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Abstract Recently, ionic liquids have been combined with active pharmaceutical ingredients
(APIs), and a third generation of ILs has emerged (API-ILs). The effect of a novel ionic liquid
containing the ibuprofenate anion as an active pharmaceutical ingredient ionic liquid (API-IL)
on the thermodynamic properties of two amino acids, glycine and L-alanine, have been studied.
The densities, speeds of sound, viscosities and refractive indices of glycine and L-alanine in
water and in aqueous solutions of an API-IL, 1-butyl-3-methylimidazolium ibuprofenate
([BMIM][Ibu]), have been determined at temperatures 288.15-318.15 K. The measured data
have been used to calculate the standard partial molar volume VY, partial molar volume of

transfer AUV((;, Hepler’s constant (62 Vf/’) / aTz)p, apparent molar isentropic compressibility

K¢, molar refraction Rp, viscosity B coefficient (B) and hydration number parameters 7.
All of these parameters are discussed in terms of the competitive interactions occurring
between amino acids—[BMIM][Ibu] and amino acids—water.

Keywords 1-Butyl-3-methylimidazolium ibuprofenate - Apparent molar volume -
Viscosity B coefficient - Hydration number - Refractive index

1 Introduction

Ibuprofen is a common nonsteroidal anti-inflammatory pharmaceutical (NSAID) applied
for treating fever, reducing inflammation and relieving pain. The solubility of its natural
form in water is less than 1 mg-mL ™" which results in its low bioavailability [1]. Many
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approaches have been proposed to improve the oral bioavailability. One of these ways is
the formation of a salt form of active pharmaceutical ingredients (APIs). The sodium salt
of ibuprofen is mainly employed to enhance its water solubility. Unfortunately, this
approach has several problems including lack of salt formation and rapid hydrolysis from
humidity in air. This salt may convert back to their original acid, which leads to aggre-
gation in the gastrointestinal tract [2-4]. To overcome the potential problems with solid-
state active pharmaceutical ingredients (APIs), such as solubility and bioavailability, pure
liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are now
considered as a design strategy [5]. Also, the use of an active pharmaceutical ingredient in
the liquid form at room temperature can avoid some of the issues of polymorphism
associated with crystalline solids that dramatically affect the drug’s solubility and dosages
[6-8].

Recently, ILs have been combined with active pharmaceutical ingredients (API-ILs)
and a third generation of ILs has appeared [7]. These API-ILs compounds present
improved properties, such as increased stability, solubility, permeability and drug delivery,
as compared to the corresponding solid pharmaceutical forms [7-9]. Viau and co-worker
synthesized new ionogels by a one step sol-gel method using 1-butyl-3-methyl-imida-
zolium ibuprofenate ((BMIM][Ibu]) and silica precursor [10]. These new ionogels open a
large field of applications in drug delivery due to their simple preparation and the wide
range of possible ILs [10].

A number of dual biological-functioning API-ILs, such as benzalkonium ibuprofenate,
benzalkanium sulfacetamide and lidocaine ducustate, were first synthesized by Rogers and
co-workers [9]. Results showed that benzalkanium ibuprofenate [BA][ibuprofenate] is
active against various types of bacteria and the LD, in comparison with LHCI, was more
effectively absorbed through the skin of a mouse’s tail [11, 12].

API-IL macromolecular interactions involved in API transport and protein are an
important topic in physiological media. Binding API with proteins affects the structure of
the proteins as well as their properties such as activity of the enzymes, stability and
solubility of these complex molecular compounds [13—15]. Direct study of the proteins is
difficult due to their complex molecular structure. Therefore, the study of simpler model
compounds such as amino acids, which are building blocks of proteins, is a useful
approach [16, 17].

To optimize and control biotechnological processes including protein hydration,
determining the conformational stability, activity of enzymes, denaturation and solubility
of these compounds, studies on the thermodynamic and transport properties of API-IL in
aqueous biomolecule (proteins, enzymes and hormones) solutions are needed. As far as we
know, despite the importance of active pharmaceutical ingredients, there is no thermo-
dynamic data for API-ILs in the presence of amino acids.

In recent years, mixtures containing an amino acid and ionic liquid have been studied in
aqueous media at different temperatures. Shekaari and co-worker [18-20] have reported
densities, viscosities, electrical conductance and refractive indices of amino acids (glycine,
L-alanine and L-valine) in aqueous solutions of some imidazolium-based ionic liquid. They
observed positive A"V{? values for glycine and negative A"sz values for L-alanine and

L-valine in (1-hexyl and 1-propyl)-3-methylimidazolium bromide. Fang and co-worker
[21] have also reported negative A Vg values for glycine, L-alanine, and L-phenylalanine in
the presence of 1-ethyl-3-methylimidazolium bromide. Roy and co-worker [22] have also
reported the solvation behavior of amino acids in aqueous solutions of tetrabutylphos-
phonium tetrafluoroborate at 298.15 K.
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Therefore, in the present work, density, speed of sound, viscosity and refractive index
data for glycine and rL-alanine have been measured in the presence of aqueous solutions of
1-butyl-3-methylimidazolium ibuprofenate, [BMIM][Ibu], at the experimental tempera-
tures 7 = 288.15, 298.15, 308.15 and 318.15 K and at atmospheric pressure. The apparent
molar volume, standard partial molar volume V, partial molar volume of transfer (Atrvg)

0

and Hepler’s constant (62V“ / aTZ)p have been calculated using density data. Also, the

apparent molar isentropic compressibilities kg have been computed from the experimental
speed of sound data. The viscosity B coefficients were calculated using the viscosity of the
solutions and their solvents. The measured experimental refractive index np data of the
studied solutions were used for calculation of the molar refraction Rp. The results are
interpreted on the basis of different types of competing solute—solvent interactions.

