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Cyclobutanones bearing an alkyne–cobalt complex at their 3-positions reacted with aldehydes to give
formal [4+2] cycloadducts by using tin(IV) chloride as a Lewis acid. Highly substituted tetrahydropyrone
derivatives were stereoselectively prepared by this method.
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Cyclobutanones are important synthetic intermediates in or-
1

Cyclobutanones 11a�c were prepared from amides 7a�c by se-

ganic synthesis. We have recently reported that zwitterionic
intermediate 2, which was generated by Lewis acid-catalyzed ring
cleavage of 3-ethoxycyclobutanone 1, reacted with various alde-
hydes,2a allylsilanes,2b silyl enol ethers,2c and imines2d to afford
the corresponding formal [4+2] cycloadducts (Eq. 1). We have also
reported diastereoselective asymmetric [4+2] cycloaddition by
using 3-alkoxycyclobutanone bearing L-ethyl lactate as a chiral
auxiliary.3 The generation of zwitterionic intermediate 2 was pro-
moted by the alkoxy group at the 3-position of 1. It was then
thought that an alkyne–cobalt complex at the 3-position of cyclo-
butanone 4 would also promote the generation of zwitterionic
intermediate 5 since an alkyne–cobalt complex stabilizes the a-
cation (Eq. 2).4 We report herein the formal [4+2] cycloaddition
of cyclobutanones bearing an alkyne–cobalt complex at their
3-positions to afford tetrahydropyrones.
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ven steps (Scheme 1). 3-Benzyloxymethylcyclobutanones 8a�c
were prepared by [2+2] cycloaddition with ketene iminium ions,5

which were generated from amides 7a�c, and allyl benzyl ether.
Protection of the carbonyl group of 8a�c with ethylene acetal,
deprotection of the benzyl group of 9a�c, and Swern oxidation6

of the resulting primary alcohols gave aldehydes 10a�c. Reaction
of aldehydes 10a�c with Bestmann–Ohira reagent7 followed by
the deprotection of acetal and complexation with Co2(CO)8 gave
the desired cyclobutanones 11a�c.

First, we explored a suitable Lewis acid for formal [4+2] cycload-
dition between cyclobutanone 11a and benzaldehyde 12 (Table 1).
The desired product 13 was obtained in a 38% yield by using boron
trifluoride etherate (entry 1). Catalysis with titanium(IV) chloride
gave enone 14 in a 32% yield as the major product along with cyc-
loadduct 13 (13%). Tin(IV) chloride was found to catalyze the de-
sired [4+2] cycloaddition most effectively among the Lewis acids
we tested, and 13 was obtained in an 82% yield with high cis-selec-
tivity (cis/trans = 98:2) (entry 3). When ethylaluminum dichloride
was employed, enone 14 was obtained in a 79% yield (entry 4).

Next, the scope and limitations of tin(IV) chloride-catalyzed
[4+2] cycloaddition of cyclobutanone 11a were investigated by
using various aldehydes 15a�l (Table 2). 4-Methyl and 4-methoxy-
benzaldehydes reacted with 11a to give the corresponding [4+2]
cycloadducts in 57% and 31% yields, respectively (entries 1 and
2). The use of halogen-substituted benzaldehydes 15c�e afforded
the desired products 16c�e in high yields (entries 3�5). These
results suggest that electrophilic aldehydes reacted smoothly. In
comparison with 2-naphtaldehyde 15g, which gave cycloadduct
16g in a 45% yield (entry 7), the reaction with 1-naphtaldehyde
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Table 3
Tin(IV) chloride-catalyzed formal [4+2] cycloaddition of 2,2-dialkylcyclobutanones
11b and 11c to benzaldehydea

O

Co(CO)3

(CO)3
Co

R1

11b–c

O

O

Ph

(CO)3
Co

(OC)3Co

17b–c

CH2Cl2
rt, 4 h

R2
R1

SnCl4
O Ph
12

R2

Entry Cyclobutanone 11 Yieldb (%) Cis/transc

1 R1, R2 = (CH2)4 (11b) 64 >99:1
2 R1, R2 = (CH2)5 (11c) 58 >99:1

a

Table 2
Tin(IV) chloride-catalyzed formal [4+2] cycloaddition of cyclobutanone 11a to various
aldehydes 15a�la

O

Co(CO)3

(CO)3
Co

11a

O

O

R

(CO)3
Co

(OC)3Co

16a-l

CH2Cl2, rt
SnCl4

O R
15a-l

Entry 15 (R) Time (h) Yieldb (%) Cis/transc

1 15a (4-MeC6H4) 4 57 >99:1
2 15b (4-MeOC6H4) 10 31 >99:1
3 15c (4-FC6H4) 4 77 99:1
4 15d (4-ClC6H4) 4 83 93:7
5 15e (4-BrC6H4) 4 87 91:9
6 15f (1-naphthyl) 22 27 >99:1
7 15g (2-naphthyl) 8 45 >99:1
8 15h (PhCH2CH2) 6 76 96:4
9 15i (n-heptyl) 6 68 91:9

10 15j (i-Bu) 9 42 94:6
11 15k (i-Pr) 18 61 97:3
12 15l (t-Bu) 12 11 98:2

a For reaction conditions, see Table 1.
b Isolated yield (%).
c The stereochemistry was determined by 1H NMR spectra.
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Scheme 1. Preparation of cyclobutanone 11a�c.
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15f gave the desired adduct 16f in a lower yield (entry 6). Aliphatic
aldehydes 15h�k gave the corresponding tetrahydropyrones
16h�k (entries 8�12). Longer reaction time was required for steri-
cally hindered aldehydes. In all of the examples described above,
cycloadducts 16a�l were obtained with high cis-selectivity.

Reactions of spirocyclobutanones 11b and 11c also gave the
corresponding cycloadducts 17b and 17c in 64% and 58% yields,
respectively, as a single diastereomer (Table 3).

Decomplexation of alkyne–cobalt complex 13 with cerium(IV)
diammonium nitrate afforded tetrahydropyrone 18 in a 75% yield
(Scheme 2). Reaction of cyclobutanone 19 with benzaldehyde cat-
alyzed by tin(IV) chloride did not proceed. Therefore, the stabiliza-
tion of a-cation by the alkyne–cobalt complex was important for
these cycloaddition reactions.

In summary, we have developed tin(IV) chloride-mediated
intermolecular [4+2] cycloaddition of cyclobutanones bearing an
For reaction conditions, see Table 1.
b Isolated yield (%).
c The stereochemistry was determined by 1H NMR spectra.
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Scheme 2. Decomplexation of alkyne–cobalt complex 13.

Table 1
Effects of Lewis acidsa

O

Co(CO)3

(CO)3
Co

11a

O

O

Ph

(CO)3
Co

(OC)3Co

13

CH2Cl2
Lewis acid

HO

O

Ph

(CO)3
Co

(OC)3Co

14

O Ph
12

Entry Lewis acid Conditions Yieldb (%)

13 14

1 BF3-OEt2 rt, 12 h 38 ndc

2 TiCl4 �20 �C, 15 min 13 32
3 SnCl4 rt, 4 h 82d Trace
4 EtAlCl2 �20 �C to 0 �C, 1 h Trace 79

a PhCHO (12, 1.0 equiv), cyclobutanone 11a (1.5 equiv) and Lewis acid (2.0 equiv)
were employed.

b Isolated yield (%).
c nd = Not detected.
d Cis/trans = 98:2. The stereochemistry was determined by 1H NMR spectra.
alkyne–cobalt complex at their 3-positions. This formal [4+2]
cycloaddition showed cis-stereoselectivity.
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