 4-ketone and 3-carboxylate in compound 4e 
could form Mg2+ chelation with HIV-1 IN (Figure 2a). The 
quinolone ring exhibit π–π stacking interaction with A17, 
like 3e and Elvitegravir do (Figure 2b and 2c). No interac-
tion could be detected between the substituent on N-1 or 
C-5 fluoro atom and IN. Although the anti-HIV activity of 
3e (Figure 2b) might involve a two-metal chelating mecha-
nism12, 4e showed more potent against HIV-1 IIIB than 
3e, this might due to the incorporation of fluorine into 4e 
favorite its physicochemical properties.

Conclusions

In conclusion, we designed and synthesized a series 
of new 5-fluoroquinolone-3-carboxylic acids. All the 
compounds showed moderate to good activity against 
wild-type virus with an EC

50
 value ranging from 29.85 

to 0.032 μM. Compound 4e was identified as the most 
active compound of this new series (EC

50
 = 0.032 μM, 

SI = 1295.90) associated with high activity against HIV-1 
mutant strain A17 (EC

50
 = 0.082 μM). Preliminary struc-

ture–activity relationship of the newly synthesized qui-
nolone analogues was also investigated.

Experimental

General procedures
Melting points were measured on a WRS-1 digital melt-
ing point apparatus and are uncorrected. 1H NMR and 

Table 1.  Anti-HIV-1 activity and cytotoxicity of compounds 4a–n in C8166 cellsa.

Compound R
1

EC
50

b (μM)
CC

50
c (μM) SIdIIIB A17

4a n-Propyl 13.44 ND 23.27 1.73
4b i-Propyl 4.18 ND 92.19 22.06
4c Cyclopropyl 2.90 2.69 >512.82 >176.83
4d i-Butyl 2.49 20.20 48.25 19.38
4e 2S-1-hydroxy-3-methylbutan-2-yl 0.032 0.082 41.08 1295.90
4f o-Chlorophenyl 29.85 79.09 75.20 2.52
4g m-Chlorophenyl 9.98 24.23 22.93 2.30
4h p-Chlorophenyl 3.26 6.85 26.50 8.13
4i p-Fluorophenyl 9.59 15.09 45.65 4.76
4j p-Bromophenyl 3.82 6.57 28.97 7.58
4k p-Trifluoromethylphenyl 2.47 15.22 23.08 9.34
4l m-Methylphenyl 21.91 31.02 57.07 2.60
4m p-Methylphenyl 11.89 52.09 65.70 5.53
4n 2,6-Dimethylphenyl 3.52 22.16 46.54 13.22
3e 0.13 0.078 125.03 961.77
Elvitegravir 0.00021 0.00096 17.20 81904.76
aAll data represent mean values from at least two separate experiments.
bEC

50
: compound concentration required to protect the cell against viral cytopathogenicity by 50% in C8166 cells.

cCC
50

: compound concentration that decreases the normal uninfected C8166 cell viability by 50%.
dSI: selectivity index; ratio CC

50
/EC

50
 (wild-type).

ND, not determined.
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13C NMR spectra on a Brucker AV 400 MHz spectrometer 
were recorded in CDCl

3
. Chemical shifts are reported in δ 

(ppm) units relative to the internal standard tetramethyl-
silane. Mass spectra were obtained on an Agilent MS/5975 
mass spectrometer. All chemicals and solvents used were 
of reagent grade and were purified and dried by standard 
methods before use. All air-sensitive reactions were run 
under a nitrogen atmosphere. All the reactions were 
monitored by thin layer chromatography on pre-coated 
silica gel G plates at 254 nm under a UV lamp using ethyl 
acetate/hexane as eluents. Flash chromatography separa-
tions were obtained on silica gel (300–400 mesh).

General procedure for the preparation of 9a–n
A mixture of 2-(3-(3-Chloro-2-fluorobenzyl)-2,6-
difluoro benzoyl)-3-(dimethylamino) acrylate 8 (618 
mg, 1.5 mmol) and appropriate amines (1.8 mmol) in 
tetrahydrofuran (15 mL) was stirred at 50°C for 5–10 min 
and then concentrated under reduced pressure. The 
resulting residue 9a–n was used directly for the next step 
without further purification.

