Tetrahedron 72 (2016) 5699-5706

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A mild method for regioselective de-O-methylation of saccharides by $Co_2(CO)_8/Et_3SiH/CO$ system

^a State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China

^b National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, PR China

ARTICLE INFO

Article history: Received 13 June 2016 Received in revised form 25 July 2016 Accepted 30 July 2016 Available online 2 August 2016

Keywords: De-O-methylation Saccharides Dicobalt octacarbonyl Regioselectivity

ABSTRACT

A new method for cleaving methyl ethers off protected saccharides using $Co_2(CO)_8/Et_3SiH/CO$ system was developed. The method showed regioselectivity in different protected monosaccharides with various anomeric groups. The primary and equatorial secondary methyl ethers were preferentially removed. This method was successfully applied to the synthesis of the DEF trisaccharide segment of Idraparinux, which is highly methylated.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Selective protection and deprotection of hydroxyl groups are critical transformations in carbohydrate chemistry. Among the many protecting groups, methyl ether is less frequently used than other ethers such as benzyl ether because of its harsh cleavage conditions, despite its simple installation and inherent stability. On the other hand, methyl group protected saccharides are widely found in various therapeutic agents and materials, such as idraparinux, cyclodextrin, and surfactants, because the protection of the hydroxyl group with a methyl group may enhance the stability of saccharides while also maintaining its solubility.¹ Comprehensive research on the formation and cleavage of methyl ethers is important for the synthesis of such complex oligosaccharides. In particular, several methods have been developed to remove methyl ethers, including acids (HCl, H₂SO₄, TFA), Lewis acids (BBr₃, BCl₃, AlCl₃, SiCl₄, NbCl₅, MgI, TMSI),² bases (LHDMS, PhSK, Et₂NCH₂CH₂SH),³ reductive cleavage (LAH,⁴ DIBAL-H and TIBAL¹⁻ ^{b,5a,b}), and ionic liquids.⁶ However, these methods are sometimes too harsh for saccharide substrates such as thioglycosides and phenolic glycosides, or not able to remove the methyl ether regioselectively, which is essential for the synthesis of complex oligosaccharides. There are only a few reported conditions that are suitable for regioselective de-O-methylation of saccharides, such as MeS-SiMe₃/Znl₂/n-Bu₄NI,⁷ oxidation-based cleavage of DIB,⁸ and engineered cytochrome P450_{BM3} demethylases.⁹ However, the substrate scope of these methods is limited, and development of a novel method for regioselective de-O-methylation is essential and a great challenge.

The most famous methylated oligosaccharide, idraparinux, is a derivative of fondaparinux, which is an efficient and safe anticoagulant drug used in the clinic.¹⁰ With many hydroxyl groups protected by methyl ethers, the synthesis of idraparinux is simpler than that of fondaparinux. Moreover, it has better inhibitory activity and much longer half-life. In addition, the dosage and administration frequency of idraparinux are also less than those of fondaparinux. Because of these advantages, idraparinux has been extensively studied recently.¹¹ However, the synthesis of idraparinux is still a challenge, usually requiring 40 steps, with multiple protecting group transformations.¹² Considering the numerous methyl ethers in idraparinux, regioselective de-O-methylation may simplify the total synthesis.

In our previous study, the $Co_2(CO)_8/Et_3SiH/CO$ system was found to be efficient in the cleavage of benzyl and *p*-methoxybenzyl groups in saccharide and non-saccharide substrates.¹³ This reactivity was mediated by the strong Lewis acidity and electrophilicity of the in situ generated $Et_3Si^+Co(CO)_4^-$ reagent. In this article, we report a novel method for the regioselective cleavage of methyl ethers in a wide variety of monosaccharides by the $Co_2(CO)_8/$ Et_3SiH/CO system (Scheme 1A). Furthermore, we explored the use

^{*} Corresponding author. Fax: +86 10 8280 5496; e-mail address: zjli@bjmu.edu. cn (Z.-jun Li).

of regioselective de-O-methylation by this system to the synthesis of the DEF trisaccharide segment of idraparinux, which could be used as an intermediate for the total synthesis of idraparinux (Scheme 1B).

with the fact that the actual catalytic reagent $Et_3Si^+Co(CO)_4$ generated by $Co_2(CO)_8/Et_3SiH/CO$ system *in situ* was sensitive to the steric hindrance and the hindrance of 6-OMe was smallest. Increasing the temperature to 70 °C or the reaction time to 72 h

Scheme 1. (A)Regio-selective de-O-methylation of saccharides Co₂(CO)₈/Et₃SiH/CO system; (B) Synthesis of DEF trisaccharides segment of idraparinux by regioselective de-O-methylation strategy.