2 Experimental
2.1 Chemicals

The origin, CAS number, purification method, purity, method of purity determination and
water content of the used chemicals are given in Table 1. The water content of the amino
acids was determined using a biaperometric Karl-Fischer titrator (Metrohm 756 KF), and
the values are approximately 0.03 % for glycine and 0.04 % for L-alanine. The physical
properties of the synthesized ionic liquid, 1-butyl-3-methylimidazolium ibuprofenate, are
also listed in Table 2. Doubly distilled deionized water was used with a specific con-
ductivity less than 1 pS-cm™" at 298.15 K.

2.2 Synthesis of the Ionic Liquid

The ionic liquid, 1-butyl-3-methylimidazolium ibuprofenate [BMIM][Ibu] was prepared
from 1-butyl-3-methylimidazolium chloride [BMIM][CI] and sodium ibuprofen. 1-Butyl-
3-methylimidazolium chloride was synthesized and purified according to standard proce-
dures described in the [23-25]. Briefly, [BMIM][CI]] was synthesized by direct alkylation
of N-methylimidazole, 0.05 mol (freshly distilled) with an excess of 1-chlorobutane
(0.06 mol) to which N-methylimidazole was added drop wise over 1 h with vigorously

Table 1 Description of the chemicals used

Chemical name CAS No. Provenance Purity (mass fraction)  Structure  Purification
method
Glycine 56-40-6 Merck >0.99 HzN\)OkOH Non
L-Alanine 56-41-7 Merck >0.99 o Q o Non
NH,
N-methylimidazole  616-47-7 Merck >0.99 Non
1-Chlorobutane 109-69-3 Merck >0.99 Non
Ibuprofen sodium 4-93-31121  Sigma Aldrich  >0.98 Non
Ethyl acetate 141-78-6 Merck >0.998 Non
Acetone 1-64-7 Merck >0.998 Non
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Table 2 Density (d), speed of sound () and refractive index (np) data for [BMIM][Ibu] at experimental
temperatures and 0.0868 MPa®

[BMIM][Ibu] T/K dno=? (kgm=) u/m-s™! np
288.15 1.035218 1647.05 1.5212
298.15 1.028993 1602.19 1.5174
308.15 1.022791 1555.25 1.5138
318.15 1.016615 1510.54 1.5101

2 Standard uncertainties for u(np) = 5 x 107%, uw(T) = 0.01 K, u(p) = 0.01 MPa and relative uncertainty
u, for density is u(d) = 0.005 and for speed of sound is u(u) = 0

stirring, all in a two-necked round bottom flask placed in a ice bath. Then the mixture,
already turbid, was refluxed for 72 h under a nitrogen atmosphere at 343 K. The crude
product was decanted from hot solution in a separating funnel and washed four times with
50 mL of ethyl acetate. The product was dried at 353 K for at least 4 h at reduced pressure
(0.7 kPa) using a rotary evaporator, followed by high vacuum desiccation (0.1 Pa) for at
least 12 h to remove trace amounts of moisture. Water contents found in the ionic liquids
by the Karl Fischer method were less than mass fraction 0.05 %.

The ionic liquids were analyzed by 'H NMR and IR spectroscopies to confirm the
absence of any major impurities and they were in fairly good agreement with those
reported in the literature [24]. For the synthesis of 1-butyl-3-methylimidazolium ibupro-
fenate, 0.3 mol sodium ibuprofen was dissolved in ethanol and added slowly to 0.3 mol
[BMIM][CI] dissolved in a minimum amount of ethanol. The resulting mixture was stirred
at 343 K for 3 h and then overnight at room temperature. The solution was filtered using a
sintered glass funnel (pro 4 Germany), then 100 mL of dry acetone was added leading to
the precipitation of NaCl, which was removed by filtering, and the solvent was removed
under vacuum. Addition of acetone was continued until no further precipitation of NaCl
could be detected. The product was then dried under vacuum at 333 K for 12 h. The
product was obtained as a yellowish viscous liquid [25]. The sample was characterized by
'H, '>C NMR and IR. The water content of the IL was determined using a coulometric Karl
Fischer titrator (Metrohm 756 KF), and the value was approximately 0.05 % in mass
fraction. The sample was characterized by 'H and 'C NMR and IR (see SI).

2.3 Apparatus and Procedure

The solutions were prepared by weight, using an analytical balance (AND, GR202, Japan)
with an uncertainty +3 x 10~® kg on the molality basis, in glass vials closed tightly with
parafilm. The uncertainty for molalities of the solutions is <3 x 10~> mol-kg™'. The water
content in the ionic liquid and amino acids was taken into account during the preparation of
aqueous solutions. The sample density d and speed of sound u were measured with a
vibrating-tube densimeter (Anton Paar, DSA 5000 densimeter and speed of sound ana-
lyzer) at the approximate frequency of 3 MHz. The apparatus was calibrated with doubly
distilled deionized and degassed water and dry air at atmospheric pressure. Density and
speed of sound are very sensitive to temperature, so the temperature was kept constant
within £107° K using the Peltier thermostat built into the densimeter. In each
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measurement, the relative uncertainty of density and speed of sound are 1 x 10~ and
0.07, respectively [26].

