Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

New classes of potent and bioavailable human renin inhibitors

L'uboš Remeň*, Olivier Bezençon*, Sylvia Richard-Bildstein, Daniel Bur, Lars Prade, Olivier Corminboeuf, Christoph Boss, Corinna Grisostomi, Thierry Sifferlen, Panja Strickner, Patrick Hess, Stéphane Delahaye, Alexander Treiber, Thomas Weller, Christoph Binkert, Beat Steiner, Walter Fischli

Drug Discovery and Preclinical Research, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil, Switzerland

ARTICLE INFO

Article history: Received 19 August 2009 Revised 24 September 2009 Accepted 24 September 2009 Available online 1 October 2009

Keywords: Renin inhibitor Rational design Double transgenic rat (TGR) model

ABSTRACT

New classes of de novo designed renin inhibitors are reported. Some of these compounds display excellent in vitro and in vivo activities toward human renin in a TGR model. The synthesis of these new types of mono- and bicyclic scaffolds are reported, and properties of selected compounds discussed. © 2009 Elsevier Ltd. All rights reserved.

The Renin–Angiotensin–Aldosterone system (RAAS) is known to be a major regulator of the cardiovascular, renal, and adrenal functions, playing a major role in water and salt homeostasis, as well as blood pressure control. From the point of view of medicinal chemist, renin proved to be a challenging target as already summarized in our previous publication^{1a} and summarized recently by Tice.^{1b}

As a part of our renin inhibitors program, we developed 3,9diazabicyclononene^{1a} derivatives with subnanomolar IC_{50} values for renin (in buffer), and showed in vivo efficacy after oral administration of 10 mg/kg in the double transgenic rat (TGR) model.² Compounds **1a** and **1b** are representatives of such bicyclic renin inhibitors³ (Fig. 1). We could show that substituents attached at the N³-position of this diazabicyclic scaffold had only a minor influence on binding affinity, but allowed significant modulation of other compound properties.^{1a} Here, we describe bicyclic compounds (**2a–6b**, Fig. 1) with a newly designed central template exploring the role of the introduced C²–N³–C⁴ bridge of the 3,9diazabicyclononene moiety.

Vinyl triflates **11–14** (Scheme 1) were prepared from the corresponding known 9-methyl-3-oxa-9-aza-bicyclo[3.3.1]nonan-7-one and 9-methyl-3-thia-9-aza-bicyclo[3.3.1]-nonan-7-one,⁴ and from the commercially available 9-methyl-9-aza-bicyclo[3.3.1]nonan-3-one and tropinone. These educts were first converted into their corresponding β -ketoesters (LDA,⁵ then MeOCOCN, THF, -78 °C), which were deprotonated with NaH in THF, and triflated using Tf₂NPh. Negishi or Suzuki couplings yielded compounds **16** and **19–21** in 58–82% yields. Compound **15a** was prepared from the

* Corresponding authors. *E-mail address:* olivier.bezencon@actelion.com (O. Bezençon). corresponding aryl bromide,^{1a} with pinacolborane, PdCl₂(PPh₃)₂, and Et₃N in dioxane at 100 °C overnight. Removal of the *N*-methyl group with 1-chloroethyl chloroformate, followed by hydrolysis of the respective 1-chloroethyl carbamate with methanol,⁶ and reaction with Boc₂O yielded the *N*-Boc-protected compounds **17** and **22–26** in 55–93% yields. Oxidation of compound **17** to the corresponding sulfoxide **18a** and sulfone **18b**, respectively, followed by Mitsunobu couplings with 2-chloro-3,6-difluorophenol, led to compounds **24** and **25**. Ester hydrolysis of **22–26**, subsequent amide couplings, and deprotections delivered compounds **2a–6a** and **2b–6b**.