2. Results and discussion

Recently, our laboratory extended the highly efficient and mild de-O-benzylation method with the $Co_2(CO)_8/Et_3SiH/CO$ system to the cleavage of *p*-methoxybenzyl ethers (PMB).¹³ We found that except for the PMB group, a methyl group on PMB in per-*p*-methoxybenzylated glucoside was also removed when reacted at 80 °C. We were interested in this observation and hoped to find an efficient method for selective de-O-methylation of protected sugars. Therefore, we used per-methylated- β -thioglucoside **1a** as a model substrate to explore and optimize the reaction condition. To simplify the purification steps and identification of the products, we further transformed the generated silyl ether to an acetyl group by treating with TBAF/THF and Ac₂O/Py (Table 1).

did not improve the conversion of **1a** (data not shown). With 6.0 equiv of $Co_2(CO)_8$, 85% of **1a** reacted, generating 52% **1b** and 18% de-2, 6-di-O-methylation product **1c** (the de-O-methylation site was confirmed by the chemical shifts and coupling constants of the hydrogen at the acetylation position, Table 1, Entry 2, and Table 2, Entry 1), indicating that enough amount of $Co_2(CO)_8$ is essential for sufficient conversion of **1a**. Lowering the temperature to room temperature gave no reaction of **1a** (Table 1, Entry 3), indicating that sufficiently high reaction temperatures were needed. If the solvent was changed to benzene, 40% of **1a** remained unreacted, and the products were a mixture of **1b** and de-2, 6-di-O-methylation products (Table 1, Entry 4). Changing the silane to PhMe₂SiH and reducing the amount used, **1a** was reacted completely but the products were too complex to purify

Table 1

Condition screening of de-O-methylation with per-methylated-\beta-thioglucoside as model substrate

	MeO MeO MeO Ia	STol Co ₂ (CO) ₈ , Silane (20equiv) CO (1atm), solvent	MeO OKe STol 2	. TBAF/THF M . Ac ₂ O/Py		
Entry	Silane	Co ₂ (CO) ₈ (equiv)	Solvent	T (°C)	Time (h)	Yield (%) ^a
1	Et ₃ SiH	3.0	Toluene	50	48	63 ^b
2	Et₃SiH	6.0	Toluene	50	42	52+18 ^c
3	Et ₃ SiH	6.0	Toluene	rt.	48	0
4	Et ₃ SiH	6.0	Benzene	50	48	45+15 ^d
5	PhMe ₂ SiH	1.0	Toluene	50	24	e
6	PhMe ₂ SiH	0.5	Toluene	50	24	e

^a Yield of 3 steps.

^b 37% of **1a** was unreacted.

^c 52% of **1b** and 18% of de-2, 6-bi-O-methylation product **1c** were obtained, with 15% of **1a** unreacted (see Table 2, entry 1 for more details).

 $^{\rm d}\,$ 45% of **1b** and 15% of **1c** were obtained, with 40% of **1a** unreacted.

^e 1a was completely reacted but the products were rather complex.

As shown in Table 1, **1a** was treated with different equivalents of $Co_2(CO)_8$, silanes, solvents, and temperatures. When the reaction was carried out with 3.0 equiv of $Co_2(CO)_8$ and 20 equiv of Et₃SiH for 48 h at 50 °C in toluene, 63% of de-6-O-methyltion product was obtained with 37% of **1a** unreacted (Table 1, Entry 1). The de-O-methylation happened at 6-OMe was in accordance

(Table 1, Entry 5 and 6), indicating that PhMe₂SiH was too reactive and additional methyl ethers were removed. Consequently, our optimized reaction condition was 6.0 equiv of $Co_2(CO)_8$, 20 equiv of Et₃SiH, and CO (1 atm) in toluene at 50 °C, which could convert the starting materials adequately and gave sufficient product yield.