An Anton Paar Rolling-ball Viscometer, Lovis 2000 M/ME, was used to determine
viscosities of the solutions. The temperature was controlled to £0.005 K by a built in
Peltier thermostat. The measurement of viscosities with the Lovis 2000 M/ME is based on
the falling ball principle. A calibrated glass capillary with a steel ball as supplied by
manufacturer; the Lovis 2000 M/ME was filled with the sample for measuring the ball
falling time. The ball falling time and densities were used to estimate kinematic as well as
dynamic viscosities. The calibration of capillary was performed by the manufacturer using
viscosity standard fluids. In each measurement, the uncertainty of the viscosity is
0.006 mPa-s.

Refractive indices np of the studied solutions were determined using a digital refrac-
tometer (ATAGO-DRALI, Japan) with an uncertainty of +5 x 10~*. The instrument was
calibrated with doubly distilled water before each series of measurements. A procedure
called “zero setting” was always performed before the actual measurements of the sam-
ple’s refractive index, to ensure that the refractometer was working properly. Calibration
was made with pure liquids of known refractive index such as hexane. The temperature
was controlled using a circulating bath thermostat (Cooling Bath 490, Iran) with a thermal
stability of &+ 0.01 K.

3 Results and Discussion
3.1 Volumetric Properties

The values of density d for glycine in water and in aqueous solutions of 0.1090, 0.1801 and
0.2642 mol-kg*1 [BMIM][Ibu], along with density values for L-alanine in water and in
aqueous solutions of 0.1110, 0.1800 and 0.2602 mol~kg’l [BMIM][Ibu], are reported in
Table 3. The densities of the amino acids in water and in aqueous [BMIM][Ibu] solutions
increase with the solute (amino acid) as well as with the co-solute ((BMIM][Ibu]) con-
centrations but decrease with increasing temperature. The density values of glycine and
L-alanine in water at the experimental temperatures are in fairly good agreement with
values reported in the literature (see Fig. S1 and S2 in the supporting information [26-29]).
The values of density were used to calculate apparent molar volumes V using:

M {(d - do)}

(1)

V,=——
? 7 d mddy

where m is the molality of the amino acids in water and in the aqueous solutions of
[BMIM][Ibu], M is the molar mass of the amino acid, and d, and d are the densities of the
solvent and solution.

The values of V,, for the studied solutions are reported in Table 3. The experimental
values of apparent molar volume of amino acids (glycine and L-alanine) in water at
experimental temperatures are in good agreement with literature values [30—43]. A plot of
Vy for L-alanine in aqueous solutions of 0.1800 mol-kg_1 [BMIM][Ibu] at T = 288.15,
298.15, 308.15 and 318.15 K is shown in Fig. 1. The values of V4 for glycine in water and
in aqueous solutions of 0.1090, 0.1801 and 0.2642 mol-kg’1 [BMIM][Ibu] at
T = 298.15 K are presented in Fig. 2. It is observed that the apparent molar volumes
increase with increasing concentration of the ionic liquid. The standard partial molar
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volume pr’ was calculated by least-squares fitting of the apparent molar volume V,, by the
following equation [43, 44]:

Vo =Vy + Sym (2)

where Sy is the experimental slope indicating solute—solute interactions and m is the
molality of the amino acids in water and in the aqueous solutions of [BMIM][Ibu]. The
values of Vg and Sy, together with their standard deviation ¢(Vy) derived by least-squares
fitting of the V4 values with Eq. 2, are reported in Table 4. The Vf/’) values increase with
increases in the concentration of [BMIM][Ibu] and with temperature. Further, at each
temperature, the Vg values increase with increase in the chain length of alkyl part in going
from glycine to L-alanine.

The temperature dependence of standard partial molar properties provides vital infor-
mation about solute—solvent interactions, i.e. ion—solvent or zwitterions—ion interactions
present in solutions, since solute—solute interactions, like ion—ion or zwitterion—zwitterion
interactions at infinite dilution, are negligible. The increase of V(?) values with the increase
in temperature for amino acids can be explained by considering the size of the primary and
secondary solvation layers. At higher temperature, the solvent from the secondary
hydration layer of solutes is released into the bulk of the solvent, resulting in expansion of
the primary hydration layer [45]. From Table 4, it is also observed that the magnitude of Sy,
is positive for all concentrations of [BMIM][Ibu] in water at all studied temperatures. The
positive values of Sy indicate the presence of solute—solute interactions of amino acid in
water and in the aqueous solutions of [BMIM][Ibu]. The smaller values of Sy compared to
Vg suggest that solute—solvent interactions dominate over solute—solute interactions.

61.8

61.3

60.8

106 ¥, / (m3-mol")

60.3

0.0S 0.18 0.28 0.38
m / (mol-kg!)

Fig. 1 Apparent molar volumes of L-alanine in 0.1800 mol-kg~! [BMIM][Ibu] + water at the experimental
temperatures T: (square) 288.15 K; (triangle) 298.15 K; (diamond) 308.15 K; (circle) 318.15 K
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Fig. 2 Apparent molar volumes of glycine in several concentration of [BMIM][Ibu] in water at
T = 298.15 K: (square) 0.0000; (triangle) 0.1090; (diamond) 0.1801; (circle) 0.2642 mol kg™

The variation of standard partial molar volume Vg with the temperature can be
expressed by the following general polynomial equation:

V) =A+ BT +CT? (3)

where A, B and C have been evaluated by the least-squares fitting of the standard partial
molar volumes at experimental temperatures. The standard apparent molar volumes of
glycine in water and several concentrations of aqueous [BMIM][Ibu] solutions are plotted
versus the experimental temperatures in Fig. 3. The standard apparent molar expansibility
were calculated as follows [38]:

ovY
_ (%) _
E(;(a )pB+2CT (4)

