Syntheses, structures and catalytic activities of molybdenum carbonyl complexes based on pyridine-imine ligands

 $Chen Li^1 \cdot Zhihong Ma^2 \cdot Suzhen Li^3 \cdot Zhangang Han^1 \cdot Xuezhong Zheng^1 \cdot Jin Lin^1 \cdot Xuezhong Zheng^1 \cdot Xuezhon$

Received: 3 November 2017 / Accepted: 5 January 2018 © Springer International Publishing AG, part of Springer Nature 2018

Abstract

Thermal treatment of pyridine imines $[C_5H_4N-2-C(H)=N-C_6H_4-R]$ $[R = H (1), CH_3 (2), OMe (3), CF_3 (4), Cl (5), Br (6)]$ with Mo(CO)₆ in refluxing toluene provided six novel mononuclear molybdenum carbonyl complexes of the type $[(\eta^2-2-C_5H_4N)CH=N(C_6H_4-4-R)]Mo(CO)_4$ $[R = H (7); CH_3 (8); OMe (9); CF_3 (10); Cl (11); Br (12)]$. All of these complexes were separated by chromatography and fully characterized by elemental analysis, IR, and NMR spectroscopy. The crystal structures of complexes 7, 8 and 10 were determined by X-ray crystal diffraction analysis. In addition, the catalytic performance of these complexes was also tested, and it was found that these complexes had obvious catalytic activity on Friedel–Crafts reactions of aromatic compounds with a variety of acylation reagents.

Introduction

Transition metal carbonyl complexes play an important role in organometallic chemistry and are widely used as catalysts or catalyst precursors. Schiff bases are one of the most prevalent ancillary ligands in organometallic chemistry. Their metal complexes have a variety of biological, medicinal and analytical applications, in addition to their important roles in catalysis and organic syntheses [1–9]. Schiff bases which have oxygen and nitrogen donor atoms operate as good chelating agents for both transition and non-transition metals [10–13].

The direct C-acylation of aromatic compounds to form a new C–C bond was reported as early as 1873 [14] and

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11243-018-0207-7) contains supplementary material, which is available to authorized users.

Zhihong Ma mazhihong-1973@163.com

☑ Jin Lin linjin64@126.com

- ¹ The College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
- ² School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- ³ Hebei College of Industry and Technology, Shijiazhuang 050091, China

provided the basis for one of the most famous name reactions in organic chemistry: the Friedel–Crafts acylation [15]. More than fourteen decades later, this approach for forming C–C bonds endures as the standard method to prepare a broad range of aromatic ketones, and especially C-acylated phenols [16, 17], by employing various types of catalysts [18, 19].

Our group have reported the synthesis and catalytic activity of a series of metal carbonyl complexes, showing that these metal carbonyl complexes have catalytic activity for Friedel–Crafts reactions [20–25]. Herein, we are presenting the synthesis and characterization of a series of new molybdenum carbonyl complexes bearing pyridine imines as chelating ligands. The properties of these complexes can be readily modified by substituent variations influencing both the electronic structure and the steric constraints around the central metal carbonyl motif. Furthermore, the catalytic reactivity of these mononuclear molybdenum carbonyl complexes for Friedel–Crafts acylation was also studied.

Results and discussion

Reactions of ligand precursors $[C_5H_4N-2-C(H)=N-C_6H_4-R] [R = H (1); CH_3 (2); OMe (3);$ $CF_3 (4); CI (5); Br (6)]$ with Mo(CO)₆ in THF

The reactions of ligand precursors $[C_5H_4N-2-C(H)=N-C_6H_4-R]$ [R = H (1); CH₃ (2); OMe

R=H (7), CH₃ (8), OMe (9), CF₃ (10) Cl (11), Br (12)

Fig. 1 ORTEP diagram of **7**. Thermal ellipsoids are shown at the 30% level. Hydrogen atoms are omitted for clarity

(3); CF₃ (4); Cl (5); Br (6)] with Mo(CO)₆ in refluxing THF gave the corresponding mononuclear tetracarbonyl molybdenum complexes $[(\eta^2-2-C_5H_4N)CH=N(C_6H_4-4-R)]$ Mo(CO)₄ [R = H (7); CH₃ (8); OMe (9); CF₃ (10); Cl (11); Br (12)] (Scheme 1).