Table 2 Regioselective de-O-methylation of methylated saccarides by $\rm Co_2(\rm CO)_8/Et_3SiH/CO$ system

	OMe	1. 6eq Co ₂ (CO) ₈ /20eq Et ₃ SiH/CO Toluene/50 [°] C	OAc
	MeO R -	2.TBAF/THF 3.Ac ₂ O/Py	MeO
Entry	Substrates	Time (h)	Results
1	MeO MeO Ia	42	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} OAc \\ MeO \\ MeO \end{array} \\ \begin{array}{c} OMe \end{array} \\ \begin{array}{c} Tol \\ AcO \end{array} \\ \begin{array}{c} OMe \end{array} \\ \begin{array}{c} OAc \\ OMe \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OMe \end{array} \\ \begin{array}{c} OAc \\ OMe \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} OAc \\ OAc \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OAc \\ OMe \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OAc \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OAc \\ OAc \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OAc \\ OAc \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OAc \\ OAc \\ OAc \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}
2 ^a		48	BnO BnO 2b 84%
3ª	BnO OMe BnO OBn 3a	48	BnO OAc BnO OBn STOI 3b 85%
4 ^a		48	4b STOL
5	MeO OMP MeO OMP 5a	48	$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $
6	BnO OTBDPS BnO OTBDPS BnO OTBDPS STol OMe 6a	48	Bno OAc STO DAC STO 6b ^b 40%
7	MeO MeO STol 7a	28	$\begin{array}{c cccc} OMe & OH & OMe & OAc & OMe & OAc \\ MeO & STol & MeO & OAc & OMe & OAc \\ OMe & OAc & STol & AcO & OMe \\ 7b^{b} & 7c & 7d \\ 49\% & 28\% & 8\% \end{array}$
8	MeO OMe MeO OMP OMe 8a	48	$\begin{array}{c} OMe OH \\ MeO OMP OMP OMe OAc \\ OMP OMP OMP OMP OMP OMP \\ OMe OMP OMP \\ Sb^{b} Sc Sd \\ 27\% 41\% 15\% \end{array}$
9	Meo Meo Meo STol 9a	48	Aco Meo Aco STol STol STol STol STol STol STol STo
10	Meo Meo Meo OMP 10a	48	$\begin{array}{c} AcO \\ MeO \\ AcO \\ MeO \\ MOP \\ MeO \\ MOP \\ MeO \\ MeO \\ MOP \\ MeO \\ MeO \\ MeO \\ MOP \\$
			(continued on next page)

Table 2 (continued)

^a The reaction was performed at 70 °C. ^b the removal of silly ether by TBAF/THF was performed at 50 °C for 2 h ^c No transformation of hydroxyl group to acetyl group was performed.

Under the established conditions, a wide variety of methylated saccharide substrates were treated with the Co₂(CO)₈/Et₃SiH/CO system, and the results are summarized in Table 2. In these substrates, the 6-OMe was preferentially removed. For example, the per-methylated- β -thioglucoside **1a**, 2, 3, 4-tri-O-Bn- 6-O-Me- β -thioglucoside **2a**, 2, 3, 4-tri-O-Bn-6-O-Me- β -thioglactoside **3a**, and 2, 3, 4-tri-O-Bn-6-O-Me- α -thiomannoside **4a**, all gave the de-6-O-Me products (entry1, 2, 3, 4) as the major product in high yield. This was attributed to the reduced steric hindrance at 6-O-position, where the methyl ether could be easily attacked by the Et₃Si⁺Co(CO)₄ reagent.

In addition to the cleavage of 6-OMe, another methyl group was also removed. For **1a**, 18% of de-3, 6-di-O-Me product **1c** was obtained (Table 2, entry 1). Similar reactivity was observed in the de-O-methylation of per-methylated- β -phenolic glucoside **5a**, which yielded 18% of de-2, 6-di-O-Me product **5c** and 16% of de-4, 6-di-O-Me product **5d** (entry 5). For the substrates with only one secondary methyl ether at 2-O-position, such as 2-O-Me-3, 4-O-Bn-6-O-TBDPS- β -thioglucoside **6a**, the 2-OMe could also be removed with a yield of 40% (entry 6). These results indicated that unlike the benzyl ether system, secondary methyl ether may also be removed by Co₂(CO)₈/Et₃SiH/CO system. This may be due to less steric hindrance of the secondary methyl ether compared to that of the analogous benzyl ether, allowing the Et₃Si⁺Co(CO)₄⁻ reagent to attack on these secondary methyl ethers.