The standard apparent molar expansibilities originate from two contributions, Eg (elect.)
and Eg(str.), where Eg(elect.) is the standard apparent molar expansibility due to elec-
trostriction changes (contribution of hydration around the solute) whereas Eg(str.) denotes

the standard apparent molar expansibility that accounts for changes in the solvent’s
structure. The structural component Eg(str.) dominates over Eg(elect.) at low temperatures

whereas Eg(elect.) dominates at the higher temperatures [46]. The calculated values of
standard apparent molar expansibility Eg for the investigated solutions are given in
Table 4. The E‘j, values decrease with increase in temperature. This may be attributed to

the fact that molecular motions become fast through enhancement in temperature and the
difference in water structure between the hydration shell and bulk water becomes smaller;
consequently the corresponding effect from the overlap of solvation shells becomes
weaker.

@ Springer
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Fig. 3 Standard partial molar volumes of glycine at several concentration of [BMIM][Ibu] in water:
(square) 0.0000; (triangle) 0.1090; (diamond) (0.1801; (circle) 0.2642 mol-kg{1 at the experimental
temperatures

The values of the standard partial molar volume were used to calculate the coefficient of
thermal expansion o according to the following equation [38, 46]:
EO
x=6 (5)
¢
The values of « for the studied solutions are given in Table 4. The coefficient of thermal
expansion o is a measure for the response of a system’s volume to a change in temperature.
A larger value indicates greater sensitivity in the volume change due to a change of
temperature.
Hepler [47] developed a general thermodynamic expression to determine the capacity of
solute as a structure maker or structure breaker in mixed solvent system using general
thermodynamic expression:

(2C,/p),= —T(azvg/aTz)pz 20T (6)

The sign of second derivative of the standard partial molar volume with respect to the
temperature, (0 Vf/f / 6T2)p, reflects the structure making or breaking ability of a solute in

the solution. If the sign of (azvg / 6T2)p is negative, the solute is a structure breaker [47],
otherwise it is a structure maker. The values of (0 Vg /oT? )p for the investigated solutions
are presented in Table 4. From this table, the negative values of (azvg /8T2)p for the

aqueous solution of glycine demonstrate its structure breaking ability which reduce with
increasing concentration of [BMIM][Ibu]. In the aqueous solutions of L-alanine a positive

@ Springer
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value of (3* Vg /oT?) , is seen, which indicates the structure making power of L-alanine and
this ability is strengthened in the presence of [BMIM][Ibu].

The partial molar volume of transfer for amino acids from water to the aqueous solu-
tions of [BMIM][Ibu] was calculated by using the following equation [48]:

AHV(?, = Vg(in the aqueous [BMIM][Ibu]) — Vg(in water) (7)

The calculated values of AtrVg for investigated solutions reported in Table 4, are all
positive and increase with increase in concentration of [BMIM][Ibu] for both amino
acids. The observed positive values of AtrVg suggest strong ion—zwitterion interactions of
[BMIM][Ibu] with amino acids [49]. AS according to co-sphere overlap model, there is
negligible contribution from solute—solute interactions and hence they provide informa-
tion regarding solute—solvent interactions. The types of interactions that occur between
amino acids and [BMIM][Ibu] can be classified as: (i) ion-hydrophilic interactions
(between zwitterionic centers of amino acids and polar groups of [BMIM][Ibu]) (ii)
hydrophilic-hydrophilic interactions (between polar groups of amino acids and polar
groups of [BMIM][Ibu]), (iii) ion-hydrophobic interactions (between zwitterion centers
of amino acids and non-polar groups of [BMIM][Ibu]), and (iv) hydrophobic-hy-
drophobic interactions (between non-polar groups of amino acids and non-polar groups
of [BMIM][Ibu]). Ion-hydrophobic and hydrophobic—hydrophobic interactions contribute
negatively based on co-sphere overlap model, whereas ion—hydrophilic and hydrophilic—
hydrophilic interactions contribute positively to the A[rvg values. Therefore, it is con-
cluded that ion-hydrophilic and hydrophilic-hydrophilic interactions between [BMI-
M][Ibu] ions and zwitterionic centers of the amino acids are dominant in ternary
solutions (amino acids in the aqueous solutions of [BMIM][Ibu]). The partial molar
volumes of transfer in glycine solutions are less rather than L-alanine solutions due to its
more hydrophobicity [50].

3.2 Ultrasonic Properties

The values of measured speed of sound data for studied systems are reported in Table 5. In
Figs. S3 and S4 (in the supporting information) the speed of sound values for glycine and
L-alanine in water at 7 = 298.15, 308.15 and 318.15 K are compared with the values
reported in the literature [28, 29, 51]. Speed of sound data in this work are in fairly good
agreement with values reported in these references. Based on the speed of sound and
density values, the isentropic compressibilities xs(Pa~!) were calculated from the
Laplace—Newton equation [52]:

Ks = —— (8)

The isentropic compressibility is the sum of two contributions, x,; (solvent intrinsic)
and Ky, (solute intrinsic). The kg is the isentropic compressibility due to the compression
of solvent (water) and kg, is the compressibility due to the compression of the solvation
shell of solute ([BMIM][Ibu] 4+ water).