The IR spectra of 7-12 all exhibited three strong terminal carbonyl absorptions at 2012, 1885 and 1815 $\rm cm^{-1}$. The ¹H NMR spectra of the molybdenum complexes 7-12 are similar, and they all show four groups of peaks at 7.82-9.21 ppm for the pyridyl protons and two doublets at 6.99–7.76 ppm for phenyl protons. The molecular structures of 7, 8 and 10 are presented in Figs. 1, 2 and 3, respectively. These complexes are mononuclear molybdenum tetracarbonyl complexes, crystal system triclinic, space group $P\bar{1}$. The bidentate iminopyridine ligands bind to the metal center to form five-membered metallacycles. In the tetracarbonyl molybdenum complexes, the metal center occupies a distorted octahedral environment with distortions imposed by the 1,2-diimine ligand. These complexes have slightly distorted octahedral geometry with a facial arrangement of the three carbonyl groups around the Mo center. The N1–Mo–N2 bite angles are $72.9(2)^0$ for

Fig. 2 ORTEP diagram of 8. Thermal ellipsoids are shown at the 30% level. Hydrogen atoms are omitted for clarity

Fig. 3 ORTEP diagram of 10. Thermal ellipsoids are shown at the 30% level. Hydrogen atoms are omitted for clarity

7, $72.52(9)^0$ for 8 and $72.10(14)^0$ for 10, in correspondence to previously reported molybdenum complexes with pyridine-derived 1,2-diimine ligands. All bond lengths and angles are comparable with typical values reported for structurally similar complexes [26].

Scheme 2 Catalyzed Friedel–Crafts acylation reaction of anisole with benzoyl chloride

Table 1Optimization of the complex (7)/o-chloranil-catalyzed reaction

Entry	<i>T</i> (°C)	Cat. 7	o-chloranil (mol%)	<i>T</i> (h)	Yield (%)
1	80	0	120	24	_
2	80	20	0	24	-
3	80	20	80	12	6.2
				24	12.3
4	80	20	120	12	9.3
				24	18.2
5	80	20	160	12	10.9
				24	18.6
6	80	10	60	12	3.2
				24	5.6
7	80	15	90	12	6.2
				24	9.9
8	80	20	120	12	9.3
				24	18.2
9	80	25	150	12	11.2
				24	19.0

Catalytic studies

To develop an optimal catalytic system, we first investigated complex **7** as a precatalyst on the Friedel–Crafts reaction of anisole and benzoyl chloride (Scheme 2, Table 1). A solution of anisole (2 mmol) and benzoyl chloride (6 mmol) in 1,2-dichloroethane (4.5 mL) was refluxed

Scheme 3 Catalyzed Friedel– Crafts acylation reactions of benzene derivatives with acyl chlorides

in the presence of a catalytic amount of the precatalyst (20 mol%) and different amounts of *o*-chloranil under an argon atmosphere. By refluxing in 1,2-dichloroethane, *para*-substituted product was obtained. The conversion rate reached to 18.2% for *para* selectivity in 24 h (Table 1, entry 4). When the experiment was carried out under the absence of complex 7 or *o*-chloranil, all the results showed that no products were obtained (Table 1, entry 1 and 2), which suggested that an electrophilic substitution mechanism was involved in the complex 7/*o*-chloranil.

In order to test the capability of Friedel–Crafts acylation reactions (Scheme 3) catalyzed by these mononuclear tetracarbonyl molybdenum complexes, influencing factors such as the reaction time, yield, economic considerations were considered. The optimized experimental conditions were as follows: 1,2-dichloroethane as solvent; the molar ratio 1:3 of aromatic substrates and acylation reagents; the amount of catalyst was 20 mol% (substrate as reference); the molar ratio of catalyst to oxidant was 1:6; reflux temperature; reaction time 24 h.