Among the 2-OMe, 3-OMe, 4-OMe groups, the equatorial methyl ethers were preferentially removed because the equatorial methyl ethers were less sterically hindered and more electron rich.¹⁴ This could be demonstrated by the de-O-methylation of per-methyl-ated- β -thiogalactoside **7a**, and per-methylated- β -phenolic galactoside **8a**, whose equatorial 2-OMe and 3-OMe groups were removed whereas the axial 4-OMe remained (entry 7, 8). The

cleavage of the equatorial 3-OMe and 4-OMe groups and nonreactivity of the axial 2-OMe of the per-methylated-β-thiomannoside **9a** and per-methylated- β -phenolic mannoside **10a** (entry 9, 10) further confirmed our conclusion. In addition, because mannoses were more reactive, the main product of **9a** and **10a** were the de-4, 6-di-O-Me products (9b, 9c, 10b and 10c), and even the de-3, 4, 6tri-O-Me product 10d were obtained. Interestingly, the anomic methyl group could also be removed. Per-methylated glucose 11a produced 43% of de-1, 6-bi-O-Me products 7c, in addition to 55% of de-6-O-Me product 11b (entry 11), suggesting that the anomic methyl group was sensitive to the reaction condition. The de-Omethylation reaction was also carried out with permethylated βthiomaltoside 12a, which has two 6-OMe groups, yielding the de-6-O-methylation product 12b and de-6'-O-methylation product 12c both in 30% yield (entry 12), suggesting that the hindrance of 6-OMe and 6'-OMe were similar.

After the successful application of the procedure to monosaccharides and disaccharides, we investigated the selective de-Omethylation of trisaccharide 13 in order to synthesize the DEF segment of Idraparinux. When compound 13 was treated with Co₂(CO)₈ (3.0 equiv) and Et₃SiH (20 equiv) at 50 °C in toluene for 24 h, the 6-O-Me on sugar D, whose steric hindrance was smaller the that on sugar E, was removed first and transformed to silvl ether (14, 48%). The silvlated product 14 was then converted to acetylated compound 15 in 2 steps in 90% yield. When 15 was treated with Co₂(CO)₈ (6.0 equiv) and Et₃SiH (40 equiv) at 50 °C in toluene for 48 h, the 6-O-Me on sugar E was removed. Because of the high steric hindrance of 6-O-Me of sugar E, the yield of de-Omethylation is not very high. Then the TES group was removed by CSA quantitatively to produce compound 16 (Scheme 2), and the total yield of two steps is 20%. Compound 16 could be used as the key intermediate in the synthesis of Idraparinux.

Scheme 2. Reagents and conditions: (a) Co₂(CO)₈ (3.0 equiv)/Et₃SiH (20equiv)/CO(1 atm), toluene, 50 °C, 48%, 24 h. (b) 1. TBAF, THF, 50 °C, 15 h; 2. Ac₂O, Py, 3 h. 90% in 2 steps. (c) 1. Co₂(CO)₈ (6equiv)/Et₃SiH (40equiv)/CO(1 atm), toluene, 50 °C, 48 h; 2. CSA, CH₂Cl₂/CH₃OH (4/1), 20% in 2 steps.

The proposed mechanism for the deprotection of methyl ethers is shown in Scheme 3. $Co_2(CO)_8$ reacts with Et₃SiH, generating the active reagent Et₃Si⁺Co(CO)₄ in situ. The Lewis acidic and electrophilic Et₃Si⁺ combines adds to the oxygen atom and the Co(CO)₄ attacks the methyl group, leading to the cleavage of the methyl ether and generating the silyl ether.

4.3. General procedure B for de-O-silylation and acylation

TBAF·3H₂O (1.2 equiv) was added to a solution of the substrate in THF, and the mixture was stirred at room temperature for 30 min. The solvent was removed at reduced pressure and the residue was purified by flash chromatography.

Scheme 3. Proposed mechanism of de-O-methylation by Co₂(CO)₈/Et₃SiH/CO system.

3. Conclusion

In conclusion, a novel regioselective method has been developed for the cleavage of methyl ethers of saccharides under mild conditions with the $Co_2(CO)_8/Et_3SiH/CO$ system. This system shows selectivity for primary and equatorial secondary methyl ether of various O-methylated saccharides. This de-O-methylation method provides a powerful tool for accessing an array of methylated saccharides with free primary and secondary hydroxyl groups, which could be used for further synthesis of more complex oligosaccharides. Using this regioselective de-O-methylation strategy, we achieved a concise synthesis of DEF trisaccharides segment of Idraparinux.