Hydration numbers from compression ny were calculated using the following relation
[53]:
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—— (1 - ﬁ) 9)
na Kso
where n; and n, are the number of moles of water and solute (amino acid), respectively,
and ks and xgo represent the isentropic compressibility of the solutions and the solvent
(aqueous solutions of [BMIM][Ibu]), respectively. The calculated values of ny from Eq. 9
for glycine in water and in the aqueous solutions of 0.1090, 0.1801 and 0.2642 mol-kg ™'
[BMIM][Ibu], along with ny values for L-alanine in water and in the aqueous solutions of
0.1110, 0.1800 and 0.2602 mol'kg_l [BMIM][Ibu], are reported in Table 5. Figure 4
shows the values of hydration number for glycine in aqueous solution with
0.2642 mol-kg_] [BMIM][Ibu] and vr-alanine in the aqueous solutions with
0.2602 mol~kg*1 [BMIM][Ibu] at T = 298.15 K. As can be seen from this figure, in the
aqueous solutions of [BMIM][Ibu] with similar molality. the values of ny for L-alanine are
larger than for glycine. This result suggests that L-alanine is more strongly hydrated than
glycine. The ny values of amino acids decrease with addition of [BMIM][Ibu]. Decrease of
the hydration number relates to the fact that, at high concentrations of [BMIM][Ibu], the
stronger interactions between amino acids and [BMIM][Ibu] cause the release of water
molecules from the hydration layer to the bulk solution.
The apparent molar isentropic compressibility x4 was calculated from the following
relation [54]:

o (sto — Ksod) KSM

M T T ddy d (10)

where m is the molality of amino acids in water and in aqueous solutions of [BMIM][Ibu],
M is the molar mass of the amino acids and dy, kg0, d and x; are densities and isentropic
compressibilities of the solvent (aqueous solutions of [BMIM][Ibu]) and ternary solutions

2.2
A
21 4 4 A
4 A
A
2
jant
<
1.9
.
.
1.8 * * . . .
.
1.7 ¢
0.1 0.2 0.3 0.4 0.5
m / (mol-kg™)

Fig. 4 Hydration number calculated from Eq. 9 for glycine in aqueous solutions of 0.2642 mol-kg™

[BMIM][Ibu] with L-alanine in aqueous solutions with 0.2602 mol-kg’1 [BMIM][Ibu] at T = 298.15 K
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(amino acids in aqueous solutions of [BMIM][Ibu]). The resulting values of x4 for the
studied solutions are listed in Table 5. The values of apparent molar isentropic com-
pressibility of glycine in aqueous solutions with 0.2642 mol-kg~' [BMIM][Ibu] and L-
alanine in aqueous solutions with 0.2602 mol-kg71 [BMIM][Ibu] at T = 298.15 K are
plotted in Fig. 5. The value of limiting apparent molar isentropic compressibility Kg is
often obtained from the extrapolation of the apparent molar isentropic compressibility x
to infinite dilution using the following linear equation:

K¢:K2,+Skm (11)

where S; is the experimental slope due to solute—solute interactions [53]. The obtained
values of K% and S for the studied solutions, along with standard deviation ¢ (i) at the
experimental temperatures, are listed in Table 6. The values of K% for glycine and L-alanine
in water are compared with the values reported in the literature at 7 = 288.15 and
298.15 K and fairly good agreement is obtained [55, 56].

As solute—solute interactions are absent at infinite dilution, solute—solvent interactions
prevail in the solutions. The more negative values of K% for the amino acids at low
temperature are attributed to the strong attractive interactions between amino acids and
water. With an increase in temperature, the Kg) values become less negative, which means
that electrostriction is reduced and some water molecules are released back into the bulk
solution. Furthermore, the attractive interactions between ions of [BMIM][Ibu] and amino

16

-1.65
o
=
=¥
< 17
]
&
g
~
& -175
=
(e

A
1.8 A 4
A
A
-1.85
0.07 0.15 0.23 031 039 0.47

m / (mol kg™

Fig. 5 Apparent molar isentropic compressibility of glycine (triangle) in 0.2642 mol-kg™'
[BMIM][Ibu] + water and vL-alanine (diamond) in 0.2602 mol-kg” [BMIM][Ibu] + water at
T=298.15K
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Table 6 Values of partial molar isentropic compressibility (Kg)), experimental slope (Sy), partial molar
isentropic compressibility of transfer (AK(J)) for glycine and L-alanine in water and in the aqueous solutions
of [BMIM][Ibu] at 7 = (288.15 to 318.15) K

TK 104k 10145, 1014 Ak 100 (x,,)
(m*mol~"-Pa~") (m*mol~*kg-Pa~") (m®-msol~"-Pa")

