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ABSTRACT: An NHyl-promoted and H,O-controlled intermolecular difunctionalization of alkenes
for the synthesis of bis-methylsulfane and B-hydroxysulfides is presented. Mechanistic investigation
revealed the reaction proceeds via methylthiyl radical addition to C=C double bond of alkenes to
give a carbon-centered radical and immediately cyclize to a thiiranium ion, followed by combination
with H,O to afford f-hydroxysulfides in 52-89% yield with chemo- and regioselectivity. In the
absence of the water, 1,2-disulfenylation takes place to give bis-methylsulfane in moderate to good

yields.

In recent decades, the difunctionalization of olefins has become one of the most practical
methods for synthesizing functional molecules or organic synthons bearing two vicinal
carbon—carbon bonds or carbon—heteroatom bonds.['l Among them, the bis-sulfenylation!?]

and hydroxysulfenylation[3! of allylbenzene derivatives to prepare synthetically useful vicinal
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dithioethers 1is attracting increasing attention due to their synthetic utility in drug
development!*l and fine chemical synthesisP®l. Previously reported sulfur etherification
reagents mainly focused on alkyl and aromatic sulphides, such as thiol,[® sulfonyl
hydrazides,[”l  disulfides,[®] sulfonamides,!®? sulfenyl halides,[!?) sulfenate esters,[!'!]
(methylthio)-sulfonium salts[!?! and sodium methanethiolate.l'3] In particular, Lei and
co-workers developed that the first efficiently electrocatalytic dehydrogenative C—H/S—H
cross-coupling construct C-S bond, which was use the aryl/heteroaryl thiols and electron-rich
arenes as reaction substrates.l'#l Simultaneously, Jiang and co-workers use the organic
thiosulfate salts to adjust the nature of free radicals by using the “masked strategy” and
achieve selective sulphoxide and thioetherification.['>] However, these systems involve
unpleasant odors, expensive catalysts and reagents, low chemo- and regio-selectivity and
harsh conditions. There are hardly any reports of the use of dimethyl sulfoxide (DMSO) as a
sulfur etherification reagent in bis-sulfenylation and hydroxysulfenylation reactions of
alkenes. DMSO, however, has been used as source of groups such as —C,, -CH,—, =CH—, —
CH;, -CHO, —CN, —SMe, —-SO,Me group and as an oxygen sourcel!é! in various organic
synthesis methodology over recent decades. In addition, most bis-sulfenylation reactions are
generally initiated through an episulfonium ion intermediate, with nucleophilic attack
ultimately leading to vicinal dithioethers (Scheme 1a)[?2-¢-171, In contrast, the bis-sulfenylation
of alkenes to give vicinal dithioethers via a radical approach has rarely been explored. When
the bis-sulfenylation reaction was initiated through a CH;Se radical originating from DMSO,

a subsequent carbon radical intermediate was formed. Herein, we report the realization of this
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hypothesis via an NHyl-promoted and H,O-controlled intermolecular bis-sulfenylation and

hydroxysulfenylation reaction of alkenes with DMSO as a MeS radical surrogate (Scheme

1b).
Reported work:
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R1 R1 ' RZ ' st SR2
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Scheme 1. Outline for the Bis-sulfenylation and Hydroxysulfenylation of Alkenes

In order to test the above bis-sulfenylation hypothesis, we screened reaction conditions
using allylbenzene 1a, NH4l and anhydrous DMSO as a model reaction. The DMSO was
used as both solvent and a MeS radical surrogate. To our delight, at a reaction temperature of
100 °C, the bis-sulfenylation reaction proceeded to afford the vicinal dithioether product 2a
in 19% yield, along with a small amount of the hydroxysulfenylation product 3a in the
presence of 2 equiv. NHul (Table 1, entry 1). Further studies demonstrated that the yield was
significantly improved upon increasing the reaction temperature (Table 1, entries 2—4). When
the reaction temperature was increased to 140 °C, the yield of the bis-sulfenylation product
2a was slightly lower, and the yield of the hydroxysulfenylation product 3a was slightly
increased to 15% (Table 1, entry 5). Increasing or decreasing the amount of NHyI did not
improve the yield of the bis-sulfenylation reaction (Table 1, entries 6-7). It is noteworthy that
H,O concentration had a significant effect on the yield of 2a and 3a (Table 1, entries 8—12).

The yield of the hydroxysulfenylation product 3a was greatly improved if DMSO and H,O
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were used as the reaction solvent. We observed that when the ratio of DMSO: H,O was 1:1,
the hydroxysulfenylation product was afforded in 87% yield and the yield of the
bis-sulfenylation reaction did not exceed 5% (Table 1, entries 8-12). Subsequently, we
investigated various halide sources, such as Et;NI, NH4Br and HI (Table 1, entries 15-17).
None of these promoted the reaction well, and only I, generated the
1-(methylthio)-3-phenylpropan-2-ol 3a in 53% yield (Table 1, entry 18). When
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) or butylated hydroxytoluene (BHT) were
added as radical scavengers, the sulfenylation reaction was completely inhibited (Table 1,
entries 19-20). This indicates that the current intermolecular difunctionalization reaction
proceeds via a radical pathway.

Table 1. Optimization of Reaction Conditions?

©_/= 0 NH,I ©/\E8Me ©/\[0H
+ g _— +
IS SMe SMe

1a 2a 3a
Entry Halide (equiv.) Solvent(v/v) Temp (°C) %
1 NH4l (2eq)  DMSO 100 19 <5
2 NHJ(2eq)  DMSO 110 21 <5
3 NH4I (2 eq) DMSO 120 72 <5
4 NH,I (2 eq) DMSO 130 84 <5
5 NH4I (2 eq) DMSO 140 73 15
6 NH4I (3 eq) DMSO 130 82 <5
7 NH4I (1 eq) DMSO 130 67 13
8 NH4I (2 eq) DMSO/H,0 (20:1) 130 56 12
9 NH4I (2 eq) DMSO/H,O (2:1) 130 <5 69
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11
12
13
14
15
16
17
18
19¢
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NH4I (1 eq)
NH4I (3 eq)
NHyI (2 eq)
NH4I (2 eq)
NH4I (2 eq)
Et,NI (2 eq)
NH4Br (2 eq)
HI (2 eq)

L (1 eq)
NH4I (2 eq)

NH4I (2 eq)

DMSO/H,0 (2:1)
DMSO/H,0 (2:1)
DMSO/H,0 (1:1)
DMSO/H,O (1:1)
DMSO/H,0 (1:2)
DMSO/H,0 (1:1)
DMSO/H,0 (1:1)
DMSO/H,0 (1:1)
DMSO/H,O (1:1)
DMSO/H,0 (1:1)

DMSO/H,O (1:1)

130

130

130

120

130

130

130

130

130

130

130

<5

<5

<5

<5

<5

0

0

<5

<5

trace

trace

65

72

87

48

35

<5

<5

32

53

trace

trace

@ Reaction conditions: alkene 1a (1.0 mmol), halide, solvent(v/v) (3.0 mL), 24h; ? Isolated

yield. ‘BHT (1.5 mmol); “TEMPO (1.5 mmol).