General procedure for the preparation of 10a–n
A mixture of 9a–n (1.0 mmol) and K

2
CO

3
 (2.5 mmol) 

in DMF (15 mL) was stirred at 60°C overnight, filtered 

and poured into ice-water. The mixture was extracted 
by dichloromethane (5 mL × 3). The combined organic 
solution was washed with brine (5 mL × 2), dried over 
MgSO

4
 and concentrated under reduced pressure. The 

residue was purified by column chromatography (silica 
gel, petroleum ether/ethyl acetate 5/1 to 3/1, v/v) to give 
the desired compound 10a–n.

General procedure for the preparation of 4a–n
To a solution of satd aq LiOH (5 mL) in dioxane (8 mL) 
was added 10a–n (1.2 mmol). After being stirred at 50°C 
for 3 h, the mixture was cooled, poured into ice-water and 
acidified with 4 M HCl to pH ~2. The resulting precipitate 
was collected by filtration, washed by water and ethanol, 
dried to give the desired compound 4a–n.

6-(3-chloro-2-fluorobenzyl)-5-fluoro-4-oxo-1-propyl-1, 
4-dihydroquinoline-3-carboxylic acid (4a)  Yield 75%. 
Mp 192–193°C. 1H NMR (CDCl

3
) δ 1.01–1.05 (t, 3 H, J = 

7.2 Hz, CH
3
), 1.92–1.97 (m, 2 H, CH

2
), 4.14 (s, 2 H, CH

2
), 

4.22–4.26 (t, 2 H, J = 7.2 Hz, CH
2
), 7.01–7.04 (t, 1 H, J = 

8.0 Hz, ArH), 7.17–7.21 (m, 1 H, ArH), 7.26–7.30 (m, 1 H, 
ArH), 7.32–7.35 (d, J = 8.8 Hz, 1 H, ArH), 7.65–7.66 (m, 1 
H, ArH), 8.65 (s, 1 H, CH), 14.84 (s, 1 H, COOH). MS (ESI) 

Figure 2.  Binding models of compounds (a) 4e, (b) 3e and (c) Elvitegravirin the active site of new homoly model of HIV-1 IN.
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m/z 392 [M+H]+. Anal. Calcd for C
20

H
16

ClF
2
NO

3
: C 61.31, 

H 4.12, N 3.58, found: C 61.59, H 4.36, N 3.32.

6-(3-chloro-2-fluorobenzyl)-5-fluoro-1-isopropyl-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid (4b)  Yield 82%. 
Mp 227–229°C. 1H NMR (CDCl

3
) δ 1.63–1.65 (d, 6 H, J = 

6.0 Hz, 2CH
3
), 4.15 (s, 2 H, CH

2
), 4.94–4.96 (m, 1 H, CH), 

7.01–7.05 (t, 1 H, J = 8.0 Hz, ArH), 7.18–7.22 (m, 1 H, ArH), 
7.26–7.30 (m, 1 H, ArH), 7.47–7.49 (d, J = 8.8 Hz, 1 H, 
ArH), 7.67–7.71 (m, 1 H, ArH), 8.85 (s, 1 H, CH), 14.93 (s, 
1 H, COOH). MS (ESI) m/z 392 [M+H]+. Anal. Calcd for 
C

20
H

16
ClF

2
NO

3
: C 61.31, H 4.12, N 3.58, found: C 61.52, H 

3.86, N 3.35.

6-(3-chloro-2-fluorobenzyl)-1-cyclopropyl-5-fluoro-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid (4c)  Yield 80%. 
Mp 239–240°C. 1H NMR (CDCl

3
) δ 1.18–1.19 (d, 2 H, J = 

3.2 Hz, CH
2
), 1.39–1.40 (d, 2 H, J = 3.2 Hz, CH

2
), 3.54–3.57 

(m, 1 H, CH), 4.15 (s, 2 H, CH
2
), 7.00–7.04 (t, 1 H, J = 8.0 

Hz, ArH), 7.17–7.21 (m, 1 H, ArH), 7.26–7.30 (m, 1 H, 
ArH), 7.67–7.71 (m, 1 H, ArH), 7.83–7.85 (d, J = 8.8 Hz, 1 
H, ArH), 8.80 (s, 1 H, CH), 14.72 (s, 1 H, COOH). MS (ESI) 
m/z 390 [M+H]+. Anal. Calcd for C

20
H

14
ClF

2
NO

3
: C 61.63, 

H 3.62, N 3.59, found: C 61.85, H 3.38, N 3.32.