Glycine + water

288.15 —3.187 £ 0.017 0.733 + 0.058 - 0.019
—3.495°
—3.50°
298.15 —2.621 + 0.021 0.345 £ 0.071 - 0.023
—2.612°
—2.64°
308.15  —2.240 + 0.022 0.205 + 0.073 - 0.023
—2.198°
—2.23°
318.15 —2.040 + 0.012 0.221 + 0.039 - 0.012
—2.156
Glycine + 0.1090 mol-kg™' [BMIM][Ibu] + water
288.15 —2.619 + 0.011 0.555 + 0.038 0.666 0.012
298.15 —2.240 + 0.008 0.450 + 0.026 0.410 0.008
308.15 —1.977 + 0.012 0.395 =+ 0.041 0.263 0.013
318.15 —1.854 + 0.009 0.389 =+ 0.031 0.382 0.010
Glycine + 0.1801 mol-kg~' [BMIM][Ibu] 4 water
288.15 —2.218 + 0.009 0.303 + 0.029 0.969 0.009
298.15 —2.006 + 0.010 0.325 + 0.033 0.615 0.010
308.15 —1.822 + 0.014 0.342 + 0.048 0.418 0.015
318.15 —1.704 £ 0.011 0.385 =+ 0.037 0.536 0.012
Glycine + 0.2642 mol-kg™' [BMIM][Ibu] + water
288.15 —2.055 + 0.012 0.162 =+ 0.041 1.132 0.013
298.15 —1.860 =+ 0.006 0.170 + 0.018 0.763 0.006
308.15 —1.586 + 0.011 0.174 + 0.037 0.654 0.011
318.15 —1.467 £ 0.013 0.168 =+ 0.042 0.773 0.013
L-Alanine + water
288.15 —3.103 + 0.032 0.713 £ 0.110 - 0.035
—3.086°
—3.06"
298.15 —2.557 £ 0.013 0.527 + 0.044 - 0.014
—2.460°
—2.42°
308.15 —2.127 + 0.012 0.494 + 0.099 - 0.012
—2.123°
—2.23°
318.15 —1.674 £ 0.019 0.196 + 0.065 - 0.021
L-Alanine + 0.1110 mol-kg{l [BMIM][Ibu] + water
288.15 —2.532 + 0.017 0.405 + 0.045 0.571 0.014
208.15 —2.171 £ 0.014 0.518 £ 0.036 0.386 0.011
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Table 6 continued

T (K) 10 K((;) 10148, 10]4AK(4J) 10140(&/))
(m>mol~!-Pa}) (m’-mol *kg-Pa”") (m>msol~'Pa!)
308.15 —1.822 + 0.006 0.528 + 0.017 0.305 0.005
318.15 —1.537 £ 0.006 0.449 + 0.015 0.137 0.005
L-Alanine + 0.1800 mol-kg_I [BMIM][Ibu] + water
288.15 —2.119 + 0.005 0.164 + 0.018 0.984 0.006
298.15 —1.853 £ 0.010 0.185 + 0.032 0.704 0.010
308.15 —1.568 £ 0.009 0.220 £+ 0.030 0.559 0.009
318.15 —1.345 £ 0.009 0.288 + 0.030 0.329 0.009
L-Alanine + 0.2602 mol'kg” [BMIM][Ibu] + water)
288.15 —2.022 £+ 0.012 0.104 £ 0.041 1.081 0.013
298.15 —1.686 + 0.007 0.136 + 0.022 0.878 0.007
308.15 —1.444 + 0.009 0.148 + 0.032 0.683 0.010
318.15 —1.229 £ 0.014 0.164 + 0.047 0.445 0.015

@ Reference [55]
b Reference [56]

acid molecules induce the dehydration of amino acids at high concentrations of [BMI-
M][Ibu] in water, therefore the water molecules around the amino acids are more com-
pressible than those at lower [BMIM][Ibu] concentrations [57].

Partial molar isentropic compressibilities of transfer Atrtcg from water to the aqueous
solutions of [BMIM][Ibu] have been calculated using the following expression [58]:

A[r;cg, = K(q),(in aqueous solution of [BMIM] [Ibu})—xg(in water) (12)

The values of AtrKg for the investigated solutions are presented in Table 6. Positive
Atrlcg values increase with increasing concentration of [BMIM][Ibu]. The more positive
values of KS) for glycine indicate dominance of the charged end groups NH and COO™.
The interactions between [BMIM][Ibu] and the zwitterionic centers of amino acids
increase with increasing [BMIM][Ibu] concentration. As a result, the layer around the
solute is much more compressible than bulk water and leads to an increase in the
compressibility with increase in [BMIM][Ibu] concentration. Positive AUK% values for
the amino acids are similar to the behavior observed for the partial molar volume of
transfer, which supports our analysis of volumetric data.

3.3 Pair and Triplet Interaction Coefficients

The McMillan and Mayer [59] theory, which was further discussed by Friedman and
Krishnan [60], presents a formalism to calculate the interaction coefficients, which permits
the separation of effects due to interactions between pairs of solute molecules and those
due to its interactions between more than two solute molecules. Thus, the partial molar
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volume of transfer and partial molar isentropic compressibility of transfer can be expressed
as follows:

AtrVg =2Vagmp + 3 Vags m123 +... (13)

AUK% = 2Kap MB + 3 KABB mé + ... (14)

where A denotes amino acids, B denotes [BMIM][Ibu] and mgp is the molality of amino
acids in the aqueous solutions of [BMIM][Ibu]. The corresponding parameters Vg and
Vagp for volume and xap and xapp for isentropic compressibility denote pair-interaction
and triplet-interaction coefficients. These constants were calculated by fitting of the AtrVg
and AHK% values to the above equations and are reported in Table 7. The pair-interaction
coefficients Vg and kap are positive, whereas the triplet-interaction coefficients Vagp and
Kapp are negative for glycine and L-alanine at all temperatures. The positive values of Vap
and x5p indicate that the dominant interactions are mainly pairwise. These values decrease
with increase in temperature in all cases under study [61].