4. Experimental

4.1. General

All chemicals were purchased as reagent grade and used without further purification, unless otherwise noted. Dichloromethane was distilled over phosphorus pentoxide. Benzene, toluene, tetrahydrofuran, and pyridine were distilled over sodium. Analytical TLC was performed on precoated aluminum sheets with detection by fluorescence and/or by staining with 5% concentrated sulfuric acid in EtOH. Column chromatography was performed with silica gel (230–400 mesh, Merck). Optical rotation was measured using an Optical Activity AA-10R type polarimeter. ¹H NMR spectra were recorded on Advance DRX Bruker-400 spectrometers at 25 °C. Chemical shifts (in ppm) were referenced with tetramethylsilane (δ =0 ppm) in deuterated chloroform. ¹³C NMR spectra were obtained using the same NMR spectrometers and were calibrated with CDCl₃ (δ =77.16 ppm).

4.2. General procedure A for de-O-methylation

 $Co_2(CO)_8$ (3 equiv or 6 equiv, purchased from Alfa Aesar Chemicals Co. without further purification) was added to a flask under an atmosphere of CO. Et₃SiH (20 equiv, purchased from Alfa Aesar Chemicals Co. without further purification) was then added, and the mixture was stirred for 30 min at room temperature. A solution of permethylated saccharides in anhydrous toluene (2 mmol/5 ml) was degassed and then added using a syringe. The mixture was heated in an oil bath at 50 °C, and the reaction was monitored by TLC. After the disappearance of starting materials, the cobalt complex was precipitated by dropwise addition of pyridine and subsequent bubbling of oxygen through the solution for 20 min. The content of the flask was filtered through 5 cm of silica gel and eluted with ethyl acetate. The filtrate was evaporated and the residue was subjected to flash chromatography.

4.4. General procedure C for acylation

For acetylation, the de-O-silylation product was dissolved in pyridine, acetic anhydride (4 equiv) was added slowly, and the mixture was stirred over 4 h. The reaction was stopped by the addition of CH₃OH in an ice bath. Evaporation of the solvent afforded a residue, which was purified by flash chromatography.

4.5. *p*-Methylphenyl 6-0-acetyl-2,3,4-tri-0-methyl-1-thio-βp-glucopyranoside (1b)

General procedure A, B and C, white solid, 52%; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, 2H, *J*=8.1 Hz), 7.10 (d, 2H, *J*=8.0 Hz), 4.42 (d, 1H, *J*=9.8 Hz), 4.35 (dd, 1H, *J*=2.1, 11.8 Hz), 4.19 (dd, 1H, *J*=6.1, 11.8 Hz), 3.65 (s, 3H), 3.61 (s, 3H), 3.52 (s, 3H), 3.36–3.40 (m, 1H), 3.22 (t, 1H, *J*=8.8 Hz), 2.99–3.08 (m, 2H), 2.33 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 138.0, 132.9, 129.7, 88.7, 87.5, 82.6, 79.8, 76.8, 63.6, 61.1, 61.0, 60.7, 21.3, 21.0.

4.6. *p*-Methylphenyl 3,6-di-O-acetyl-2,4-di-O-methyl-1-thio- β -p-glucopyranoside (1c)

General procedure A, B and C, white solid, 18%; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, 2H, *J*=8.1 Hz), 7.12 (d, 2H, *J*=8.0 Hz), 5.15 (t, 1H, *J*=9.2 Hz), 4.52 (d, 1H, *J*=9.8 Hz), 4.36 (dd, 1H, *J*=2.1, 11.9 Hz), 4.22 (dd, 1H, *J*=5.9, 11.9 Hz), 3.48–3.54 (m, 4H), 3.40 (s, 3H), 3.21 (t, 3H, *J*=9.5 Hz), 3.13 (t, 3H, *J*=9.5 Hz), 2.34 (s, 3H), 2.14 (s, 3H), 2.11 (s, 3H).

