Microwave-Assisted Rapid and Selective Synthesis of *cis*- and *trans*-2,4,5-Triarylimidazolines from Aromatic Aldehydes

Hitoshi Uchida,^a Hirofumi Tanikoshi,^a Shuichi Nakamura,^a Paidi Yella Reddy,^b Takeshi Toru*^a

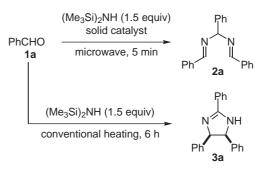
^a Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Received 4 April 2003

Abstract: Microwave irradiation of a mixture of aromatic aldehydes and hexamethyldisilazane in the presence of a solid catalyst such as alumina afforded methanediamines which were efficiently converted to either *cis*- or *trans*-2,4,5-triarylimidazolines depending on the base used. A one-pot selective synthesis of *cis*- and *trans*-imidazolines from aromatic aldehydes was achieved under microwave irradiation.

Key words: microwave, imidazoline, methanediamine, hexamethyldisilazane, solvent-free

Diarylethylenediamines and their derivatives, which can serve as important chiral ligands¹ and biologically active compounds,² are obtainable from *trans*-2,4,5-triarylimidazolines.³ trans-Triarylimidazolines are prepared by isomerization of the corresponding cis isomers, which can be obtained from aromatic aldehydes through N,N'bis(arylmethylidene)arylmethanediamines. Prolonged heating is needed to form methanediamines from aromatic aldehydes; for example, it takes over one week to prepare methanediamines with ammonia⁴ and several hours by heating aldehydes with hexamethyldisilazane (HMDS) in the presence of a Lewis acid⁵ or without a Lewis acid under solvent-free conditions.⁶ Recently, a one-pot synthesis of triphenyl- and tris(2-pyridyl)imidazolines has been reported in the reaction of aromatic aldehydes with HMDS and LiBr in DMSO.7 Independently, we have found a onestep synthesis of triarylimidazolines on treatment of aromatic aldehydes with HMDS without a solvent.8 Studying this synthesis under microwave irradiation,⁹ we found that the reaction was greatly accelerated. We now report a rapid, convenient and selective synthesis of methanediamines as well as cis- and trans-triarylimidazolines from aromatic aldehydes with HMDS under microwave irradiation.


When a mixture of benzaldehyde **1a** and HMDS was irradiated with microwave, no reaction occurred (Table 1, entry 1). The reaction proceeded to give N,N'-bis(phenyl-methylidene)phenylmethanediamine **2a** on addition of 5.0-fold excess amount of silica gel¹⁰ to a mixture of **1a** and 1.5 equivalents of HMDS without using a solvent (Scheme 1). The irradiation for 5 minutes afforded **2a** in 79% yield (entry 2). Alumina was found to be more effectively of the solution of the

Synlett 2003, No. 8, Print: 24 06 2003.

Art Id.1437-2096,E;2003,0,08,1117,1120,ftx,en;U06103ST.pdf.

© Georg Thieme Verlag Stuttgart · New York

tive than silica gel, and a high yield of 2a was achieved on addition of a small amount of alumina (entries 3 and 4).¹¹ Bentonite and montmorillonite K-10 also afforded 2a but in lower yields (entries 5 and 6).

Scheme 1

 Table 1
 Reaction of Benzaldehyde 1a with HMDS under Microwave Irradiation^a

Entry	Solid catalyst	Weight Ratio ^b	Yield of 2a (%)
1	_	0	0
2	silica gel	5.0	79
3	alumina	0.5	94
4	alumina	5.0	89
5	bentonite	5.0	26
6	K-10	5.0	45

^a The mixture was irradiated for 5 min.

^b Weight ratio of the solid catalyst to **1a**.

Thus, the above reaction under microwave irradiation did not afford *cis*-imidazoline **3a** but gave methanediamine **2a**.¹² This is in contrast with the results that *cis*-imidazolines **3** are obtained directly from aldehydes by the conventional heating.⁸ Methanediamines are known to cyclize to imidazolines by the action of a base such as phenyllithium,¹³ *t*-BuOK,¹⁴ or sodium alkoxides.^{3,7} We examined microwave irradiation in the presence of bases. Methanediamine **2a** was isolated by recrystallization of the crude product obtained in the irradiation of aldehyde **1a**, HMDS, and alumina for 5 minutes. Indeed, irradiation of **2a** for 5 minutes with 1.0 equivalent of NaOMe in methanol gave *cis*-imidazoline **3a** in 55% yield (Table 2,