With the optimized conditions in hand, the generality of this bis-sulfenylation reaction

was investigated. As shown in Scheme 2, allylbenzene derivatives with different substituents

on the phenyl ring, including electron-withdrawing and electron-donating groups, were

successfully converted to the corresponding bis-sulfenylation products 2a—m in moderate to

good yields. The addition of substituents at different positions on the aromatic ring of the

allylbenzenes had no significant effect on the yield. The reaction tolerated a range of

substituents including: -Me, -OMe, -F, -Cl, -CF;, -CN and -SMe. It is noteworthy that

2-allylnaphthalene gave product 21 in 83% yield under the standard reaction condition. It is

important to note that substrates bearing two electron-donating groups such as a

3.,4-dimethoxy group also proceeded smoothly to afford the target product 2m in 43% yield.
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Furthermore, the optimized conditions are equally effective for other unactivated alkenes
(such as but-3-en-1-ylbenzene), to afford the bis-sulfenylation product 2n in good yields.
Unfortunately, the reaction with styrene, failed under the current reaction conditions (Scheme
2, 20). The yield of the bis-sulfenylation products was slightly lower because there is always
accompanied by the hydroxysulfenylation product 3 (Scheme 3).

Scheme 2. Substrate scope for bis-sulfenylation reaction of alkenes ¢ ?

NH,l, DMSO
130°C, 24 h

MeS SMe
SMe SMe SMe
SMe SMe SMe
Me

2a, 84% 2b, 71% Me 2c,73%
L SMe /@/\l/\sme
e SMe
SMe
Me MeO
2d, 75% 2e, 78% 2f, 81%
cl SMe SMe SMe
SMe SMe
SMe F F4C
29, 73% 2h, 86% 2i, 62%
SMe
e O/\'/\S""e SMe
SMe
NC SMe  Mes O
2j, 54% 2k, 65% 21, 83%
MeO
y om ©_/_<_ sMe
e SMe
2m, 43% 2n, 56% 20, < 5%

@ Reaction conditions: alkene 1 (1.0 mmol), NH4I (2.0 mmol) in DMSO (3.0 mL) at 130 °C
for 24 h; ? Isolated yield.

To further explore the application of our approach, we turned our attention to the NH4I-promoted
and H,O-controlled hydroxysulfenylation of inactivated alkenes (Scheme 3). First, the various

allylbenzene derivatives underwent hydroxysulfenylation under the standard conditions: NH,I (2.0
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equiv), DMSO (1.5 mL), H,O (1.5 mL) and allylbenzene (1.0 mmol) at 130 °C for 24 h, which
provided products 3a in 87% yield (Table 1, entry 12). Similar to the bis-sulfenylation reaction, by
varying the R substituents of allylbenzene derivatives 1, it was observed that both
electron-withdrawing and electron-donating substituents could be introduced to afford the
hydroxysulfenylation products in moderate to good yields. The results indicated that the steric
hindrance of allylbenzenes had no obvious influence on the efficiency of the desired transformation
(Scheme 2, 3b and 3f), while electronic effects reduced the yields of 3 slightly (Scheme 2, 3h and
3i). It is noteworthy that 5-allyl-2-methoxyphenol also reacted smoothly with DMSO and H,O to
afford 3k in 65% yield. As the phenolic hydroxyl group can quench the radical, the yield could be
improved by prolonging the reaction time. Interestingly, the use of
1-allyl-2,3,4,5,6-pentafluorobenzene resulted in the formation of the corresponding -hydroxysulfide
product 31 in moderate yield. Furthermore, the hydroxysulfenylation of but-3-en-1-ylbenzene with
DMSO under the optimized conditions gave 3m in 89% yield. Various substituted alkyl alkenes were
found to be compatible under the optimized condition. The terminal alkenes 1-octenes successfully
completed the hydroxysulfenylation reaction and gave the design product 3n in 67% yields. When
deuterated-DMSO was wused as the reaction solvent and reagent, deuterium-labeled
hydroxysulfenylation product 30 were isolated in 65% yield, respectively.

Scheme 3. Substrate scope for the hydroxysulfenylation reaction®?
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NH, OH
R
DMSO, H,0 SM
2 R)\/ e
1 3
©/\|/\3Me (j\/\l/\sm Me SMe
OH 1M OH
3a, 87% 3b, 85% 3c, 83%
Q/\l/\snne /©/\|/\8Me ©j\|/\SMe
OH OH OH
Me MeO OMe
3d, 88% 3e, 84% 3f, 86%
C'Wsm O™ g
OH OH OH
F FiC
3g, 81% 3h, 75% 3i, 73%
F
OH HO
O sM j@/\'/\s“"e F SMe
e OH
O MeO E F OH
3j, 86% 3K, 65% F 31, 52%
OH
OH C6H13\|/\sMe ©/\E
OH SCD,
SMe
3m, 89% 3n, 67% 30, 65%7

@ Reaction conditions: alkene 1 (1.0 mmol), NH4I (2.0 mmol) and H,O (1.5 mL) in DMSO
(1.5 mL) at 130 °C for 24 h; ? Isolated yield; ¢ Detected by 'H-NMR; ¢ DMSO-d® was used
instead of DMSO.

To continue our investigation of the reaction scope, we explored various 2-allylphenol substrates
for this process under the optimized reaction conditions (Scheme 4). Compared with
hydroxysulfenylation of inactivated alkenes ) Synthesis of
2-((methylthio)methyl)-2,3-dihydrobenzofuran by 2-hydroxylylylation of 2-allylphenol was
achieved.l'® In this oxidizing system, both the methoxy group and the aldehyde group are not
affected. The aldehyde group substituted 2-hydroxyallylbenzene can smoothly gave the target
product 2-((methylthio)methyl)-2,3-dihydrobenzofuran-7-carbaldehyde 4b and 4d in good yields. It

is important to note that substrates bearing electron-donating group such as phenolic hydroxy group
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and allyl group also proceeded smoothly to afford the target product 4e in 72% yield. It is interesting
to note that 2-allyl-6-(2H-benzo[d][1,2,3]triazol-2-yl)-4-methylphenol gave product 4f in 81% yield
under the standard reaction condition.

Scheme 4 Synthesis of dihydrobenzofurans from alkenes ¢ ?

Q NH,|

A
R_- N - AN SMe
L + ER R P
OH HC” ""CH;  130°C o
1 4
SMe SMe
SMe
OMe

0O~ 'H
4a, 92% 4b, 85% 4c, 89%

0 CHj;

/N\

H N
SMe C[\N'
o) SM
¢ (o)
OMe

4d, 86% 4e, 72% 4f, 81% SMe

@ Reaction conditions: alkene 1 (1.0 mmol), NH4I (2.0 mmol) in DMSO (1.5 mL) at 130 °C
for 18 h; ?Isolated yield.