All six of molybdenum complexes proved to be capable of catalyzing Friedel-Crafts acylation reactions. The yields were found to vary with the different catalysts, and the catalytic results for complexes 7–12 are shown in Table 2. Friedel-Crafts-type reactions are electrophilic substitution reactions; however, the halogen and carbonyl can undergo p- π conjugation in the acylating agent, making the acylating agents more reluctant to lose halogen element to form a carbocation. Cyclohexyl chloride and cinnamyl chloride were used as acylation reagents in these reactions, and the corresponding acyl products were obtained with high selectivity for the para-products without detection of di-substituted in all cases, suggesting that the catalytic reaction has high regioselectivity. The order of increasing reactivity was found to be: 4-methyl anisole < 2-bromoanisole < 2-methylanisole < anisole, which was consistent with the characteristics of the aromatic electrophilic substitution mechanism. Overall, all six complexes gave similar results, showing that the different ligands have only a small influence on the catalytic behavior.

Entry Benzene derivatives Reagents Yield (%) Yield (%) Yield (%) Yield (%) Yield (%) Yield (%) catalyzed catalyzed catalyzed catalyzed catalyzed catalyzed by **9** by 11 by 12 by **7** by **8** by 10 1 PhCOC1 18.2 18.6 16.5 12.1 20.1 19.7 OMe 2 PhCH₂COCl 13.3 12.6 12.5 4.5 11.4 12.3 3 PhCH=CHCOCl 34.7 46.0 29.5 20.7 27.6 30.2 4 c-C₆H₁₁COCl 45.3 47.2 52.4 63.1 42.1 45.3 5 PhCOC1 12.3 5.3 9.6 5.5 10.5 11.3 OMe Br PhCH₂COCl 5.4 6 7.3 4.2 2.7 6.3 5.6 7 PhCH=CHCOCl 22.3 14.5 13.0 16.1 18.2 21.3 8 c-C₆H₁₁COCl 35.5 30.8 19.1 21.1 20.1 20.7 9 PhCOCl 16.5 12.2 17.2 11.2 19.2 16.2 OMe CH₃

 Table 2
 Catalyzed Friedel–Crafts acylation reaction of aromatic substrates with different acylation reagents

11.2

30.7

47.2

12.3

7.5

21.2

30.2

Reagents and conditions: molar ratio: benzene derivatives/reagent = 1:3; catalyst/o-chloranil = 1:6, solvent: 1,2-dichloroethane 4.5 mL, 80 °C, 24 h, - = not detected

7.2

42.7

57.9

9.3

5.2

20.1

32.3

14.3

32.3

50.2

9.3

7.2

18.2

27.2

6.3

21.2

37.2

10.2

3.2

14.2

27.2

12.3

30.2

50.3

10.9

7.3

20.3

30.2

11.3

32.2

42.2

11.2

7.3

21.5

27.2

Conclusions

10

11

12

13

14

15

16

OMe

ĊH2

A series of molybdenum carbonyl complexes was prepared by reaction of pyridine imines $[C_5H_4N-2-C(H)=N-C_6H_4-R]$ $[R = H (1), CH_3 (2), OMe (3), CF_3 (4), Cl (5), Br (6)]$ with Mo(CO)₆ in refluxing THF. In addition, the catalytic performance of these mononuclear molybdenum carbonyl complexes was also tested, and it was found that these complexes had obviously catalytic activity on Friedel–Crafts reactions of aromatic compounds with a variety of acylation reagents.

PhCH₂COCl

c-C₆H₁₁COCl

PhCH₂COCl

c-C₆H₁₁COCl

PhCH=CHCOCl

PhCOCl

PhCH=CHCOCl

Experimental

General considerations

Schlenk and vacuum line techniques were employed for all manipulations of air- and moisture-sensitive complexes. All

solvents were distilled from appropriate drying agents under an atmosphere of nitrogen prior to use. Ligand precursors $[C_5H_4N-2-C(H)=N-C_6H_4-R]$ [R = H (1); CH₃ (2); OMe (3); CF₃ (4); Cl (5); Br (6)] were prepared according to the literature methods [27–30].