6-(3-chloro-2-fluorobenzyl)-5-fluoro-1-isobutyl-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid (4d)  Yield 82%. 
Mp 152–154°C. 1H NMR (CDCl

3
) δ 0.99–1.01 (d, 6 H, J = 

6.4 Hz, 2 CH
3
), 2.24–2.27 (m, 1 H, CH), 4.05–4.07 (d, 2 H, 

J = 6.4 Hz, CH
2
), 4.14 (s, 2 H, CH

2
), 7.00–7.04 (t, 1 H, J = 

8.0 Hz, ArH), 7.18–7.21 (m, 1 H, ArH), 7.26–7.28 (d, 1 H, 
J = 6.8 Hz,ArH), 7.29–7.32 (m, 1 H, ArH), 7.65–7.66 (m, 1 
H, ArH), 8.65 (s, 1 H, CH), 14.84 (s, 1 H, COOH). MS (ESI) 
m/z 406 [M+H]+. Anal. Calcd for C

21
H

18
ClF

2
NO

3
: C 62.15, 

H 4.47, N 3.45, found: C 62.41, H 4.68, N 3.22.

(S)-6-(3-chloro-2-fluorobenzyl)-5-fluoro-1-(1-hydroxy-3-
methylbutan-2-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic 
acid (4e)  Yield 70%. Mp 95–97°C. 1H NMR (CDCl

3
) δ 

0.71–0.73 (d, 3 H, J = 6.4 Hz, CH
3
), 1.11–1.12 (d, 3 H, J 

= 6.0 Hz, CH
3
), 2.34 –2.35 (m, 1 H, CH), 3.74–3.77 (brs, 

1 H, OH), 4.04–4.11 (m, 4 H, 2 CH
2
), 4.43–4.44 (m, 1 H, 

CH), 6.93–6.97 (t, 1 H, J = 8.0 Hz, ArH), 7.09–7.12 (m, 1 H, 
ArH), 7.19–7.22 (m, 1 H, ArH), 7.46–7.48 (d, 1 H, J = 8.8 
Hz, ArH), 7.55–7.57 (m, 1 H, ArH), 8.78 (s, 1 H, CH), 15.10 
(s, 1 H, COOH). MS (ESI) m/z 436 [M+H]+. Anal. Calcd for 
C

22
H

20
ClF

2
NO

4
: C 60.63, H 4.63, N 3.21, found: C 60.40, H 

4.36, N 3.45.

6-(3-chloro-2-fluorobenzyl)-1-(2-chlorophenyl)-5-fluoro-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid (4f)  Yield 
87%. Mp 236–238°C. 1H NMR (CDCl

3
) δ 4.11–4.20 (dd, J 

= 15.2, 21.6 Hz, 2 H, CH
2
), 6.65–6.67 (d, J = 8.8 Hz, 1 H, 

ArH), 7.02–7.06 (t, J = 8.0 Hz, 1 H, ArH), 7.19–7.23 (m, 
1 H, ArH), 7.27–7.31 (m, 1 H, ArH), 7.49–7.54 (m, 2 H, 
ArH), 7.57–7.61 (m, 1 H, ArH), 7.63–7.67 (m, 1 H, ArH), 

7.70–7.73 (m, 1 H, ArH), 8.65 (s, 1 H, CH), 14.66 (s, 1 
H, COOH); MS (ESI) m/z 460 [M+H]+. Anal. Calcd for 
C

23
H

13
Cl

2
F

2
NO

3
: C 60.02, H 2.85, N 3.04, Found: C 59.81, 

H 3.11, N 3.28.