To gain mechanistic insights, isotopic labelling experiment using H;O'® were conducted to verify
the oxygen atom of the hydroxysulfenylation products. These results indicate that water acts as a
hydroxy donor in this transformation (Scheme 5a). Under N, condition, the hydroxysulfenylation
product 3a was obtained in 83% yield (Scheme 5b). The result indicated that the formation of a
thiiranium ion intermediate could be the dominant pathway.

Scheme 5. Control experiments.

18
= NH4|, H2O SMe (a)
DMSO, 130 °C, 24h 180H

3a-1, 76%

5 NHy4l, H,0, N, SMe (p)
©/\/ DMSO, 130 °C, 24h OH

3a, 83%
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On the basis of our findings and previous literature, a possible mechanism is illustrated in
Scheme 6.'! Initially, the iodine radical (I+)[*°] and methanthiol (CH;SH)[?!! are produced through a
series of transformations with NH4I and DMSO at high temperature. Iodine radicals can form
through a thermal decomposition process originating from NHI, which can react with methanthiol to
liberate CH3Se radicals. The methylthiyl radical (CH3S¢) B initiated by iodine radical selectively
adds to the terminal C=C double bond of 1 to form intermediate carbon radical C 22!, which
undergoes further single-electron oxidation to afford a B-MeS-substituted carbocation D (23], Then
the B-MeS-substituted carbocation D should immediately cyclize to a gives thiiranium ion E.
Subsequently, the nucleophilic attack of MeSH or H,O on the thiiranium ion E produces
bis-sulfenylation products 2 or hydroxysulfenylation products 3 [22-¢.3¢l,

Scheme 6. Proposed reaction mechanism.

130 °C
(CH3),SO ——, MeSH (a)
130 °C
NHyl —=» |- (b)
[+ + MeSH =—= MeS- + HI (°)
A B RTX 1
OH SMe
A SMe A SMe
3 2 R SMe c
H,0 MeSH
SET
Me -e
S+
N A_SMe
E \_/R 5

In conclusion, we have demonstrated an efficient and attractive strategy for synthesis of valuable
bis-methylsulfane and p-hydroxysulfides through an NHl-promoted and H;O-controlled
intermolecular bis-sulfenylation and hydroxysulfenylation of terminal alkenes. The method

complements existing approaches involving methylthiyl radical allylic C—H activation. The water
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played a critical role in this reaction. This reaction chemo- and regioselectively afforded the
bis-sulfenylation and hydroxysulfenylation products by varying the proportion of water. This unique
bis-sulfenylation and hydroxysulfenylation procedure used readily available, stable and odorless
DMSO as a thioetherification reagent, and has potential applications in modern organic synthesis
chemistry and pharmaceutical chemistry.

EXPERIMENTAL SECTION

General Information: Unless otherwise noted, all commercial materials and solvents were used
without further purification and all the reactions were carried out in a Schlenk tube equipped with
magnetic stir bar. "H NMR spectra were recorded in CDCl; at 400 MHz (or 600 MHz) and 3C {'H}
NMR NMR spectra were recorded in CDCl; at 100 MHz (or 150 MHz) respectively, 'H and 3C {'H}
NMR NMR were referenced to CDCl; at 6 7.26 and 77.0 respectively. GC—MS was obtained using
electron ionization (Agilent Technologies 7890A/5975C). HRMS spectra were acquired using an
Agilent 6210 ESI/TOF mass spectrometer and MAT 95XP (Double-focusing Magnetic Sector
Analyzer), Thermo (EI, 70eV). TLC was performed using commercially prepared 100-400 mesh
silica gel plates (GF,s4), and visualization was effected at 254 nm. All the other chemicals were

purchased from Aldrich Chemicals. Commercial reagents were used without further purification.

Typical procedure for synthesis of 1-(2,3-bis(methylthio)propyl)benzene derivatives: A mixture
of allylbenzene (1 mmol), NH4I (2 mmol), DMSO (2 mL) was added successively in a 20 mL
Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C stirring for 24 h. After
cooling down to room temperature, the solution was filtered through a small amount of silica gel.

Then the residue was concentrated in vacuo and the crude was purified by flash chromatography
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with n-hexane/ethyl acetate (10/1, v/v) to afford the (3-phenylpropane-1,2-diyl)bis(methylsulfane) as

a pale-yellow oil in 84% yield.

Typical procedure for synthesis of 1-(methylthio)-3-phenylpropan-2-ol derivatives: A mixture
of allylbenzene (1 mmol), NH4I (2 mmol), DMSO (1.5 mL) and H,O (1.5 mL) was added
successively in a 20 mL Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C
stirring for 24 h. After cooling down to room temperature, the solution was filtered through a small
amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash
chromatography with n-hexane/ethyl acetate (8/1, v/v) to afford the

1-(methylthio)-3-phenylpropan-2-ol as a pale-yellow oil in 87% yield.

1-(2,3-bis(methylthio)propyl)benzene (2a): Pale-yellow liquid (178 mg, 84% yield), "H NMR (400
MHz, CDCl;) 6 7.21 — 7.17 (m, 2H), 7.13 (dd, J = 7.5, 3.8 Hz, 3H), 3.03 (dd, J = 13.6, 5.8 Hz, 1H),
2.88 —2.80 (m, 1H), 2.71 (ddd, J = 18.6, 13.5, 6.4 Hz, 2H), 2.57 (dd, J = 13.3, 7.6 Hz, 1H), 2.02 (s,
3H), 1.95 (s, 3H); *C {'H} NMR NMR (100 MHz, CDCl;) ¢ 138.7, 129.1 (2C), 128.1 (2C), 126.2,
48.0, 39.4, 38.8, 16.2, 13.7. GC-MS (EI, 70 eV) m/z: 212, 164, 151, 121; HRMS (EI) m/z: [M]*
Calcd for C;1H;6S, 212.0688; Found, 212.0687.

1-(2,3-bis(methylthio)propyl)-2-methylbenzene (2b): Pale-yellow liquid (160 mg, 71% yield), 'H
NMR (600 MHz, CDCls) ¢ 7.20-7.18 (m, 1H), 7.16-7.14 (m, 3H), 3.17 (dd, J = 14.1, 6.3 Hz, 1H),
2.98 —2.90 (m, 1H), 2.86 — 2.76 (m, 2H), 2.72 (dd, J = 13.3, 7.4 Hz, 1H), 2.36 (s, 3H), 2.14 (s, 3H),
2.05 (s, 3H); 3C {H} NMR NMR (150 MHz, CDCl;) ¢ 137.4, 136.2, 130.4, 130.2, 126.6, 125.8,
47.4, 39.6, 37.4, 19.6, 16.6, 14.0. GC-MS (EI, 70 eV) m/z: 226, 178, 165, 121; HRMS (EI) m/z:

[M]* Calcd for Ci,H S, 226.0844; Found, 226.0843.
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1-(2,3-bis(methylthio)propyl)-3-methylbenzene (2c): Pale-yellow liquid(165 mg, 73% yield), 'H
NMR (600 MHz, CDCl;) 6 7.22 — 7.16 (m, 1H), 7.08 — 6.96 (m, 3H), 3.08 (dd, /= 13.8, 6.2 Hz, 1H),
2.97 -2.90 (m, 1H), 2.84 — 2.74 (m, 2H), 2.68 (dd, J = 13.3, 7.5 Hz, 1H), 2.34 (s, 3H), 2.14 (s, 3H),
2.07 (s, 3H); *C {'H} NMR NMR (150 MHz, CDCl;) é 138.9, 137.9, 130.0, 128.2, 127.2, 126.3,
48.2,39.6,39.0, 21.4, 16.4, 13.9. GC-MS (EI, 70 eV) m/z: 226, 178, 165, 131, 121; HRMS (EI) m/z:
[M]* Caled for Ci,H;5S; 226.0844; Found, 226.0846.