In order to judge the importance of the $C^2-X^3-C^4$ bridge, we prepared tetrahydropyridine analogs 7a and 7b (Fig. 1) as reference compounds. Since the double bond of these tetrahydropyridines isomerized easily from the 3,4-position to the 4,5-position, and back (vide infra), we also prepared the monocyclic analogs 8a, **8b**, **9a**, **9b**, **10a**, and **10b** with a fully blocked C⁵-position with two methyl groups, a cyclopropyl group, or two fluorine atoms, respectively. Compound 27 (Scheme 2) was prepared from commercially available 4-oxo-piperidine-3-carboxylic acid methyl ester, which was Boc-protected, and triflated (NaH, Tf₂NPh, THF). Commercially available N-Boc-piperidone, was alkylated with (2chloroethyl)dimethylsulfonium iodide⁷ in tert-butanol using potassium tert-butylate as base, to give Boc-protected 5-aza-spiro[2.5]octan-8-one which was carboxymethylated (LDA, then MeO-COCN, THF, -78 °C), and triflated (NaH, Tf₂NPh, THF) to yield compound 28. Double methylation of N-Boc-piperidone, with NaH and methyl iodide in THF, followed by carboxymethylation (LDA, then MeOCOCN, THF, -78 °C) and triflation (NaH, Tf₂NPh, THF) gave compound 29. Suzuki couplings of 27-29 with 15a

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2009.09.104

Figure 1. Described compounds with their corresponding numbering systems.

Scheme 1. Reagents and conditions: (a) (i) **15b**, ^{1a} *n*-BuLi, THF, -78 °C, 30 min, (ii) ZnCl₂, -78 °C to 0 °C, 15 min, (iii) Pd(PPh₃)₄, **13**, 0 °C to reflux, 1.5 h, 80%; (b) (i) CH₃CClHOCOCl, ClCH₂CH₂Cl, reflux, 4 h, (ii) MeOH, rt, 4 h, (iii) Boc₂O, DIPEA, CH₂Cl₂, 0 °C to rt, 2 h, 55%; (c) **18a**: mCPBA, CH₂Cl₂, 0 °C, 30 min, 93%. **18b**: mCPBA, CH₂Cl₂, 0 °C to rt, overnight, 92%; (d) 2-chloro-3,6-difluorophenol, ADDP, PBu₃, toluene, reflux, 1 h, 88–98%; (e) **15a**, PdCl₂(PPh₃)₂, Na₂CO₃, H₂O, propanol, DMF, 80 °C, 1 h, 58–82%; (f) CH₃CClHOCOCl, NaHCO₃, ClCH₂CH₂Cl, reflux, 2 h, (ii) MeOH, 50 °C, 1 h, (iii) Boc₂O, DIPEA, CH₂Cl₂, 0 °C to rt, 2 h, 82–93%; (g) (i) NaOH, H₂O, EtOH, 70 °C, 8 h, (ii) amine, ^{1a} EDC-HCl, HOBt, DMAP, DIPEA, CH₂Cl₂, rt, 4–5 days, (iii) HCl, dioxane, CH₂Cl₂, 0 °C to rt, 1–2 h, 20–67%.

Scheme 2. Reagents and conditions: (a) 15a, PdCl₂(PPh₃)₂, Na₂CO₃, H₂O, propanol, DMF, 80 °C, 1 h, 48–84%; (b) (i) LiOH, H₂O, THF, 60 °C, 3 days, (ii) amine,^{1a} EDC·HCl, HOBt, DMAP, DIPEA, CH₂Cl₂, rt, 3–10 days, (iii) HCl, dioxane, CH₂Cl₂, 0 °C to rt, 1–2 h, 20–38%.