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AV III-500 instrument, while IR spectra were recorded as KBr disks on a Thermo Fisher is 50 spectrometer. X-ray measurements were made on a Bruker AXS SMART 1000 CCD diffractometer with graphite monochromated Mo $K\alpha$ ($\lambda = 0.71073$ Å) radiation. Elemental analyses were performed on a Vario EL III analyzer.

Syntheses

Synthesis of 7 A solution of ligand precursor **1** (0.689 g, 3.788 mmol) and Mo(CO)₆ (0.300 g, 1.894 mmol) in 30 mL of THF was heated at reflux for 8 h. The solvent

was removed under reduced pressure, and the residue was placed on an Al₂O₃ column. Elution with CH₂Cl₂/petroleum ether developed a purple black band, which afforded 0.175 g (41.3%) of **7** as black crystals. Mp: 134.2 °C; Anal. Calcd for C₁₆H₁₀N₂O₄Mo: C, 49.25; H, 2.58; N, 7.18, Found (%): C, 49.55; H, 2.80; N, 7.43. ¹H NMR (ppm in DMSO, 500 MHz): δ 7.43–7.47 (*m*, 1H, C₆H₁), 7.54–7.60 (*m*, 4H, C₆H₄), 7.71–7.74 (*m*, 1H, N=C(H)), 8.21–8.26 (*m*, 2H, Py-H₂), 8.97 (*s*, 1H, Py-H), 9.05 (*d*, 1H, *J* = 5.5 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 122.5, 128.305, 128.9, 129.7, 130.4, 139.1, 152.2, 153.2, 154.4, 166.3, 203.9. IR(v_{CO} , KBr, cm⁻¹): 2018(s), 1885(s), 1815(s).

Synthesis of 8 By using a procedure similar to that described above, reaction of ligand precursor **2** with Mo(CO)₆ gave product **8** in 41.5% yield as black crystals. Mp: 135.3 °C; Anal. Calcd for $C_{17}H_{12}N_2O_4Mo$: C, 50.51; H, 2.99; N, 6.93, Found (%): C, 50.28; H, 3.23; N, 7.15. ¹H NMR (ppm in DMSO, 500 MHz): δ 2.37 (*s*, 3H, CH₃), 7.34 (*d*, 2H, *J* = 8.0 Hz, C₆H₂), 7.48 (*d*, 2H, *J* = 8.5 Hz, C₆H₂), 7.68–7.71 (*m*, 1H, N=C(H)), 8.20 (*d*, 2H, *J* = 6.0 Hz, Py-H₂), 8.92 (*s*, 1H, Py-H), 9.02 (*d*, 1H, *J* = 5.5 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 121.1, 122.4, 128.2, 130.1, 130.3, 138.9, 139.1, 149.8, 153.2, 154.5, 165.4, 203.9. IR(v_{CO} , KBr, cm⁻¹): 2013(s), 1889(s), 1811(s).

Synthesis of 9 By using a procedure similar to that described above, reaction of ligand precursor **3** with Mo(CO)₆ gave product **9** in 42.5% yield as black solid. Mp: 136.2 °C; Anal. Calcd for C₁₇H₁₂N₂O₅Mo: C, 48.59; H, 2.88; N, 6.67, Found (%): C, 49.84; H, 2.53; N, 6.89. ¹H NMR (ppm in CDCl₃, 500 MHz): δ 3.87 (*s*, 3H, OCH₃), 6.99 (*d*, 2H, *J* = 9.0 Hz, C₆H₂), 7.41–7.44 (*m*, 1H, N=C(H)), 7.52 (*d*, 2H, *J* = 9.0 Hz, C₆H₂), 7.82 (*d*, 1H, *J* = 8.0 Hz, Py-H), 7.90–7.93 (*m*, 1H, Py-H), 8.49 (*s*, 1H, Py-H), 9.18 (*d*, 1H, *J* = 5.0 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 56.1, 114.8, 123.9, 127.9, 130.1, 139.1, 145.4, 153.1, 154.6, 159.9, 164.4, 204.0. IR(v_{CO} , KBr, cm⁻¹): 2012(s), 1880(s), 1820(s).