3.4 Viscosity B Coefficients

The experimental viscosities # of glycine in water and in the aqueous solutions of 0.1090,
0.1801 and 0.2642 m01~kg_1 [BMIM][Ibu], along with viscosity values for L-alanine in
water and in the aqueous solutions of 0.1110, 0.1800 and 0.2602 moll-kg_] [BMIM][Ibu],
are reported in Table 8. The viscosity data of (glycine + water) and (L-alanine + water) at
the experimental temperatures are in fairly good agreement with the literature values
(Figs. S5 and S6 in supporting information) [18, 62, 63]. Figure 6 shows the viscosity
values of (L-alanine + [BMIM][Ibu] + water) solutions with 0.0000, 0.1110, 0.1800 and
0.2602 mol«kg’1 [BMIM][Ibu] + water at T = 298.15 K. The viscosity increases with an
increase in the molar mass of amino acids, i.e. from glycine to L-alanine. The viscosity
values have been found to increase with increase in concentration of amino acids as well as

Table 7 Pair (Vap and xap) and triplet (Vapp and xapp) interaction coefficients for glycine and L-alanine
in water and in aqueous solutions of [BMIM][Ibu] at 7 = 288.15-318.15 K

System For volume For compression
10°VAp 10°V g 10"k 10" Ak ap
(m3»mol’2~kg) (m3-m01’3~kg2) (m3-mol’2-kg-Pa’1) (m3-m01’3»kg2-Pa’1)

Glycine + [BMIM][Ibu] + water

288.15 3.12 —-1.91 2.76 —1.60
298.15 1.57 —0.97 1.80 —1.07
308.15 1.35 —0.81 1.43 —0.87
318.15 0.92 —0.60 1.23 —0.76
L-Alanine + [BMIM][Ibu] + water
288.15 4.44 —4.55 3.55 —3.82
298.15 3.03 —2.93 2.21 —1.53
308.15 1.16 0.60 1.78 —1.33
318.15 —0.16 2.68 0.76 0.09
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an increase in the concentration of [BMIM][Ibu] in the aqueous solutions. This may be
attributed to an increase in the solute—solvent (zwitterion—ion) interactions with increase in
the number of zwitterions in solutions, which may in turn cause more frictional resistance
to the flow of solutions. The viscosity values decrease with an increase in temperature. An
increase in temperature increases the kinetic energy of the molecules, resulting in reduced
solute—solvent interactions in solution. Due to the increase in the random motion at higher
temperatures, the forces of attraction intrinsically decrease and molecules and ions rapidly
move of into the empty sites. Such a decrease in interactions seems to be responsible for
the decrease in viscosity with an increase in temperature [61-63].

The variation of relative viscosity 7, of amino acids in water and in the aqueous
solutions of [BMIM][Ibu] can be represented by the Jones—Dole equation [64]:

T — 1y A2+ Be (15)
Mo

The A coefficient (also called Falkenhagen coefficient, reflecting electrostatic solute—
solute interactions) can be calculated theoretically but is zero [65]. Generally, the viscosity
B coefficients reflect solute—solvent interactions. In fact, when A coefficients are neglected
in Eq. 15, this equation is equivalent to the viscosity equation:

1 —1+Bc (16)
Mo
where n and 7, are the viscosity of solutions (amino acids in the aqueous solution of
[BMIM][Ibu]) and solvent (aqueous solution of [BMIM][Ibu]), respectively, and c is the
molar concentration of amino acid in the aqueous solution of [BMIM][Ibu]. The viscosity
B coefficients were obtained from the slope of linear plot of (/1, — 1) versus ¢ by the

1.48

1.31

[

I

0.8
0.06 0.16 0.26 0.36 0.46

7/ (m Pas)

¢/ (moldm)

Fig. 6 Viscosities of (L-alanine + [BMIM][Ibu] + water) solutions with several concentration of
([BMIM][Ibu] 4 water) at T = 298.15 K: (square) 0.0000; (triangle) 0.1110; (diamond 0.1800; (circle)
0.2602 mol-kg ™"
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least-squares method. The calculated viscosity B coefficients and o(#) from fitting the
experimental viscosity data with the Jones—Dole equation are given in Table 9.

The viscosity B coefficient is a measure of the size, shape and charge of solute mole-
cules as well as the structural effects induced by solute—solvent interactions [66]. Our
B values at different temperatures were compared with the corresponding data reported in
references and again good agreement is obtained [67, 68]. The viscosity B coefficient is a
tool that provides information about solvation of the solute in solution and the effect on the
structure of the solvent in the vicinity of solute molecules. It reflects the net structural
effects of the charged end groups and hydrophilic and hydrophobic groups on the solvent
molecules. The higher positive values of the viscosity B coefficients in the case of L-
alanine, as compared to glycine, predict that L-alanine has a greater kosmotropic effect in
the aqueous solutions of [BMIM][Ibu], which further suggests more solute—solvent
interactions in the case of L-alanine. This is due to the fact that, in the case of glycine, the
ion-hydrophilic group interactions between the (COO/NH;") zwitterionic centers of
glycine and ions of [BMIM][Ibu] are higher in comparison to L-alanine [68].

The viscosity B coefficients of transfer AB from water to the aqueous [BMIM][Ibu]
solutions have been calculated as follows [69]:

AyB = B coefficients in (aqueous solutions of [BMIM][Ibu])—B coefficients(in water)

The calculated values of A.B for studied solutions are presented in Table 9. The viscosity
B coefficients for the studied amino acids in the aqueous solutions of [BMIM][Ibu] are higher
than the values in water, which results in positive values. The partial molar volume of transfer
values decrease with an increase in concentration of [BMIM][Ibu]. The magnitude of the A, B
values is greater in the case of L-alanine as compared to glycine, again suggesting the greater
dehydrating effect of glycine. In the case of glycine, the values increase with temperature,
which may be due to its more hydrophilic character as compared to rL-alanine, having
hydrophobic CH, groups, and this increase is greater at higher temperatures.