1-(2,3-bis(methylthio)propyl)-4-methylbenzene (2d): Pale-yellow liquid (170 mg, 75% yield), 'H
NMR (600 MHz, CDCls) ¢ 7.13-7.10 (m, 4H), 3.08 (dd, J = 13.9, 6.1 Hz, 1H), 2.95 — 2.89 (m, 1H),
2.84 -2.77 (m, 2H), 2.67 (dd, J=13.3, 7.7 Hz, 1H), 2.32 (s, 3H), 2.13 (s, 3H), 2.06 (s, 3H); 1*C {'H}
NMR NMR (150 MHz, CDCls) ¢ 136.0, 135.8 (2C), 129.2 (2C), 129.0, 48.3, 39.1, 39.0, 21.1, 16.4,
13.9. GC-MS (EL, 70 eV) m/z: 226, 178, 165, 121; HRMS (EI) m/z: [M]" Caled for C;,H;sS,
226.0844; Found, 226.0843.

1-(2,3-bis(methylthio)propyl)-2-methoxybenzene (2¢): Pale-yellow liquid (189 mg, 78% yield),
"H NMR (600 MHz, CDCl;) 6 7.22 (td, J = 8.0, 1.7 Hz, 2H), 6.85 (d, J = 8.1 Hz, 2H), 3.82 (s, 3H),
3.11 (dt, J = 9.4, 6.8 Hz, 2H), 2.87 (td, J = 9.7, 5.0 Hz, 1H), 2.80 — 2.74 (m, 1H), 2.74 — 2.66 (m,
1H), 2.12 (s, 3H), 2.07 (s, 3H); 3C {'"H} NMR NMR (150 MHz, CDCl;) ¢ 157.5, 131.2, 127.8, 127.4,
120.3, 110.2, 55.2, 46.3, 39.3, 35.1, 16.3, 13.6. GC-MS (EI, 70 eV) m/z: 242, 194, 181, 147. HRMS
(EI) m/z: [M]" Calcd for C;,H;50S; 242.0794; Found, 242.0792.

1-(2,3-bis(methylthio)propyl)-4-methoxybenzene (2f): Pale-yellow liquid (196 mg, 81% yield), 'H
NMR (600 MHz, CDCl3) 6 7.19 — 7.10 (m, 2H), 6.87 — 6.80 (m, 2H), 3.79 (s, 3H), 3.06 (dd, J=13.9,

6.0 Hz, 1H), 2.95 — 2.85 (m, 1H), 2.80 — 2.75 (m, 2H), 2.66 (dd, J = 13.2, 7.7 Hz, 1H), 2.13 (s, 3H),
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2.06 (s, 3H); 3C {'"H} NMR NMR (150 MHz, CDCl;) ¢ 158.2, 130.9, 130.6 (2C), 113.7 (2C), 55.2,
48.4, 38.9, 38.6, 16.4, 14.0. GC-MS (EIL, 70 eV) m/z: 242, 194, 181, 147. HRMS (EI) m/z: [M]*
Calcd for C;,H;50S; 242.0794; Found, 242.0792.

(3-(3-chlorophenyl)propane-1,2-diyl)bis(methylsulfane) (2g): Pale-yellow liquid (180 mg, 73%
yield), '"H NMR (400 MHz, CDCl;) 6 7.27 — 7.20 (m, 3H), 7.13 (d, J = 6.6 Hz, 1H), 3.13 (dd, J =
13.8, 5.5 Hz, 1H), 2.90 (ddd, J = 10.6, 7.9, 5.3 Hz, 1H), 2.79 (dt, J = 11.5, 5.0 Hz, 2H), 2.65 (dd, J =
13.3, 8.0 Hz, 1H), 2.14 (s, 3H), 2.06 (s, 3H); '3C {{H} NMR NMR (100 MHz, CDCls) 6 141.0, 134.1,
129.5, 129.4, 127.6, 126.7, 48.0, 39.1 (2C), 16.4, 14.0. GC-MS (EIL, 70 eV) m/z: 246, 210, 163, 150,
137, 121. HRMS (EI) m/z: [M]" Calcd for C;1H;5CIS, 246.0298; Found, 246.0297.

1-(2,3-bis(methylthio)propyl)-4-fluorobenzene (2h): Pale-yellow liquid (198 mg, 86% yield), 'H
NMR (600 MHz, CDCl;) 6 7.23 — 7.16 (m, 2H), 7.04 — 6.95 (m, 2H), 3.11 (dd, J = 14.0, 5.6 Hz, 1H),
2.89 (tt, J =7.9, 5.4 Hz, 1H), 2.78 (dd, J = 13.3, 5.2 Hz, 2H), 2.66 — 2.58 (m, 1H), 2.14 (s, 3H), 2.06
(s, 3H); 3C {'H} NMR NMR (150 MHz, CDCl;) ¢ 161.6 (d, Jcr = 243.0 Hz, 1C), 134.6 (d, Jcr =
3.15 Hz, 1C), 130.7 (d, Jc.r = 7.8 Hz, 2C), 115.1 (d, Jc.r = 21.0 Hz, 2C), 48.3, 39.0, 38.6, 16.4, 14.0.
GC-MS (EI, 70 eV) m/z: 230, 182, 169, 135, 121. HRMS (EI) m/z: [M]* Calcd for C,;H;sFS;
230.0594; Found, 230.0592.