^b AISIN COSMOS R&D Co., Ltd., Kariya, Aichi 448-8650, Japan Fax +81(52)7355217; E-mail: toru@ach.nitech.ac.jp

entry 1). The reaction in the presence of 1.0 equivalent of t-BuOK in t-BuOH gave cis-3a exclusively in 78% yield after irradiation for 2 minutes (entry 2). The reaction with 0.1 equivalents of t-BuOK gave the trans-imidazoline trans-3a predominantly in high yield (entry 3). When the mixture was irradiated for 5 minutes with t-BuOK/t-BuOH, trans-3a was obtained exclusively (entry 4).¹⁵ The reaction performed in the presence of DBN without a solvent afforded *cis*-**3a** in high yield (entry 5). DBU also afforded *cis*-**3a** exclusively when the reaction was carried out with 1.0 equivalent of DBU for 2 minutes (entry 8). Several reaction conditions using DBU were examined as shown in Table 2, and trans-3a was found to be formed exclusively in high yield when the mixture was irradiated in the presence of 10.0 equivalents of DBU for 5 minutes (entry 12).

We next examined a one-pot synthesis of imidazolines **3** from aromatic aldehydes **1**. Since irradiation of a mixture of **1a**, HMDS, alumina, and DBN afforded neither **2a** nor **3a**, we decided to add a base after the formation of methanediamine **2a**. The results are shown in Table 3. A mixture of **1a**, 1.5 equivalents of HMDS and 50 wt% of

 Table 2
 Selective Formation of cis-3a and trans-3a from Methanediamine 2a with Bases

N Ph	Ph N Ph M Dh Za		Ph NH a Ph Ph cis- 3a	nd/or N Ph	°h │NH ┘, ○Ph s- 3a
Entry	Base	Equiv	Time (min)	cis:trans	Yield (%)
1	MeONa/MeOH	1.0	5	>98:2	55
2	t-BuOK/t-BuOH	1.0	2	>98:2	78
3	t-BuOK/t-BuOH	0.1	5	25:75	86
4	t-BuOK/t-BuOH	1.0	5	2:>98	96
5	DBN	1.0	2	>98:2	98
6	DBN	1.0	5	50:50	96
7	DBN	1.0	10	39:61	94
8	DBU	1.0	2	>98:2	96
9	DBU	1.0	5	25:75	88
10	DBU	1.0	10	6:94	78
11	DBU	2.0	5	25:75	96
12	DBU	10.0	5	2:>98	83

alumina was irradiated for 5 minutes, when methanediamine 2a was formed, and then, without isolation, was added 1.0 equivalent of DBN (the equivalency is based on 2a assumed to be formed in 100% yield). When microwave irradiation was continued for an additional 5 minutes, cis-imidazoline cis-3a was obtained in 85% yield (entry 1).¹⁶ Under these conditions, formation of *trans*-3a was not observed although cyclization of 2a with DBN gave a mixture of cis- and trans-3a (Table 2, entry 6). This is because the reaction starting with **1a** was performed in the presence of alumina even in the cyclization step. Benzaldehydes having various substituents also gave cis-imidazolines in high yields. It should be noted that both *p*-anisaldehyde (1e) and *p*-dimethylaminobenzaldehyde (1f) yielded *cis*-imidazolines *cis*-3e and *cis*-3f in high yields, respectively (entries 5 and 6), since the conventional thermal reaction of 1e with HMDS affords cis-3e only on addition of chlorotrimethylsilane and that of 1f does not afford **3f** at all even with chlorotrimethylsilane.⁸

We also studied a selective one-pot synthesis of trans-imidazoline trans-3 from 1. Isomerization of cis-3 to trans-3 depends on the base added for the cyclization as well as on the irradiation time as shown in Table 4. As previously shown in Table 3 (entry 1), after irradiation for 5 minutes, further irradiation with 1.0 equivalent of DBN gave cis-3a exclusively. Prolonged irradiation with DBN also gave only cis-3a (Table 4, entry 1). Although irradiation with 1.0 equivalent of DBU for 5 minutes gave cis-3a (entry 2), use of an excess amount of DBU increased the formation of *trans*-3a, but it still could not avoid the formation of cis-3a (entries 3, 4, 5 and 6), these results being in contrast to the exclusive formation of trans-3a from cis-3a (Table 2, entry 12). The selective formation of trans-3a was achieved by irradiation with 3.0 equivalents of t-BuOK in *t*-BuOH, although the yields were moderate (entries 8 and 9). From the rather lower yield of 3a with t-BuOK/t-BuOH, it was assumed that 2a was hardly removed from the alumina face in t-BuOH. Indeed, t-BuOK/DMF improved the yield of trans-3a (entry 10). Finally, a mixed base, t-BuOK/DBU, was found to be the most effective to give *trans*-**3a** (entry 11).¹⁷ Under similar reaction conditions, aldehydes 1b,d,e gave the corresponding trans-imidazolines trans-3b,d,e selectively in good yields (entries 12–14).