4.7. *p*-Methylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio-β-D-glucopyranoside (2b)

General procedure A, B and C, white solid, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, 2H, *J*=8.1 Hz), 7.50 (d, 2H, *J*=8.1 Hz), 7.44–7.33 (m, 13H), 7.19 (d, 2H, *J*=8.0 Hz), 5.03–5.00 (dd, 2H, *J*=10.3, 2.2 Hz), 4.95–4.92 (dd, 2H, *J*=10.8, 3.2 Hz), 4.84 (d, 1H, *J*=10.3 Hz), 4.69–4.65 (dd, 2H, *J*=9.8, 6.2 Hz), 4.47 (d, 1H, *J*=11.6 Hz), 4.32–4.28 (dd, 1H, *J*=11.8, 3.7 Hz), 3.82–3.78 (m, 1H), 3.61–3.54 (m, 3H), 2.41 (s, 3H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 138.0, 137.9, 137.7, 132.9, 129.7, 128.6, 128.5, 128.1, 128.0, 127.9, 87.8, 86.8, 80.9, 77.6, 76.9, 75.9, 75.5, 75.1, 63.3, 21.2, 21.0.

4.8. *p*-Methylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio-β-D-galactopyranoside (3b)

General procedure A, B and C, white solid, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, 2H, *J*=8.1 Hz), 7.47 (d, 2H, *J*=8.1 Hz), 7.45–7.28 (m, 13H), 7.08 (d, 2H, *J*=8.0 Hz), 5.05 (d, 1H, *J*=11.5 Hz), 4.90 (d, 1H, *J*=11.2 Hz), 4.84–4.78 (m, 3H), 4.7 (d, 1H, *J*=11.6 Hz), 4.63 (d, 1H, *J*=9.7 Hz), 4.34–4.30 (dd, 2H, *J*=11.2, 7.0 Hz), 4.18–4.14 (dd, 1H, *J*=11.3, 5.6 Hz), 3.99–3.95 (t, 1H, *J*=9.4 Hz), 3.81–3.77 (m,

1H), 3.66–3.60 (m, 2H), 2.35 (s, 3H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 138.3, 138.2, 137.4, 132.4, 130.2, 129.6, 128.4, 128.3, 128.1, 127.8, 127.7, 127.6, 88.1, 84.3, 76.0, 75.7, 74.3, 73.4, 73.2, 68.0, 63.5, 21.1, 20.9.

4.9. *p*-Methylphenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio- β -D-mannopyranoside (4b)

General procedure A, B and C, white solid, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.28 (m, 17H), 7.14 (d, 2H, *J*=8.0 Hz), 5.54 (d, 1H, *J*=1.4 Hz), 5.50 (d, 1H, *J*=5.50 Hz), 4.76–4.62 (m, 5H), 4.38–4.36 (m, 3H), 4.04–3.98 (m, 2H), 3.94–3.91 (dd, 1H, *J*=9.2, 3.0 Hz), 2.36 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 138.1, 138.0, 137.9, 132.3, 130.2, 129.8, 128.5, 128.4, 128.1, 127.9, 127.8, 85.9, 80.1, 76.0, 75.3, 74.7, 72.1, 71.9, 70.9, 63.6, 21.1, 20.9.

4.10. *p*-Methoxyphenyl 6-O-acetyl-2,3,4-tri-O-methyl-β-D-glucopyranoside (5b)

General procedure A, B and C, white solid, 43%; ¹H NMR (400 MHz, CDCl₃) δ 6.99–7.05 (m, 4H), 4.79 (d, 1H, *J*=9.2 Hz), 4.34 (dd, 1H, *J*=2.2, 11.8 Hz), 4.23 (dd, 1H, *J*=6.1, 11.8 Hz), 3.66 (s, 3H), 3.65 (s, 3H), 3.54 (s, 3H), 3.50–3.53 (m, 1H), 3.24–3.31 (m, 2H), 3.16 (t, 1H, *J*=9.2 Hz), 2.28 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 122.5, 118.0, 101.9, 86.5, 83.6, 79.6, 73.1, 63.4, 61.1, 60.8, 21.2, 21.0.

4.11. *p*-Methoxyphenyl 2,6-di-O-acetyl-3,4-di-O-methyl- β -D-glucopyranoside (5c)

General procedure A, B and C, white solid, 18%; ¹H NMR (400 MHz, CDCl₃) δ 6.92–6.94 (m, 2H), 6.79–6.81 (m, 2H), 5.11 (dd, 1H, *J*=8.0, 9.2 Hz), 4.80 (d, 1H, *J*=7.9 Hz), 4.39 (dd, 1H, *J*=2.2, 11.8 Hz), 4.25 (dd, 1H, *J*=5.6, 11.9 Hz), 3.77 (s, 3H), 3.56 (s, 3H), 3.55 (s, 3H), 3.53–3.54 (m, 1H), 3.29–3.41 (m, 2H), 2.14 (s, 3H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 151.4, 118.6, 114.6, 100.4, 84.8, 79.4, 73.3, 72.9, 63.1, 60.8, 60.5, 55.8, 21.1, 21.0.