Synthesis of 10 By using a procedure similar to that described above, reaction of ligand precursor **4** with Mo(CO)₆ gave product **10** in 47.2% yield as black crystals. Mp: 140.3 °C; Anal. Calcd for $C_{17}H_9F_3N_2O_4Mo$: C, 44.56; H, 1.98; N, 6.11, Found (%): C, 44.39; H, 2.20; N, 6.34. ¹H NMR (ppm in CDCl₃, 500 MHz): δ 7.56 (*d*, 2H, J = 8.5 Hz, C₆H₂), 7.76 (*d*, 2H, J = 8.5 Hz, C₆H₂), 7.82 (*d*, 1H, J = 8.0 Hz, Py-H), 7.91 (*d*, 1H, J = 8.0 Hz, Py-H), 7.95–7.99 (*m*, 1H, N=C(H)), 8.57 (*s*, 1H, Py-H), 9.21 (*d*, 1H, J = 5.0 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 123.4, 124.3, 127.05, 127.1, 128.7, 129.7, 130.9, 139.2, 153.3, 154.2, 168.1, 203.7. IR(v_{CO} , KBr, cm⁻¹): 2010(s), 1885 (s), 1815(s).

Synthesis of 11 By using a procedure similar to that described above, reaction of ligand precursor 5 with

Mo(CO)₆ gave product **11** in 40.1% yield as black solid. Mp: 137.5 °C; Anal. Calcd for C₁₆H₉ClN₂O₄Mo: C, 45.25; H, 2.14; N, 6.60, Found (%): C, 45.52; H, 2.35; N, 6.38. ¹H NMR (ppm in DMSO, 500 MHz): δ 7.61–7.66 (*m*, 4H, C₆H₄), 7.73–7.76 (*m*, 1H, N=C(H)), 8.24 (*q*, 2H, *J* = 6.0 Hz, Py-H), 8.98 (*s*, 1H, Py-H), 9.06 (*d*, 1H, *J* = 5.0 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 124.3, 128.4, 129.7, 130.6, 133.1, 139.1, 150.9, 153.3, 154.3, 166.9, 203.8. IR(v_{CO} , KBr, cm⁻¹): 2013(s), 1886(s), 1816(s).

Synthesis of 12 By using a procedure similar to that described above, reaction of ligand precursor **6** with Mo(CO)₆ gave product **12** in 42.3% yield as black solid. Mp: 138.3 °C; Anal. Calc. for C₁₆H₉BrN₂O₄Mo: C, 40.97; H, 1.93; N, 5.97, Found (%): C, 41.22; H, 1.68; N, 6.25. ¹H NMR (ppm in CDCl₃, 500 MHz): δ 7.38 (*d*, 2H, *J* = 8.5 Hz, C₆H₂), 7.46–7.49 (*m*, 1H, N=C(H)), 7.61 (*d*, 2H, *J* = 8.5 Hz, C₆H₂), 7.87 (*d*, 1H, *J* = 7.5 Hz, Py-H), 7.93–7.96 (*m*, 1H, Py-H), 8.57 (*s*, 1H, Py-H), 9.20 (*d*, 1H, *J* = 5.5 Hz, Py-H); ¹³C NMR (DMSO, 125 MHz): δ 124.3, 128.5, 129.7, 130.6, 133.1, 139.2, 150.9, 153.3, 154.3, 166.9, 203.8. IR(v_{CO} , KBr, cm⁻¹): 2013(s), 1887(s), 1813(s).

Crystal structure determination

Crystals of complexes **7**, **8** and **10** suitable for X-ray diffraction were investigated with a Bruker AXS SMART 1000 CCD diffractometer, using graphite monochromated Mo $K\alpha$ radiation ($\varphi/\omega \operatorname{scan}$, $\lambda = 0.71073$ Å). Semiempirical absorption corrections were applied for all complexes. The structures were solved by direct methods and refined by full-matrix least-squares. All calculations were done using the SHELXL-97 program system [31]. Crystallographic data and experimental details of the structure determinations are given in Table 3. Selected bond lengths and angles are given in Table 4.