Scheme 3. Reagents and conditions: (a) benzotriazole, formaldehyde, MeOH, rt, 94%; (b) BrF₂CCO₂Et, Zn, Me₃SiCl, THF, 93%; (c) LDA, -78 °C, THF, 18 h, 81%; (d) (i) NaH, THF, 0 °C, 30 min, (ii) Tf₂NPh, THF, 55 °C, 72 h, quant.; (e) (i) **15b**, *n*-BuLi, THF, -78 °C, 30 min, (ii) ZnCl₂, -78 °C to 0 °C, 30 min, (iii) **36**, Pd(PPh₃)₄, THF, 0 °C to 45 °C, 18 h, 59%; (f) H₂, Pd/C,Boc₂O, AcOH, EtOH, rt, 4 h; (g) (i) 2-chloro-3,6-difluorophenol, ADDP, PBu₃, toluene, reflux, 2 h, 90%, (ii) NaOH, EtOH, H₂O, 5 h, (iii) amine, ^{1a} EDC-HCl, HOBt, DMAP, DIPEA, CH₂Cl₂, rt, 3 days, (iv) HCl, dioxane, CH₂Cl₂, 0 °C to rt, 2 h, 38%.

1	a	ł	b	e	•	1	1			
								1	10	

Measured IC_{50} values in nM

	Compound										
	1a	2a	3a	4a	5a	6a	7a	8a	9a	10a	
IC ₅₀ (buffer) IC ₅₀ (plasma)	0.40 36	0.68 55	1.1 113	6.4 ND	NP NP	0.55 47	1.2 53	34 4000	31 2000	800 ND	
	1b	2b	3b	4b	5b	6b	7b	8b	9b	10b	
IC ₅₀ (buffer) IC ₅₀ (plasma)	1.37 54	0.49 42	0.92 101	NP NP	64 ND	0.74 43	2.0 87	210 7400	170 7400	330 ND	

ND = not determined, NP = not prepared.

yielded compounds **30–32**, respectively. Ester hydrolysis followed by amide couplings and final removal of the Boc-groups led to the desired piperidine derivatives **7a–9b**.

Saponification of compound **30** led to a mixture of two isomers—the desired α , β -unsaturated carboxylic acid and the β , γ -unsaturated acid. Such a partial displacement of the double bond has actually already been observed with our diazabicyclononene derivatives described earlier.^{1a} The amide coupling with this mixture delivered the corresponding amide products, which could only be separated after extensive chromatographic purification.

Compound **34** (Scheme 3) was prepared starting from the known *N*-benzyl- β -alanine ethyl ester via the benzotriazol derivative **33**, using a Reformatsky reaction.⁸ A Dieckmann cyclization led to tetrahydropyridine **35**, which was converted into its corresponding vinylic triflate **36**. A Negishi coupling led to compound **37**, and the desired tetrahydropyridine **10** was obtained following standard chemistry.

The IC₅₀ values of these compounds for renin were determinated as described previously^{1a} and are presented in Table 1. As expected, optimal substituents from the diazabicyclononene scaffold (compounds **1a** and **1b**) led to compounds with high affinities on other scaffolds as well, as long as this scaffold fit in the active site. The IC₅₀ values in buffer for compounds **1a**, **2a**, **3a**, **6a**, and **7a** on one hand, and for compounds **1b**, **2b**, **3b**, **6b**, and **7b** on the other hand, were almost identical. All these scaffolds could be considered as being very effective in terms of binding. This confirmed our hypothesis that the C²–N³–C⁴ bridge of diazabicyclononene scaffold does not influence the binding of these molecules to renin

Figure 2. X-ray structure analysis of compound **7c** in renin; Gly40 and Ser41 are pictured with their carbonyl groups and side-chain. PDB Code: 3k1w.

in an essential manner. Even the absence of any bridge (compounds **7a** and **7b**) led to excellent renin inhibitors. As a matter of fact, the tetrahydropyridine moiety differs only by an endocyclic double bond from the chiral piperidine template that served as basis to the development of our renin inhibitors.⁹ Thus, the tetrahydropyridine renin inhibitors of type **7** represent the first achiral, potent renin inhibitors known in the literature.

Figure 3. Oral hypotensive activity of compounds 2b (10 mg/kg), 6a (10 mg/kg), and 7d (30 mg/kg) in the TGR model.