4.12. *p*-Methoxyphenyl 3,6-di-O-acetyl-2,4-di-O-methyl-β-D-glucopyranoside (5d)

General procedure A, B and C, white solid, 16%; ¹H NMR (400 MHz, CDCl₃) δ 6.98–7.01 (m, 2H), 6.81–6.84 (m, 2H), 5.16 (t, 1H, *J*=9.3 Hz), 4.83 (d, 1H, *J*=7.7 Hz), 4.36 (dd, 1H, *J*=2.2, 11.9 Hz), 4.27 (dd, 1H, *J*=5.7, 11.9 Hz), 3.78 (s, 4H), 3.60 (s, 3H), 3.43 (s, 3H), 3.33 (t, 2H, *J*=9.2 Hz), 2.17 (s, 3H), 2.09 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.0, 155.5, 151.1, 118.6, 118.5, 114.5, 102.4, 83.4, 83.0, 81.2, 77.9, 75.5, 72.7, 63.0, 60.6, 60.0, 55.7, 21.1, 20.9, 20.8, 20.8.

4.13. *p*-Methylphenyl 2,6-di-O-acetyl-3, 4-di-O-benzyl-1-thioβ-D-glucopyranoside (6b)

General procedure A, B and C, white solid, 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.28 (m, 12H), 7.09 (d, 2H, *J*=8.0 Hz), 5.45–5.40 (t, 1H, *J*=9.8 Hz), 5.0 (d, 1H, *J*=11.7 Hz), 4.74 (d, 1H, *J*=12.1 Hz), 4.63–4.54 (m, 3H), 4.31–4.26 (dd, 1H, *J*=11.2, 7.0 Hz), 4.14–4.10 (dd, 1H, *J*=11.3, 5.4 Hz), 3.88 (d, 1H, *J*=2.0 Hz), 3.64–3.57 (m, 2H), 2.33 (s, 3H), 2.09 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 169.5, 138.0, 137.7, 132.6, 129.7, 129.5, 128.5, 128.3, 128.2, 127.9, 127.7, 127.5, 87.0, 81.7, 76.2, 74.2, 72.5, 72.4, 69.7, 63.4, 21.1, 21.1, 20.8.

4.14. *p*-Methylphenyl 2,3,4-tri-O-methyl-1-thio-β-D-galactopyranoside (7b)

General procedure A and B, colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, 2H, *J*=8.2 Hz), 7.10 (d, 2H, *J*=8.0 Hz), 4.46 (d, 1H, *J*=9.6 Hz), 3.88–3.93 (m, 1H), 3.65–3.71 (m, 1H), 3.63 (d, 1H, *J*=2.4 Hz), 3.60 (s, 3H), 3.54 (s, 3H), 3.53 (s, 3H), 3.38–3.43 (m, 2H), 3.20 (dd, 1H, *J*=3.0, 9.2 Hz), 2.32 (s, 3H), 2.06 (dd, 1H, *J*=3.0, 9.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 137.7, 132.5, 130.1, 129.7, 88.1, 86.1, 79.4, 78.9, 75.9, 62.4, 61.4, 61.3, 58.5, 21.2.

4.15. *p*-Methylphenyl 2,6-di-O-acetyl-3,4-di-O-methyl-1-thio- β -D-galactopyranoside (7c)

General procedure A, B and C, white solid, 28%; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, 2H, *J*=8.1 Hz), 7.09 (d, 2H, *J*=8.1 Hz), 5.23 (t, 1H, *J*=9.8 Hz), 4.53 (d, 1H, *J*=10.0 Hz), 4.23–4.35 (m, 2H), 3.69 (d, 1H, *J*=2.6 Hz), 3.63 (t, 1H, *J*=6.3 Hz), 3.55 (s, 3H), 3.45 (s, 3H), 3.30 (dd, 1H, *J*=2.8, 9.6 Hz), 2.33 (s, 3H), 2.13 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 169.6, 137.7, 132.5, 130.1, 129.5, 87.3, 83.7, 76.2, 74.9, 69.7, 63.3, 61.3, 58.2, 21.1, 21.1, 20.8.