In summary, a rapid, solvent-free, and selective synthesis of *cis*- and *trans*-2,4,5-triarylimidazolines was achieved by microwave irradiation of a mixture of aromatic aldehydes and HMDS in the presence of alumina and subsequently by further irradiation in the addition of a base.

Acknowledgment

This work was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' (No. 14044040) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Table 3 Reactions of Aromatic Aldehydes 1a-h with DBN under Microwave Irradiation

(M ArCHC 1a–h	microwave	$\begin{bmatrix} Ar \\ N & N \\ Ar & Ar \\ 2a-h \end{bmatrix}$	base (1.0 equiv) microwave step B	Ar NH Ar 3a-h			
Entry	Ar	Aldehyde	Base	Irradiation time	e	Product	Yield (%)
_				step A (min)	step B (min)		
1	$\overline{}$	1 a	DBN	5	5	3 a	85
2	CI	1b	DBN	10	3	3b	83
3	Br	1c	DBU	10	1	3c	83
4	Me	1d	DBU	10	5	3d	82
5	MeO	1e	DBU	10	10	3e	86
6	(Me) ₂ N	1f	DBU	10	10	3f	82
7		1g	DBU	5	5	3g	70
8	s -	1h	DBU	5	5	3h	59

References

- (1) See for example: (a) Corey, E. J.; Huang, H. C. Tetrahedron Lett. 1989, 30, 5235. (b) Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xing, Y. B. J. Am. Chem. Soc. 1989, 111, 5493. (c) Corey, E. J.; Yu, C. M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495. (d) Corey, E. J.; DaSilva, J. P.; Virgil, S.; Yuen, P. W.; Conneell, R. D. J. Am. Chem. Soc. 1989, 111, 9243. (e) Corey, E. J.; Yu, C. M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878. (f) Zhang, W.; Loebatch, J.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801. (g) Corey, E. J.; Kim, S. S. J. Am. Chem. Soc. 1990, 112, 4976. (h) Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296. (i) Corey, E. J.; Imai, N.; Pikul, S. Tetrahedron Lett. 1991, 32, 7517. (j) Corey, E. J.; Sarshar, S.; Bordner, J. J. Am. Chem. Soc. 1992, 114, 7938. (k) Corey, E. J.; Sarshar, S.; Lee, D.-H. J. Am. Chem. Soc. 1994, 116, 12089. (1) Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616. (m) Corey, E. J.; Sarshar, S.; Azimioara, M. D.; Newbold, R. C.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 7851. (n) Evans, D. A.; Nelson, S. G. J. Am. Chem. Soc. 1997, 119, 6452.
- (2) (a) Greenhill, J. V.; Lue, P. Prog. Med. Chem. 1993, 30, 203. (b) Bousquet, P.; Feldman, J. Drugs 1999, 58, 799.
 (c) Gilman, A. G.; Goodman, L. S. In The Pharmacological Basis of Therapeutics, 10th ed.; Macmillan and Co.: New York, 2001, Chap. 10, 215–268.