General procedure for catalytic tests

The catalytic reactions were carried out under an argon atmosphere with magnetic stirring. The required Mo complex (0.4 mmol) and *o*-chloranil (0.57 g, 2.4 mmol) was mixed with 1,2-dichloroethane (4.5 mL) in a 25-mL roundbottom flask at room temperature. Aromatic compounds (2 mmol) and acylation reagents (2 mmol) were added by syringe. The reaction mixture was heated at 80 °C for 24 h. After cooling to room temperature, the solid catalyst was separated from the reaction mixture by filtration. The solvent was removed by rotary evaporation, and the residue was purified by Al_2O_3 column chromatography, eluting with petroleum ether and dichloromethane to give the

Complex	7	8	10
Empirical formula	C ₁₆ H ₁₀ N ₂ O ₄ Mo	C ₁₇ H ₁₂ N ₂ O ₄ Mo	C ₁₇ H ₉ F ₃ MoN ₂ O ₄
Formula weight	390.20	404.23	458.2
Temperature (K)	298 (2)	298 (2)	298 (2)
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P\bar{1}$	Pī
a (Å)	7.3460 (7)	7.3860 (7)	8.1010 (8)
<i>b</i> (Å)	9.1439 (9)	9.0689 (9)	9.0349 (9)
<i>c</i> (Å)	12.3961 (11)	13.3361 (12)	13.2401 (12)
α (°)	84.506 (2)	80.100 (2)	79.751 (2)
β (°)	78.3090 (10)	77.0520 (10)	77.899 (2)
γ (°)	70.4220 (10)	70.7550 (10)	69.2510 (10)
$V(\text{\AA}^3)$	767.90 (13)	817.25 (13)	880.36 (15)
Ζ	2	2	2
F (000)	388	404	452
Dcalc (g/cm ³)	1.688	1.643	1.729
Crystal dimensions (mm)	$0.45 \times 0.37 \times 0.25$	$0.49\times0.48\times0.45$	$0.45\times0.40\times0.04$
θ Range (°)	2.37-25.02	2.72-25.02	2.43-25.01
Reflections collected	3774	4142	4484
Independent reflections	2629	2836	3055
R _{int}	0.0248	0.0219	0.039
Parameters	208	336	272
Goodness of fit on F^2	1.271	1.052	1.083
$R_1, wR_2 \left[I > 2\sigma \left(I \right) \right]$	0.0589, 0.1524	0.0311, 0.0822	0.0589, 0.1524
R_1, wR_2 (all data)	0.0657, 0.1544	0.0347, 0.0850	0.0657, 0.1544
CCDC deposition no.	1492231	1487562	1509950

Table 4Selected bond distances(nm) and angles (°) for 7, 8and 10

7		8		10	
Mo(1)-N(2)	2.242 (7)	Mo(1)-N(2)	2.235 (3)	Mo(1)-N(1)	2.237 (4)
Mo(1)-N(1)	2.289 (7)	Mo(1)-N(1)	2.261 (2)	Mo(1)-N(2)	2.266 (4)
N(1)-C(1)	1.276 (10)	N(1)-C(1)	1.285 (4)	N(2)-C(1)	1.282 (6)
N(2)-C(2)	1.368 (10)	N(2)-C(2)	1.350 (4)	N(1)-C(2)	1.341 (6)
C(1)-C(2)	1.441 (11)	C(1)-C(2)	1.441 (4)	C(1)-C(2)	1.443 (7)
N(2)-Mo(1)-N(1)	72.9 (2)	N(2)-Mo(1)-N(1)	72.52 (9)	N(1)-Mo(1)-N(2)	72.10 (14)
C(1)-N(1)-Mo(1)	114.6 (5)	C(1)-N(1)-Mo(1)	115.62 (19)	C(1)-N(2)-Mo(1)	116.0 (3)
C(2)-N(2)-Mo(1)	116.0 (5)	C(2)-N(2)-Mo(1)	116.73 (19)	C(2)-N(1)-Mo(1)	117.0 (3)
O(1)-C(13)-Mo(1)	178.5 (8)	O(1)-C(14)-Mo(1)	174.0 (4)	O(1)-C(14)-Mo(1)	172.4 (5)
O(3)-C(15)-Mo(1)	173.3 (8)	O(3)-C(16)-Mo(1)	179.4 (3)	O(3)-C(16)-Mo(1)	179.9 (7)

corresponding products. The progress of the reaction was monitored using an Agilent 6820 gas chromatograph.