On the other hand, compounds 4a and 5b, as well as compounds 8a, 8b, 9a, 9b, 10a, and 10b turned out to be much less potent. A possible explanation for the lack of affinity of compounds of type **4**, **5**, and **10** resides in the decreased pK_a values of the secondary amines in the various templates. Diazabicyclononene compounds (e.g., 1) displayed pK_a values around 8.2 and 3.6, while oxazobicyclononanes (e.g., **2b**) displayed a pK_a value around 6.5. The absence of an electronwithdrawing heteroatom in the bridge led to slightly enhanced pK_a values around 8.4 for the tropane scaffold (e.g., **6**), and 8.0 for a tetrahydropyridine scaffold (e.g., 7). The pK_a value for the sulfone 4a was measured at 3.5, while the corresponding sulfoxide **5b** displayed a pK_{a} value of 3.9. The two fluorine atoms in compounds **10a** and **10b** had a strong pK_a lowering effect. Since these compounds were not well soluble in aqueous medium in their neutral forms, the pK_a values had to be determined in solvent mixtures and could not be determined accurately. From these experiments, they were estimated to be between 3 and 4, resulting in a difference of $4-5 \text{ pK}_{a}$ units compared with the nonfluorinated compounds. Models predict¹⁰ a difference of 3.7 log-units. With pK_a values in this range, compounds of type **4**, **5**, and **10** are only partially protonated at the optimal pH for renin to cleave its substrate (pH 5.5-6). A protonated nitrogen of the piperidine heterocycles forms a tight salt bridge with the catalytically active aspartyl residues, and is therefore indispensable for high binding affinity.1a,9

Compounds of type **7**, **8**, or **9** do not comprise electronwithdrawing substituents attached to the piperidine ring and display pK_a values in the range of 8.0. Modeling studies based on X-ray structure analysis of compound **7c** (Figs. 1 and 2), led to the hypothesis that a double substitution at the 5-position of the tetrahydropyridine scaffold should not be favorable due to potential clashes of the equatorial substituent with Gly40 and/or Ser41.

The IC_{50} values of compounds **1a–9b** in plasma (Table 1) were higher by a factor of 50–100 independently of the scaffold. These values indicate a strong plasma protein binding for these compounds. The more polar 3-methoxy-2-methyl benzyl amides (**b**series) tended to show slightly less shifted plasma values if compared with the corresponding, less polar, 2,3-dichlorobenzyl amides (**a**-series).

The pharmacological efficacy of selected compounds was evaluated in the TGR model² at 10 and 30 mg/kg (Fig. 3). Compound **2b** showed a slightly inferior profile to analogous diazabicyclononene derivatives.^{1a} Obviously the exchange of the N³-nitrogen with an oxygen exerts only minor effects on compound properties. The hydrophobic compound **6a** stands out by its exceptionally long duration of action. Tetrahydropyridine **7d** (Fig. 1; IC₅₀ = 0.30 nM in buffer, 35 nM in plasma, prepared in analogy to other compounds of type **7**) also displayed a pronounced pharmacological effect at 30 mg/kg, validating this achiral series as potent renin inhibitors. Pharmacokinetic experiments (wistar rats, 10 mg/kg, po) on similar tetrahydropyridines of type 7 showed bioavailabilities varying between 10% and 70%. Inhibition of the cytochrome P450 3A4 by these compounds emerged as a selection criteria. While compound **1a** inhibited CYP3A4 only weakly ($IC_{50} > 10 \ \mu$ M), the pure, active enantiomer **2b** proved to be a rather potent CYP3A4 inhibitor ($IC_{50} = 1 \ \mu$ M). Compound **6a** ($IC_{50} = 1.9 \ \mu$ M), and compound **7a** ($IC_{50} = 1.3 \ \mu$ M) were potent CYP3A4 inhibitors as well. Clearly, the absence of a second polar group beside the charged secondary amine, leads to compounds significantly inhibiting the CYP3A4 enzyme.

In conclusion, we identified new scaffolds leading to highly potent, orally active renin inhibitors. We also identified some achiral, low-nanomolar inhibitors for human renin. Modulation of an existing bridge in these bicyclic scaffolds^{1a} influences neither the binding affinity for renin nor the pharmacological efficacy, as long as the basic properties of the essential secondary amine are conserved.