1-(2,3-bis(methylthio)propyl)-4-(trifluoromethyl)benzene (2i): Pale-yellow liquid (174 mg, 62%
yield), '"H NMR (400 MHz, CDCl;) 6 7.56 (d, J = 7.7 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 3.23 (dd, J =
13.5, 4.5 Hz, 1H), 2.95 - 2.77 (m, 3H), 2.65 (dd, J = 12.6, 8.3 Hz, 1H), 2.15(d, J = 1.2 Hz, 3H), 2.06

(d, J = 1.2 Hz, 3H); 13C {'H} NMR NMR (100 MHz, CDCly) § 143.1, 129.7 (4C), 128.8 (d, Jor =
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32.1 Hz, 1C), 125.2 (q, Jcr = 3.8 Hz, 1C), 47.9, 39.2, 39.1, 16.4, 14.0. GC-MS (EI, 70 eV) m/z: 280,
232,219, 185, 121. HRMS (EI) m/z: [M]* Caled for C1,H5F3S; 280.0562; Found, 280.0564.
4-(2,3-bis(methylthio)propyl)benzonitrile (2j): Pale-yellow liquid (128 mg,54% yield), 'H NMR
(600 MHz, CDCl;) ¢ 7.60 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.25 (dd, J = 13.8, 4.9 Hz,
1H), 2.89 (dt, J = 13.3, 4.3 Hz, 1H), 2.87 — 2.78 (m, 2H), 2.62 (dd, J = 13.3, 8.6 Hz, 1H), 2.15 (s,
3H), 2.05 (s, 3H); 3C {'H} NMR (150 MHz, CDCl;) 6 144.7, 132.1 (2C), 130.2 (2C), 118.9, 110.4,
47.7,39.3,39.2, 16.4, 14.0. GC-MS (EI, 70 eV) m/z: 237, 189, 176, 142, 121. HRMS (EI) m/z: [M]*
Calcd for C;,H; 5sNS,237.0640; Found, 237.0642.
(3-(4-(methylthio)phenyl)propane-1,2-diyl)bis(methylsulfane) (2k): Pale-yellow liquid (168 mg,
65% yield), 'H NMR (600 MHz, CDCl3) 6 7.20 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 3.09
(dd, J=13.9, 5.9 Hz, 1H), 2.90 (ddd, J = 13.3, 7.6, 5.8 Hz, 1H), 2.83 — 2.74 (m, 2H), 2.66 (dd, J =
13.3, 7.8 Hz, 1H), 2.47 (s, 3H), 2.14 (s, 3H), 2.06 (s, 3H); '*C {{H} NMR (150 MHz, CDCl;) 3 136.2,
135.9, 129.8 (2C), 126.8 (2C), 48.2, 38.99, 38.95, 16.4, 16.0, 14.0. GC-MS (EIL, 70 eV) m/z: 258,
210, 163, 150, 121. HRMS (EI) m/z: [M]" Calcd for C;,H,5S5258.0565; Found, 258.0564.
1-(2,3-bis(methylthio)propyl)naphthalene (21): Pale-yellow liquid (217 mg, 83% yield), '"H NMR
(400 MHz, CDCl;) 6 8.16 (d, /= 8.3 Hz, 1H), 7.87 (s, 1H), 7.76 (dt, J = 6.3, 3.3 Hz, 1H), 7.57 — 7.46
(m, 2H), 7.44 — 7.36 (m, 2H), 3.71 (q, J = 9.4 Hz, 1H), 3.19 — 3.07 (m, 2H), 2.88 (dd, J = 13.3, 4.5
Hz, 1H), 2.81 — 2.68 (m, 1H), 2.15 (s, 3H), 2.02 (s, 3H); *C {'H} NMR (100 MHz, CDCI3) ¢ 135.1,
133.9, 131.9, 128.9, 127.9, 127.4, 126.0, 125.5, 125.3, 123.6, 47.4, 39.9, 37.4, 16.6, 13.9. GC-MS
(EL, 70 eV) m/z: 262, 214, 167, 153, 121. HRMS (EI) m/z: [M]" Calcd for C,sH;sS,, 262.0844;

Found, 262.0845.
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4-(2,3-bis(methylthio)propyl)-1,2-dimethoxybenzene (2m): Pale-yellow liquid (117 mg, 43%
yield), 'H NMR (600 MHz, CDCl;) ¢ 6.84 — 6.73 (m, 3H), 3.87 (d, J = 10.0 Hz, 6H), 3.06 — 3.02 (m,
1H), 2.94 — 2.89 (m, 1H), 2.86 — 2.74 (m, 2H), 2.68 — 2.64 (m, 1H), 2.14 (s, 3H), 2.08 (s, 3H); 13C
{'H} NMR (150 MHz, CDCl;) ¢ 148.7, 147.7, 131.4, 121.4, 112.6, 111.1, 55.9, 55.9, 48.4, 39.2,
39.0, 16.5, 14.1. GC-MS (EI, 70 eV) m/z: 272, 224, 177, 151; GC-MS (EI, 70 eV) m/z: 226, 165,
117. HRMS (EI) m/z: [M]" Calcd for C,3H,00,S,, 272.0899; Found, 272.0897.

1-(3,4-bis(methylthio)butyl)benzene (2n): Pale-yellow liquid (127 mg, 56% yield), '"H NMR (600
MHz, CDCl3) 6 7.28 (s, 2H), 7.21 (dd, J = 17.1, 5.0 Hz, 3H), 2.89-2.83 (m, 2H), 2.81 — 2.73 (m, 2H),
2.66 (d, J = 6.6 Hz, 2H), 2.22 — 2.12 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H); *C {'H} NMR (150 MHz,
CDCly) 0 141.6, 128.5 (2C), 128.4 (2C), 125.9, 45.4, 39.8, 34.1, 32.8, 16.1, 13.0. GC-MS (EI, 70 eV)
m/z: 226, 165, 117. HRMS (EI) m/z: [M]* Calcd for Ci,H;5S,, 226.0844; Found, 226.0848.

1-(methylthio)-3-phenylpropan-2-ol (3a): Pale-yellow liquid(158 mg, 87% yield), 'H NMR (400
MHz, CDCl;) ¢ 7.32 — 7.28 (m, 2H), 7.24 — 7.21 (m, 3H), 3.93 — 3.92 (m, 1H), 2.84 (d, /= 6.3 Hz,
2H), 2.66 (dd, J = 13.6, 3.8 Hz, 1H), 2.59 (s, 1H), 2.50 (dd, J = 13.6, 8.5 Hz, 1H), 2.09 (s, 3H); '3C
{'"H} NMR (100 MHz, CDCl;) ¢ 137.9, 129.3 (2C), 128.4 (2C), 126.5, 69.9, 42.4, 41.2, 15.6. GC-MS
(EL, 70 eV) m/z: 182, 164, 117, 91. HRMS (ESI-TOF) m/z: [M+Na]* Calcd for C,oH;4OSNa 205.
0658; Found 205.0658.
1-(methylthio)-3-o-tolylpropan-2-ol (3b): Pale-yellow liquid(167 mg, 85% yield), 'H NMR (400
MHz, CDCls) 6 7.16 (dp, J = 9.2, 5.2, 4.4 Hz, 4H), 3.96 — 3.92 (m, 1H), 2.86 (d, J = 6.5 Hz, 2H),
2.69 (dd, J = 13.6, 3.9 Hz, 1H), 2.59 — 2.49 (m, 2H), 2.34 (s, 3H), 2.10 (s, 3H); *C {'H} NMR (100

MHz, CDCls) 6 136.5, 136.2, 130.4, 130.0, 126.6, 125.9, 69.3, 41.5, 39.7, 19.6, 15.7. GC-MS (EI, 70
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eV) m/z: 196, 178, 131, 106, 91. HRMS (ESI-TOF) m/z: [M+Na]* Calcd for C,;;H;sOSNa 219.0814;

Found 219.0802.