Acknowledgements The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21372061), the Hebei Natural Science Foundation of China (Nos. B2013205025, B2014205018 and B2015205116), and the Key Research Fund of Hebei Normal University (No. L2012Z02).

References

- Wang Y, Wang M, Wang Y, Wang X, Wang L, Sun L (2010) J Catal 273:177
- 2. Parra M, Hernandez S, Alderete J, Zuniga C (2000) Liq Cryst 27:995
- 3. Kocyigit O, Guler E (2009) J Inclusion Phenom Macrocycl Chem 67:29
- Bereau V, Duhayon C, Sournia-Saquet A, Sutter JP (2012) Inorg Chem 51:1309
- 5. Cristiano R, Ely F, Gallardo H (2005) Liq Cryst 32:15

- Xu Y, Lin L, Kanai M, Matsunaga S, Shibasaki M (2011) J Am Chem Soc 133:5791
- 7. Peterson MD, Holbrook RJ, Meade TJ, Weiss EA (2013) J Am Chem Soc 135:13162
- 8. Leeland JW, White FJ, Love JB (2011) J Am Chem Soc 133:7320
- Xu Y, Kaneco K, Kanai M, Shibasaki M, Matsunaga S (2014) J Am Chem Soc 136:9190
- 10. Singh BK, Rajour HK, Prakash A (2012) Spectrochim Acta Part A 94:143
- 11. Wang Q, Yang ZY, Qi GF, Qin DD (2009) Eur J Med Chem 44:2425
- Mohanan K, Athira CJ, Sindhu Y, Sujamol MS (2009) J Rare Earths 29:705
- 13. Suraj B, Deshpande MN, Kolhatkar DG (2012) Int J Chem Technol Res 4:578
- 14. Grucarevič S, Merz V (1873) Chem Ber 6:60
- 15. Friedel C, Crafts JM, Hebd CR (1877) Seances Acad Sci 84:1450
- 16. Olah GA (1973) Friedel–Crafts chemistry. Wiley, New York
- 17. Smith MB, March J (2007) March's advanced organic chemistry, 6th edn. Wiley, New Jersey
- Mo F, Trzepkowski LJ, Dong G (2012) Angew Chem Int Ed 51:13075
- 19. Sartori G, Maggi R (2011) Chem Rev 111:PR181
- 20. Ma ZH, Lv LQ, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:225

- 21. Li Z, Ma ZH, Wang H, Han ZG, Zheng XZ, Lin J (2016) Transit Met Chem 41:647
- 22. Ma ZH, Zhang XL, Wang H, Han ZG, Zheng XZ, Lin J (2017) J Coord Chem 70:709
- 23. Li ZW, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) Transit Met Chem 42:137
- 24. Ma ZH, Li ZW, Qin M, Li SZ, Han ZG, Zheng XZ, Lin J (2017) China J Inorg Chem 33:1074
- 25. Zhang N, Ma ZH, Li SZ, Han ZG, Zheng XZ, Lin J (2017) China J Inorg Chem 33:1497
- 26. Kianfar E, Kaiser M, Knor G (2015) J Organomet Chem 799–780:13
- 27. Datta P, Sinha C (2007) Polyhedron 26:2433
- Chien CH, Fujita S, Yamoto S, Hara T, Yamagata T, Watanabe M, Mashima K (2008) Dalton Trans 2008:916–923
- Moya SA, Araya JC, Gajardo J, Guerchais V, Le Bozec H, Toupet L, Aguirre P (2013) Inorg Chem Commun 27:108
- Hilt G, Janikowski J, Schwarzer M, Burghaus O, Sakw D, Bröring M, Drüschler M, Huber B, Roling B, Harms K, Frenking G (2014) J Organomet Chem 749:219
- 31. Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, Göttingen