The viscosity data were analyzed on the basis of transition state treatment of relative
viscosity of suggested by Feakins and co-workers [70]. The viscosity B coefficient in terms
of this theory is given by following equation:

(17)

B B B A 0*_A O
B= (V- V) +V?(7“2 al )

RT

where (Vlo = ZM,—]!/") is the mean volume of the solvent and (V9 = Vg) is the standard

partial molar volume of the pure solute. The V{ is the molar volume of the pure solvent.
The terms x; and M; denote the mole fractions and molar masses of solvent, and d is the
density of the solvent (aqueous solutions of [BMIM][Ibu]) [70]. The Gibbs energies of
activation per mole of the solvent, Ay;* and A,u(z)*, were calculated according to Eyring’s
simple model by following equations and are listed in Table 9.

A — AGY — R (1 18
Hp = A6 = n hN, (18)
% % RT (/ (/
1

where & is the Planck constant, N is the Avogadro number, 7, is the viscosity of the
solvent, and the other symbols have their usual meanings. The values of A,u?* and A,ug* are
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listed in Table 9. It is clear from this table that the values of AuS* are positive and larger
than Ap® for both the amino acids. This indicates stronger interactions between solute
(amino acids) and solvent (aqueous solutions of [BMIM][Ibu]) in the ground state in
comparison to the transition state. The magnitude of Aug* decreases with increase in
concentration of [BMIM][Ibu] up to 0.3 mol-kg™". The higher values of A,u(z)* for L-alanine
suggest that more energy is needed for transfer from ground state solvent to transition state
solvent for amino acids with a longer alkyl side [63].

3.5 Refractometric Properties

Experimental refractive index data np for glycine in water and in the aqueous solutions of
0.1090, 0.1801 and 0.2642 mol-kg_1 [BMIM][Ibu], along with refractive index values for
L-alanine in water and in the aqueous solutions of 0.1110, 0.1800 and 0.2602 mol-kg ™"
[BMIM][Ibu], are reported in Table 10. In Figs. S7 and S8 (in supporting information) the
refractive index values of glycine and L-alanine in water at 7 = 298.15, 308.15 and
318.15 K are compared with values reported in Ref. [18]. Refractive index data for glycine
and L-alanine in this work are in fairly good agreement with this Ref. [71]. The molar
refraction Rp was calculated using Lorentz—Lorenz equation [72]:

e e (5

i=1

where x; and M; are the mole fraction and molecular weight of component i, respectively,
and d is solution density. The calculated molar refractions of the investigated solutions are
given in Table 10. The molar refractions Rp of ternary (glycine + BMIM][Ibu] + water)
solutions with 0.2642 mol-kg_1 BMIM][Ibu], and (r-alanine + [BMIM][Ibu] + water)
with 0.2602 mol-kg ™' of BMIM][Ibu] at T = 298.15 K are plotted in Fig. 7.
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Fig. 7 The molar refractions Rp of ternary (glycine (square) + BMIM][Ibu] 4+ water) solutions with
0.1801 mol-kgfl BMIM][Ibu]) and (L-alanine (triangle) +[BMIM][Ibu] + water) with 0.1800 mol-kg”
(BMIM][Ibu]) at T = 298.15 K
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The Rp value is directly proportional to molecular polarizability and therefore this
quantity is a measure of the ability of molecular orbitals to be shapeless under an electrical
field [18]. Furthermore, when the structure of a molecule becomes more complex, its
electron cloud becomes more decentralized, and the polarizability of the molecule
increases. As it can be seen from this Table, the Rp values increase with increasing
concentration of [BMIM][Ibu] in the studied ternary solutions due to its electron cloud
becoming more decentralized, which indicates high polarizability of amino acids in the
presence of [BMIM][Ibu]. All of these parameters show that the addition of this ionic
liquid to the aqueous amino acid solutions has a strong dehydration effect on the inves-
tigated solutions.

4 Conclusions

Densities, speeds of sound, viscosities and refractive indices for glycine and L-alanine in
water and in the aqueous solutions of 1-butyl-3-methylimidazolium ibuprofenate, [BMI-
M][Ibu] have been measured at the experimental temperatures 7 = 288.15, 298.15, 308.15
and 318.15 K. The calculated volumetric and acoustic parameters, such as the partial molar
volume of transfer Atr\/f/f and partial molar isentropic compressibility of transfer Atrkg),
indicate dominance of polar—polar and ion—polar interactions between (glycine, L-alanine)
and [BMIM][Ibu]. The less negative values of (0 sz / 6T2)p for glycine, and more positive
values for L-alanine, in aqueous solutions of [BMIM][Ibu] can be interpreted as an increase
in the structure-breaking ability for glycine and decrease of the structure-making power for
L-alanine. The reduction in the hydration numbers with increase in temperature and
[BMIM][Ibu] concentration expresses the stronger dehydration of glycine and r-alanine at
higher concentrations and temperatures. The values of Vap and kap characterize the
pairwise interaction between amino acids and [BMIM][Ibu]. The more positive values of
dB/dT for glycine and less negative values for L-alanine in aqueous [BMIM][Ibu] solutions
indicate the promotion of structure-breaking ability in glycine and weakening of the
structure-making ability in L-alanine. The greater values of Aud* for L-alanine than for
glycine in aqueous [BMIM][Ibu] solutions show the more effective structure-making
ability of rL-alanine. High polarizability of amino acids in the presence of [BMIM][Ibu]
causes that the molar refractions to have large Rp values at high concentration of
[BMIM][Ibu]. In general, the dehydration effect of [BMIM][Ibu] on the aqueous solutions
of glycine and L-alanine is intensified at high concentration of the ionic liquid.

Acknowledgments The authors wish to thank the graduate council of the University of Tabriz for
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