Acknowledgments

We thank Patrick Eckert, Martin Faes, Sven Glutz, Luke Harris, Pascal Occhiuto, Bela Humer, Daniel Marchal, Sophie Moujon, Pascal Rebmann, Siefke Siefken, Daniel Trachsel, Gabrielle Vorburger, Alain Chambovey, Antoinette Amrein, Geoffroy Bourquin, Fabienne Drouet, Aude Weigel, Markus Rey and Daniel Wanner for their help and engagement on this program.

References and notes

- (a) Bezençon, O.; Bur, D.; Weller, T.; Richard-Bildstein, S.; Remeň, L'; Sifferlen, T.; Corminboeuf, O.; Grisostomi, C.; Boss, C.; Prade, L.; Delahaye, S.; Treiber, A.; Strickner, P.; Binkert, C.; Hess, P.; Steiner, B.; Fischli, W. J. Med. Chem. 2009, 52, 3689; (b) Tice, C. M. Ann. Rep. Med. Chem. 2006, 41, 155.
- (a) Brockway, B. P.; Mills, P. A.; Azar, S. H. Clin. Exp. Hypertens., Part A 1991, 13, 885; (b) Guiol, C.; Ledoussal, C.; Surgé, J.-M. J. Pharmcol. Toxicol. Methods 1992, 28, 99; (c) Hess, P.; Clozel, M.; Clozel, J.-P. J. Appl. Physiol. 1996, 81, 1027.
- Compond 1a is a pure enantiomer. All other compounds containing chiral centers are racemates.
- 4. Jerchel, D.; Weidmann, H. Liebigs Ann. Chem. 1957, 607, 126.
- List of abbreviations: ADDP, 1,1'-(azodicarbonyl)-dipiperidine; Boc, tertbutoxycarbonyl; n-BuLi, n-butyl lithium; DIPEA, diisopropylethylamine; DMAP, 4-(N,N-dimethylamino)pyridine; EDC·HCI, N-(dimethylaminoproyl)-N'-ethylcarbodiimide hydrochloride; HOBt, 3-hydroxybenzotriazol; LDA, lithium diisopropilamide; mCPBA, meta-chloro peroxobenzoic acid; Tf, CF₃SO₂.
- Olofson, R. A.; Martz, J. T.; Senet, J. P.; Piteau, M.; Malfroot, T. J. Org. Chem. 1984, 49, 2081.
- 7. Ruder, S. M.; Ronald, C. R. Tetrahedron Lett. 1984, 25, 5501.
- 8. Katritzky, A. R.; Nichols, D. A.; Qi, M. Tetrahedron Lett. 1998, 39, 7063.
- (a) Vieira, E.; Binggeli, A.; Breu, V.; Bur, D.; Fischli, W.; Güller, R.; Hirth, G.; Märki, H. P.; Müller, M.; Oefner, C.; Scalone, M.; Stadler, H.; Wilhelm, M.; Wostl, W. Bioorg. Med. Chem. Lett. **1999**, 9, 1397; (c) Oefner, C.; Binggeli, A.; Breu, V.; Bur, D.; Clozel, J.-P.; D'Arcy, A.; Dorn, A.; Fischli, W.; Grüinger, F.; Güller, R.; Hirth, G.; Märki, H. P.; Mathews, S.; Müller, M.; Ridley, R. C.; Stadler, H.; Vieira, E.; Wilhelm, M.; Winkler, F. K.; Wostl, W. Chem. Biol. **1999**, 6, 127.
- (a) Morgenthaler, M.; Schweizer, E.; Hoffmann-Röder, A.; Benini, F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels, S.; Zimmerli, D.; Schneider, J.; Diederich, F.; Kansy, M.; Müller, K. *ChemMedChem* **2007**, *2*, 1100; (b) Hagmann, W. K. J. Med. Chem. **2008**, *51*, 4359.