1-(methylthio)-3-m-tolylpropan-2-ol (3¢): Pale-yellow liquid(163 mg, 83% yield), 'H NMR (400
MHz, CDCl;) ¢ 7.20 (t, J = 7.7 Hz, 1H), 7.04 (t, J = 7.6 Hz, 3H), 3.96 — 3.89 (m, 1H), 2.81 (d, J =
6.4 Hz, 2H), 2.68 (dd, J = 13.6, 3.8 Hz, 1H), 2.58 — 2.46 (m, 2H), 2.34 (s, 3H), 2.11 (s, 3H); 13C {'H}
NMR (100 MHz, CDCl3) ¢ 138.1, 137.8, 130.1, 128.4, 127.3, 126.3, 67.0, 42.5, 41.3, 21.4, 15.6.
GC-MS (EIL, 70 eV) m/z: 196, 178, 131, 106, 91. HRMS (ESI-TOF) m/z: [M+Na]" Calcd for
C11H1cOSNa 219.0814; Found 219.0812.

1-(methylthio)-3-p-tolylpropan-2-ol (3d): Pale-yellow liquid(172 mg, 88% yield), '"H NMR (400
MHz, CDCl;) 6 7.11 (s, 4H), 3.94 — 3.88 (m, 1H), 2.80 (d, J = 6.4 Hz, 2H), 2.67 (dd, J = 13.6, 3.8
Hz, 1H), 2.58 — 2.44 (m, 2H), 2.32 (s, 3H), 2.09 (s, 3H); 3C {'H} NMR (100 MHz, CDCl;) ¢ 136.1,
134.8, 129.3 (2C), 129.3 (2C), 70.1, 42.1, 41.3, 21.1, 15.7. GC-MS (EI, 70 eV) m/z: 196, 178, 131,
106, 91. HRMS (ESI-TOF) m/z: [M+Na]* Calcd for C;;H;0SNa 219.0814; Found 219.0815.

1-(4-methoxyphenyl)-3-(methylthio)propan-2-ol (3¢): Pale-yellow liquid(178 mg, 84% yield), 'H
NMR (400 MHz, CDCl;) ¢ 7.15 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 3.88 (dq, J = 8.2, 4.7,
4.1 Hz, 1H), 3.79 (s, 3H), 2.79 (d, J = 6.3 Hz, 2H), 2.71 — 2.62 (m, 1H), 2.50 (dd, J = 13.7, 8.6 Hz,
2H), 2.10 (s, 3H); C {'H} NMR (100 MHz, CDCls) ¢ 158.3, 130.3 (2C), 129.8, 113.9 (2C), 70.0,
55.2,41.6,41.2, 15.6. GC-MS (EI, 70 eV) m/z: 212, 194, 147, 121. HRMS (EI) m/z: [M]* Calcd for
C11H160,8S, 212.0866; Found, 212.0864.

1-(2-methoxyphenyl)-3-(methylthio)propan-2-ol (3f): Pale-yellow liquid(182 mg, 86% yield), 'H

NMR (400 MHz, CDCL3) 6 7.25 — 7.10 (m, 2H), 6.98 — 6.78 (m, 2H), 4.01 (d, J= 11.1 Hz, 1H), 3.82
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(s, 3H), 2.99 — 2.82 (m, 2H), 2.79 (s, 1H), 2.65 (dd, J = 13.6, 4.3 Hz, 1H), 2.54 (dd, J = 13.6, 8.0 Hz,
1H), 2.11 (s, 3H); 3C {'H} NMR (100 MHz, CDCl;) 6 157.5, 131.4, 128.0, 126.4, 120.7, 110.5, 69.5,
55.3,41.4,37.2, 15.8. GC-MS (EI, 70 eV) m/z: 212, 194, 147, 121. HRMS (EI) m/z: [M]* Calcd for
C11H160,8S, 212.0866; Found, 212.0867.

1-(3-chlorophenyl)-3-(methylthio)propan-2-ol (3g): Pale-yellow liquid(175 mg, 81% yield), 'H
NMR (400 MHz, CDCl3) 6 7.23 (d, J= 7.5 Hz, 3H), 7.16 — 7.09 (m, 1H), 3.92 (ddt, /= 12.4, 6.2, 3.9
Hz, 1H), 2.82 (d, J = 6.3 Hz, 2H), 2.73 — 2.58 (m, 2H), 2.50 (dd, J = 13.7, 8.7 Hz, 1H), 2.11 (s, 3H);
13C {'H} NMR (100 MHz, CDCl3) ¢ 140.1, 134.2, 129.7, 129.4, 127.6, 126.7, 69.5, 42.0, 41.4, 15.6.
GC-MS (EI, 70 eV) m/z: 216, 198, 151, 91. HRMS (ESI-TOF) m/z: [M+Na]* Calcd for

C1oH3CIOSNa 239.0268; Found 239.0268.

1-(4-fluorophenyl)-3-(methylthio)propan-2-ol (3h): Pale-yellow liquid(170 mg, 85% yield), 1H
NMR (600 MHz, CDCl3) 6 7.23 — 7.16 (m, 2H), 7.04 — 6.95 (m, 2H), 3.93 — 3.85 (m, 1H), 2.81 (d, J
= 6.3 Hz, 2H), 2.67 (dd, J = 13.7, 3.7 Hz, 1H), 2.56 (s, 1H), 2.49 (dd, J = 13.7, 8.7 Hz, 1H), 2.10 (s,
3H); 3C {'H} NMR (150 MHz, CDCl;) 0 161.7 (d, Jo.r = 93 Hz, 1C), 133.6 (d, Jc.r = 3.15 Hz, 1C),
130.8 (d, Jo.rp = 7.8 Hz, 2C), 115.3 (d, Jo.r = 21 Hz, 2C), 69.7, 41.6, 41.3, 15.6. GC-MS (EI, 70 eV)
m/z: 200, 169, 109, 91. HRMS (ESI-TOF) m/z: [M+Na]" Calcd for C;oH;3FOSNa 223.0563; Found

223.0563.

1-(4-(trifluoromethyl)phenyl)-3-(methylthio)propan-2-ol (31): Pale-yellow liquid(183 mg, 73%
yield), "H NMR (400 MHz, CDCl5) 6 7.57 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 3.95 (ddq, J
=8.7,5.8,3.2 Hz, 1H), 2.90 (d, /= 6.6 Hz, 2H), 2.69 (dd, J = 13.7, 3.7 Hz, 1H), 2.65 — 2.56 (m, 1H),

2.51 (dd, J=13.7, 8.8 Hz, 1H), 2.11 (s, 3H); 1*C {'H} NMR (100 MHz, CDCl;) ¢ 142.2, 129.7 (4C),
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128.9 (d, Jc.r=32.2 Hz, 1C), 125.3 (q, Jcr= 3.7 Hz, 1C), 69.3, 42.2, 41.5, 15.5. GC-MS (EI, 70 V)
m/z: 250, 232, 185, 159, 91. HRMS (ESI-TOF) m/z: [M+Na]" Calcd for C;;H;3F;0SNa 273.0531;

Found 273.0533.