6-(3-chloro-2-fluorobenzyl)-1-(3-chlorophenyl)-5-fluoro-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid (4g)  Yield 
89%. Mp 215–217°C. 1H NMR (CDCl

3
) δ 4.06 (s, 2 H, CH

2
), 

6.79–6.81 (d, J = 8.8 Hz, 1 H, ArH), 6.83–7.05 (m, 4 H, 
ArH), 7.20–7.35 (m, 3 H, ArH), 7.45–7.47 (d, J = 8.8 Hz, 1 
H, ArH), 8.81 (s, 1 H, CH), 13.24 (s, 1 H, COOH); MS (ESI) 
m/z 460 [M+H]+. Anal. Calcd for C

23
H

13
Cl

2
F

2
NO

3
: C 60.02, 

H 2.85, N 3.04, Found: C 60.31, H 2.66, N 3.25.

6-(3-chloro-2-fluorobenzyl)-1-(4-chlorophenyl)-5-fluoro-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid (4h)  Yield 
90%. Mp >250°C. 1H NMR (CDCl

3
) δ 4.16 (s, 2 H, CH

2
), 

6.84–6.86 (d, J = 8.8 Hz, 1 H, ArH), 7.03–7.07 (t, J = 7.6 Hz, 1 
H, ArH), 7.20–7.24 (m, 1 H, ArH), 7.31–7.33 (m, 1 H, ArH), 
7.36–7.39 (d, J = 8.8 Hz, 2 H, ArH), 7.50–7.56 (m, 1 H, ArH), 
7.64–7.66 (d, J = 8.8 Hz, 2 H, ArH), 8.73 (s, 1 H, CH), 14.64 
(s, 1 H, COOH); MS (ESI) m/z 460 [M+H]+. Anal. Calcd for 
C

23
H

13
Cl

2
F

2
NO

3
: C 60.02, H 2.85, N 3.04, Found: C 60.27, 

H 3.09, N 2.78.

6-(3-chloro-2-fluorobenzyl)-5-fluoro-1-(4-fluorophenyl)-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid (4i)  Yield 
93%. Mp 225–227°C. 1H NMR (CDCl

3
) δ 4.14 (s, 2 H, CH

2
), 

6.83–6.85 (d, J = 8.8 Hz, 1 H, ArH), 7.01–7.03 (t, J = 8.0 Hz, 1 
H, ArH), 7.18–7.22 (m, 1 H, ArH), 7.26–7.30 (m, 1 H, ArH), 
7.33–7.37 (m, 2 H, ArH), 7.44–7.47 (m, 2 H, ArH), 7.51–
7.55 (m, 1 H, ArH), 8.70 (s, 1 H, CH), 14.62 (s, 1 H, COOH); 
MS (ESI) m/z 444 [M+H]+. Anal. Calcd for C

23
H

13
ClF

3
NO

3
: 

C 62.25, H 2.95, N 3.16, Found: C 62.47, H 3.19, N 2.89.

6-(3-chloro-2-fluorobenzyl)-1-(4-bromophenyl)-5-fluoro-
4-oxo-1,4-dihydroquinoline-3-carboxylic acid (4j)  Yield 
88%. Mp >250°C. 1H NMR (CDCl

3
) δ 4.15 (s, 2 H, CH

2
), 

6.85–6.87 (d, J = 8.8 Hz, 1 H, ArH), 7.02–7.06 (t, J = 8.0 Hz, 
1 H, ArH), 7.19–7.23 (t, J = 7.2 Hz, 1 H, ArH), 7.28–7.30 (m, 
1 H, ArH), 7.32–7.34 (d, J = 8.4 Hz, 2 H, ArH), 7.52–7.56 (t, 
J = 8.0 Hz, 1 H, ArH), 7.80–7.82 (d, J =8.4 Hz, 2 H, ArH), 
8.71 (s, 1 H, CH), 14.62 (s, 1 H, COOH). MS (ESI) m/z 504 
[M+H]+. Anal. Calcd for C

23
H

13
BrClF

2
NO

3
: C 54.73, H 2.60, 

N 2.78, Found: C 54.47, H 2.36, N 2.49.