- (3) (a) Saigo, K.; Kubota, N.; Takebayashi, S.; Hasegawa, M. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 931. (b) Corey, E. J.; Kühnle, F. N. M. *Tetrahedron Lett.* **1997**, *38*, 8631.
- (4) (a) Laurent, M. A. Annals 1837, 21, 130. (b) Kamal, A.;
 Ahmad, A.; Qureshi, A. A. Tetrahedron 1963, 19, 869.
- (5) (a) Nishiyama, K.; Saito, M.; Oba, M. Bull. Chem. Soc. Jpn. 1988, 61, 609. (b) Grigor'ev, S. V.; Voronkov, M. G.; Mirskov, R. G.; Rakhlin, V. I. Russ. J. Gen. Chem. (Engl. Transl.) 2001, 71, 149.
- (6) Reddy, P. Y.; Shimizu, M.; Higashi, K.; Shimizu, T.; Toru, T. Arkivoc 2001, 8, 111.
- (7) Mistryukov, E. A. Mendeleev Commun. 2001, 29.
- (8) Uchida H.; Shimizu, T.; Reddy, P. Y.; Nakamura, S.; Toru, T. Synthesis 2003, in press.
- (9) (a) Caddick, S. *Tetrahedron* 1995, *38*, 10403. (b) Loupy, A. *Microwave in Organic Synthesis*; Wiley: Weinheim, 2002.
- (10) For reviews of microwave-assisted reactions with solid catalysts, see (a) Verma, R. S. *Green Chemistry* 1999, *1*, 43.
 (b) Loupy, A. *Microwave in Organic Synthesis*; Wiley: Weinheim, 2002, Chap. 10, 345–378.
- (11) Basic, acidic, and neutral alumina showed similar results.
- (12) Irradiation in the presence of silica gel for 10 min gave 3a in 44% yield together with 2a and other unidentified products, whereas formation of 3a was not observed in the irradiation with alumina for 10 min.
- (13) Hunter, D. H.; Sim, S. K. J. Am. Chem. Soc. 1969, 91, 6202.
- (14) (a) Hunter, D. H.; Sim, S. K. Can. J. Chem. 1972, 50, 669.
 (b) Hunter, D. H.; Sim, S. K. Can. J. Chem. 1972, 50, 678.

Table 4 One-pot Preparation of trans-Triarylimidazolines trans-3 from Aromatic Aldehydes 1

ArCHO 1a,b,d,e	(Me ₃ Si) ₂ NH (1. alumina microwave, 5			base prowave Ar	Ar NH Ar S-3a,b,d,e		
Entry	Aldehyde	Base	Equiv	Time (min)	Product	cis:trans	Yield (%)
1	1 a	DBN	1.0	10	3a	>98:2	87
2	1 a	DBU	1.0	5	3a	>98:2	84
3	1 a	DBU	1.0	10	3a	80:20	86
4	1 a	DBU	5.0	5	3a	70:30	85
5	1 a	DBU	5.0	10	3a	37:63	86
6	1 a	DBU	20.0	5	3a	33:67	57
7	1 a	t-BuOK/t-BuOH	0.9/4.3	5	3a	>98:2	45
8	1 a	t-BuOK/t-BuOH	3.0/14.4	5	3a	2:>98	57
9	1 a	t-BuOK/t-BuOH	3.0/14.4	10	3a	2:>98	69
10	1 a	t-BuOK/DMF	3.0/12.3	5	3a	2:>98	71
11	1 a	t-BuOK/DBU	1.0/1.0	5	3a	2:>98	81
12	1b ^a	t-BuOK/DBU	1.0/1.0	5	3b	2:>98	68
13	1d ^a	t-BuOK/DBU	1.0/1.0	5	3d	2:>98	78
14	1e ^a	t-BuOK/DBU	2.0/2.0	10	3e	2:>98	63

^a The mixture was first irradiated for 10 min to form methanediamines.

- (15) Irradiation of *cis*-**3a** with 1.0 equiv of *t*-BuOK/*t*-BuOH for 5 min gave *trans*-**3a** quantitatively.
- (16) **Typical Procedure for Preparation of** *cis-2*,4,5-**Triphenylimidazoline** (*cis-3a*) **from 1a.** A mixture of benzaldehyde **1a** (209 mg, 1.97 mmol), HMDS (620 μ L, 480 mg, 2.95 mmol), and basic alumina (100 mg, Wako Pure Chemical Industries Ltd., column chromatography grade, 200 mesh, pH 9.0–11.0) was charged in a test tube equipped with a cooler. The mixture was irradiated under argon atmosphere for 5 min in a microwave oven (500 W, 2450 MHz). Then, DBU (100 μ L, 105 mg, 0.69 mmol) was added and the mixture was irradiated for an additional 5 min. After cooling, alumina

was filtered and washed with CH_2Cl_2 . The obtained organic solution was concentrated under vacuum to leave a residue, which was purified by silica gel column chromatography (hexane/EtOAc 9:1) to give 164 mg (85%) of *cis*-**3a**.

(17) **Typical Procedure for Preparation of** *trans-2*,4,5-**Triphenylimidazoline** (*trans-3a*) **from 1a.** A mixture of **1a** (209 mg, 1.97 mmol), HMDS (620 μ L, 480 mg, 2.95 mmol) and, basic alumina (100 mg) was irradiated for 5 min, and then, *t*-BuOK (77 mg, 0.69 mmol) and DBU (100 μ L, 105 mg 0.69 mmol) were added to the mixture which was further irradiated for an additional 5 min. Work-up and purification as described above gave 159 mg (81%) of *trans-3a*.