1-(methylthio)-3-(naphthalen-4-yl)propan-2-ol (3j): Pale-yellow liquid (200 mg, 86% yield), 'H
NMR (400 MHz, CDCls) 0 8.10 (d, J = 8.3 Hz, 1H), 7.92 — 7.85 (m, 1H), 7.77 (d, J = 7.7 Hz, 1H),
7.62 —7.48 (m, 2H), 7.47 — 7.37 (m, 2H), 4.21 — 4.02 (m, 1H), 3.38 (dd, J = 13.9, 5.5 Hz, 1H), 3.29
(dd, J=14.0, 7.4 Hz, 1H), 2.73 (dd, J = 13.6, 4.3 Hz, 1H), 2.68 — 2.49 (m, 2H), 2.10 (s, 3H); 13C
{'H} NMR (100 MHz, CDCls) ¢ 134.1, 133.9, 132.1, 128.8, 127.6, 127.4, 126.0, 125.6, 125.4, 123.7,
69.5, 41.6, 39.6, 15.8. GC-MS (EI, 70 eV) m/z: 232, 214, 167, 142. HRMS (EI) m/z: [M]" Calcd for
C14H,60S, 232.0916; Found, 232.0915.

5-(2-hydroxy-3-(methylthio)propyl)-2-methoxyphenol (3k): Pale-yellow liquid (148 mg, 65%
yield), 'H NMR (600 MHz, CDCls) 6 6.88 — 6.81 (m, 1H), 6.74 (d, /= 1.8 Hz, 1H), 6.70 (dd, J = 8.0,
1.8 Hz, 1H), 5.71 (s, 1H), 3.92 — 3.87 (m, 1H), 3.86 (s, 3H), 2.77 (d, J = 6.0 Hz, 2H), 2.67 (dd, J =
13.6, 3.9 Hz, 1H), 2.62 (s, 1H), 2.50 (dd, J = 13.6, 8.5 Hz, 1H), 2.10 (s, 3H); *C {'H} NMR (150
MHz, CDCl;) 6 146.4, 144.2, 129.6, 121.9, 114.4, 111.9, 70.1, 55.8, 42.0, 41.1, 15.6. GC-MS (EI, 70
eV) m/z: 228, 210, 163, 137. HRMS (EI) m/z: [M]" Caled for C;;H;c05S, 228.0815; found,
228.0813.

1-(methylthio)-3-(perfluorophenyl)propan-2-ol (31): Pale-yellow liquid (141 mg, 52% yield), 'H
NMR (600 MHz, CDCl;) 6 3.99 — 3.86 (m, 1H), 2.92 (d, J = 6.5 Hz, 2H), 2.78 — 2.68 (m, 2H), 2.55
(dd, J = 13.8, 8.8 Hz, 1H), 2.13 (s, 3H); *C {'H} NMR (150 MHz, CDCl;) ¢ 146.3-144.5 (m, 2C),

140.9-139.0 (m, 1C), 138.4-138.1 (m, 2C), 111.5 (dd, J = 20.6, 16.7 Hz, 1C), 67.7, 41.6, 29.1, 15.5.
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GC-MS (EI, 70 eV) m/z: 272, 207, 154. HRMS (APCI-TOF) m/z: [M-H,0+H]* Calcd for C;yHgFsS
255.0261; Found 255.0261.

1-(methylthio)-4-phenylbutan-2-ol (3m) :Pale-yellow liquid (174 mg, 89% yield), 'H NMR (600
MHz, CDCl3) 8 7.29 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 16.6, 7.6 Hz, 3H), 3.75 — 3.64 (m, 1H), 2.90 —
2.81 (m, 1H), 2.76 — 2.67 (m, 2H), 2.60 (s, 1H), 2.48 (dd, /= 13.7, 9.2 Hz, 1H), 2.10 (s, 3H), 1.87 —
1.75 (m, 2H); C {'H} NMR (150 MHz, CDCl;) 6 141.8, 128.43 (2C), 128.42 (2C), 125.9, 67.7,
42.3,37.8,32.1, 15.5. GC-MS (EI, 70 eV) m/z: 196, 148, 137, 117. HRMS (EI) m/z: [M]" Calcd for
C11H;60S, 196.0916; Found 196.0915.

1-(methylthio)octan-2-ol (3n), Pale-yellow liquid (118 mg, 67% yield), H NMR (500 MHz,
CDCl) 6 3.64 (dd, J = 11.3, 4.5 Hz, 1H), 3.47 (dd, J = 11.3, 7.3 Hz, 1H), 2.72 — 2.58 (m, 1H), 2.21
(s, 1H), 2.01 (s, 3H), 1.55 - 1.37 (m, 4H), 1.27 (t,J = 14.4 Hz, 6H), 0.87 (t, J = 6.7 Hz, 3H); '3C {'H}
NMR (126 MHz, CDCls) & 62.6, 50.0, 31.7, 30.7, 29.1, 27.0, 22.6, 14.1, 11.7. HRMS (EI) m/z: [M]*
Calcd for CoH,,OS, 176.1229; found 176.1226,
1-((methyl-d3)thio)-3-phenylpropan-2-ol (30): Pale-yellow liquid (120 mg, 65% yield), '"H NMR
(400 MHz, CDCl3) 6 7.34 — 7.27 (m, 2H), 7.23 (d, /= 7.2 Hz, 3H), 3.93 (s, 1H), 2.84 (d, J = 6.3 Hz,
2H), 2.67 (d, J = 13.1 Hz, 1H), 2.51 (dd, J = 13.7, 8.9 Hz, 2H); 13C {'H} NMR (100 MHz, CDCls) ¢
137.9, 129.4, 128.5, 126.5, 70.01, 42.5 (2C), 41.1. GC-MS (EI, 70 eV) m/z: 185, 167, 117. HRMS

(ESI-TOF) m/z: [M+Na]* Caled for C1oH,,D;NaOS 208.0846; Found 208.0843.

1-(methylthio)-3-phenylpropan-2-ol-'80 (3a-1): Pale-yellow liquid (140 mg, 76% yield), '"H NMR
(400 MHz, CDCl3) 'H NMR (500 MHz, CDCl3) 8 7.37 — 7.31 (m, 2H), 7.29 — 7.24 (m, 3H), 4.03 —

3.89 (m, 1H), 2.88 (dd, J = 6.4, 2.9 Hz, 2H), 2.71 (d, J = 12.4 Hz, 1H), 2.59 (s, 1H), 2.54 (dd, J =
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13.5, 8.8 Hz, 1H), 2.13 (s, 3H); 3C {'H} NMR (125 MHz, CDCl3) & 207.1, 137.9, 129.4 (2C),
128.5(2C), 126.5, 69.8, 42.45, 41.3, 15.6. GC-MS (EL, 70 eV) m/z: 184, 164, 117, 91. HRMS

(ESI-TOF) m/z: [M+Na]* Caled for C,oH;4!%0SNa 207.0700; Found 207.0700.