6 - ( 3 - c h l o r o - 2 - f l u o r o b e n z y l ) - 5 - f l u o r o - 4 - o xo - 1 - ( 4 -
(trifluoromethyl)phenyl)-1,4-dihydroquinoline-3-carboxylic 
acid (4k)  Yield 85%. Mp >250°C. 1H NMR (CDCl

3
) δ 4.17 

(s, 2 H, CH
2
), 6.81–6.84 (d, J = 8.8 Hz, 1 H, ArH), 7.03–7.07 

(t, J = 8.0 Hz, 1 H, ArH), 7.20–7.24 (m, 1 H, ArH), 7.31–7.33 
(m, 1 H, ArH), 7.53–7.57 (m, 1 H, ArH), 7.60–7.62 (d, J 
= 8.4 Hz, 2 H, ArH), 7.95–7.97 (d, J = 8.4 Hz, 2 H, ArH), 
8.73 (s, 1 H, CH), 14.56 (s, 1 H, COOH). MS (ESI) m/z 494 
[M+H]+. Anal. Calcd for C

24
H

13
ClF

5
NO

3
: C 58.37, H 2.65, N 

2.84, Found: C 58.59, H 2.38, N 2.59.
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6-(3-chloro-2-fluorobenzyl)-5-fluoro-4-oxo-1-m-tolyl-1,4- 
dihydroquinoline-3-carboxylic acid (4l)  Yield 89%. Mp 
218–220°C. 1H NMR (CDCl

3
) δ 2.48 (s, 3 H, CH

3
), 4.15 

(s, 2 H, CH2), 6.90–6.92 (d, 1 H, J = 8.8 Hz, ArH), 7.02–
7.05 (t, 1 H, J = 8.0 Hz, ArH), 7.18–7.22 (m, 3 H, ArH), 
7.27–7.30 (m, 1 H, ArH), 7.44–7.46 (d, 1 H, J = 8.0 Hz, 
ArH), 7.49–7.52 (m, 2 H, ArH), 8.74 (s, 1 H, CH), 14.78 (s, 
1 H, COOH); MS (ESI) m/z 440 [M+H]+. Anal. Calcd for 
C

24
H

16
ClF

2
NO

3
: C 65.54, H 3.67, N 3.18, Found: C 65.82, 

H 3.43, N 3.45.

6-(3-chloro-2-fluorobenzyl)-5-fluoro-4-oxo-1-p-tolyl-1,4- 
dihydroquinoline-3-carboxylic acid (4m)  Yield 90%. Mp 
230–232°C. 1H NMR (CDCl

3
) δ 2.51 (s, 3 H, CH

3
), 4.14 (s, 2 

H, CH
2
), 6.89–6.91 (d, 1 H, J = 8.8 Hz, ArH), 7.01–7.05 (t, 1 

H, J = 8.0 Hz, ArH), 7.18–7.22 (m, 1 H, ArH), 7.26–7.28 (m, 
1 H, ArH), 7.28–7.30 (d, 1 H, J = 7.6 Hz, ArH), 7.43–7.44 (d, 
1 H, J = 7.6 Hz, ArH), 7.48–7.52 (m, 1 H, ArH), 8.73 (s, 1 
H, CH), 14.78 (s, 1 H, COOH); MS (ESI) m/z 440 [M+H]+. 
Anal. Calcd for C

24
H

16
ClF

2
NO

3
: C 65.54, H 3.67, N 3.18, 

Found: C 65.28, H 3.39, N 3.42.

6-(3- chloro-2-fluorobenz yl)-1-(2,6- dimethylphenyl)-
5-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 
(4n)  Yield 85%. Mp 200–202°C. 1H NMR (CDCl

3
) δ 2.01 

(s, 6 H, 2CH
3
), 4.16 (s, 2 H, CH

2
), 6.64–6.67 (d, J = 8.8 Hz, 1 

H, ArH), 7.04–7.07 (t, J = 8.0 Hz, 1 H, ArH), 7.22–7.32 (m, 4 
H, ArH), 7.42–7.46 (m, 1 H, ArH), 7.49–7.53 (m, 1 H, ArH), 
8.62 (s, 1 H, CH), 14.81 (s, 1 H, COOH); MS (ESI) m/z 454 
[M+H]+. Anal. Calcd for C

25
H

18
ClF

2
NO

3
: C 66.16, H 4.00, N, 

3.09, Found: C 66.42, H 3.73, N 3.31.
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