2,3-dihydro-2-((methylthio)methyl)benzofuran (4a): Pale-yellow liquid (166 mg, 92% yield), 'H
NMR (600 MHz, CDCl5) 6 7.19 (d, J = 7.3 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 6.87 (t, J/ = 7.4 Hz,
1H), 6.80 (d, J = 8.0 Hz, 1H), 4.97 (dq, J = 9.0, 6.6 Hz, 1H), 3.38 (dd, J = 15.6, 9.1 Hz, 1H), 3.08
(dd, J=15.6, 6.9 Hz, 1H), 2.91 (dd, J = 13.7, 6.0 Hz, 1H), 2.79 (dd, J = 13.7, 6.6 Hz, 1H), 2.23 (s,
3H); 3C {'"H} NMR (150 MHz, CDCl;) & 159.1, 128.0, 126.2, 125.0, 120.5, 109.4, 82.0, 39.2, 34.9,
16.4. HRMS (APCI-TOF) m/z: [M+H]" calcd for C;(H;30S, 181.0687; Found, 181.0681.

2-((methylthio)methyl)-2,3-dihydrobenzofuran-7-carbaldehyde (4b): Pale-yellow liquid(177 mg,
85% yield), 'H NMR (600 MHz, CDCIl;) 8 10.18 (s, 1H), 7.56 (dd, J = 7.8, 0.8 Hz, 1H), 7.42 —7.30
(m, 1H), 6.91 (t, J=7.5 Hz, 1H), 5.14 (dtd, /= 9.2, 6.8, 5.3 Hz, 1H), 3.36 (dd, /= 15.9, 9.2 Hz, 1H),
3.09 (dd, J=15.9, 6.8 Hz, 1H), 2.94 (dd, J=13.9, 5.3 Hz, 1H), 2.81 (dd, J=13.9, 6.9 Hz, 1H), 2.20
(s, 3H); 3C {'H} NMR (150 MHz, CDCl;) 6 188.6, 161.4, 130.9, 128.8, 127.0, 120.7, 119.4, 84.2,
38.9, 33.6, 16.4. HRMS (ESI-TOF) m/z: [M+Na]*: Calcd for C;H;,0,SNa 231.0450; Found,
231.0450.

7-methoxy-2-((methylthio)methyl)-2,3-dihydrobenzofuran (4c), Pale-yellow liquid: 187 mg, 89%
yield), 'H NMR (400 MHz, CDCl5) 6 6.88 — 6.78 (m, 2H), 6.74 (dd, /= 6.8, 3.8 Hz, 1H), 5.08 —4.92
(m, 1H), 3.86 (s, 3H), 3.37 (dd, J = 15.6, 9.0 Hz, 1H), 3.12 (dd, J = 15.6, 7.2 Hz, 1H), 2.97 (dd, J =

13.6, 4.8 Hz, 1H), 2.79 (dd, J = 13.6, 7.8 Hz, 1H), 2.19 (s, 3H); 13C {'H} NMR (100 MHz, CDCl;) &
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147.5, 144.5, 1274, 121.1, 117.2, 111.2, 82.5, 55.9, 38.9, 35.3, 16.3. HRMS (ESI-TOF) m/z:
[M+H]* Calcd for C{1H;50,S 211.0787; Found, 211.0789.
7-methoxy-2-((methylthio)methyl)-2,3-dihydrobenzofuran-5-carbaldehyde  (4d), Pale-yellow
liquid: (195 mg, 82% yield), 'H NMR (400 MHz, CDCl3) 6 9.77 (s, 1H), 7.30 (d, J = 13.6 Hz, 2H),
5.20 -5.00 (m, 1H), 3.89 (d, J = 2.6 Hz, 3H), 3.41 (dd, J = 14.9, 10.0 Hz, 1H), 3.25 — 3.08 (m, 1H),
3.01 — 2.88 (m, 1H), 2.81 (ddd, J = 13.7, 7.4, 2.3 Hz, 1H), 2.17 (d, J = 2.5 Hz, 3H); 3C {'H} NMR
(100 MHz, CDCl;) 6 190.3, 153.3, 144.8, 131.1, 127.84, 121.4, 111.2, 84.1, 55.9, 38.7, 34.2, 16.2.
HRMS (ESI-TOF) m/z: [M+H]" Calcd for C{,H;503S 239.0736; Found, 239.0735.
4-allyl-2-(2-((methylthio)methyl)-2,3-dihydrobenzofuran-5-yl)phenol (4e), Pale-yellow liquid:
(237 mg, 76% yield), '"H NMR (500 MHz, CDCl;) 6 7.28 (s, 1H), 7.22 (d, J = 8.2 Hz, 1H), 7.15 —
7.00 (m, 2H), 6.91 (dd, J = 13.1, 8.2 Hz, 2H), 5.99 (ddt, J = 16.8, 10.0, 6.7 Hz, 1H), 5.14 — 5.07 (m,
2H), 5.07 — 5.02 (m, 1H), 3.44 (dd, J = 15.9, 9.1 Hz, 1H), 3.37 (d, J = 6.7 Hz, 2H), 3.15 (dd, J =
15.9, 7.0 Hz, 1H), 3.00 — 2.91 (m, 1H), 2.84 (dd, J = 13.7, 6.5 Hz, 1H), 2.26 (s, 3H); 1*C {'H} NMR
(125 MHz, CDCl;) 6 159.1, 150.8, 137.7, 132.2, 130.3, 129.3, 129.0, 128.7, 128.0, 127.6, 125.9,
115.6, 115.5, 110.0, 82.5, 39.4, 39.2, 34.8, 16.4. HRMS (APCI-TOF) m/z: [M+H]" calcd for:
C19H210,S 313.1262; Found, 313.1252.
2-(5-methyl-2-((methylthio)methyl)-2,3-dihydrobenzofuran-7-yl)-2H-benzo[d][ 1,2,3]triazole (4f),:
Pale-yellow liquid (252 mg, 81% yield), 'H NMR (600 MHz, CDCl;) 6 7.95 (dd, J = 6.6, 3.1 Hz,
2H), 7.71 (s, 1H), 7.46 — 7.35 (m, 2H), 7.09 (s, 1H), 5.30 — 5.16 (m, 1H), 3.47 (dd, J=15.8, 9.1 Hz,
1H), 3.18 (dd, J=15.8, 6.3 Hz, 1H), 2.96 (dd, J = 13.8, 4.8 Hz, 1H), 2.79 (dd, /= 13.8, 7.9 Hz, 1H),

2.37 (s, 3H), 2.17 (s, 3H); *C {'H} NMR (150 MHz, CDCl;) & 149.1, 144.7, 131.0, 129.8, 126.8 (2C)
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, 126.5, 123.8, 123.0, 118.3 (2C), 83.8, 38.6, 34.7, 20.6, 16.3. HRMS (ESI-TOF) m/z: [M+H]" Calcd

for Ci7H;sN;0S 312.1165, found 312.1159.
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