4.16. *p*-Methylphenyl 3,6-di-O-acetyl-2,4-di-O-methyl-1-thio- β -D-galactopyranoside (7d)

General procedure A, B and C, white solid, 8%; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, 2H, *J*=8.1 Hz), 7.10 (d, 2H, *J*=8.0 Hz), 4.85 (dd, 1H, *J*=3.0, 9.7 Hz), 4.50 (d, 1H, *J*=9.7 Hz), 4.31 (dd, 1H, *J*=6.9, 11.2 Hz), 4.17 (dd, 1H, *J*=6.0, 11.2 Hz), 3.66 (m, 2H), 3.54 (s, 3H), 3.51 (d, 1H, 9.7 Hz), 3.48 (s, 3H), 2.33 (s, 3H), 2.16 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.5, 137.9, 132.7, 130.0, 129.7, 88.3, 77.3, 76.8, 75.7, 62.7, 61.5, 61.2, 21.3, 21.2, 20.9.

4.17. *p*-Methoxyphenyl 2,3,4-tri-*O*-methyl-β-D-galactopyrano-side (8b)

General procedure A and B, colorless oil; ¹H NMR (400 MHz, DMSO) δ 6.99–7.02 (m, 2H), 6.90–6.93 (m, 2H), 4.88 (d, 1H, *J*=5.2 Hz), 4.84 (d, 1H, *J*=7.2 Hz), 3.77 (d, 1H, *J*=2.1 Hz), 3.76 (s, 3H), 3.56–3.60 (m, 2H), 3.55 (s, 3H), 3.50 (s, 3H), 3.47 (s, 3H), 3.36 (d, 3H, *J*=14.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 151.5, 118.5, 114.6, 102.9, 84.0, 80.6, 75.6, 75.2, 62.2, 61.4, 61.1, 58.7, 55.8.

4.18. *p*-Methoxyphenyl 2,6-di-*O*-acetyl-3,4-di-*O*-methyl-β-D-galactopyranoside (8c)

General procedure A, B and C, white solid, 41%; ¹H NMR (400 MHz, CDCl₃) δ 6.94–6.96 (m, 2H), 6.78–6.81 (m, 2H), 5.43 (dd, 1H, *J*=7.9, 10.0 Hz), 4.79 (d, 1H, *J*=7.8 Hz), 4.27–4.39 (m, 2H), 3.77 (s, 3H), 3.71–3.73 (m, 2H), 3.61 (s, 3H), 3.49 (s, 3H), 3.36 (dd, 1H, *J*=2.8, 10.0 Hz), 2.11 (s, 3H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 155.5, 151.6, 118.8, 114.5, 100.9, 82.5, 74.6, 72.7, 71.1, 63.1, 61.4, 58.4, 55.8, 21.1, 21.0.

4.19. *p*-Methoxyphenyl 3,6-di-O-acetyl-2,4-di-O-methyl- β -p-galactopyranoside (8d)

General procedure A, B and C, white solid, 15%; ¹H NMR (400 MHz, CDCl₃) δ 7.00–7.02 (m, 2H), 6.80–6.82 (m, 2H), 4.87 (dd, 1H, *J*=3.1, 10.2 Hz), 4.78 (d, 1H, *J*=7.7 Hz), 4.35 (dd, 1H, *J*=6.7, 11.1 Hz), 4.20 (dd, 1H, *J*=6.3, 11.1 Hz), 3.77 (s, 3H), 3.67–3.75 (m, 2H), 3.63 (s, 3H), 3.53 (s, 3H), 2.18 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.6, 155.6, 151.4, 118.9, 114.6, 103.0, 78.3, 76.3, 75.3, 72.1, 62.4, 61.6, 61.1, 55.8, 21.2, 20.9.

4.20. *p*-Methylphenyl 3,6-di-O-acetyl-2,4-di-O-methyl-1-thioα-p-mannopyranoside (9b)

General procedure A, B and C, white solid, 42%; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, 2H, *J*=8.1 Hz), 7.12 (d, 2H, *J*=8.0 Hz), 5.51 (d, 1H, *J*=1.8 Hz), 5.13 (dd, 1H, *J*=3.3, 9.5 Hz), 4.34 (m, 3H), 3.89 (dd, 1H, *J*=1.9, 3.2 Hz), 3.61 (t, 1H, *J*=9.2 Hz), 3.48 (s, 3H), 3.42 (s, 3H), 2.33 (s, 3H), 2.17 (s, 3H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.2, 138.0, 132.3, 129.9, 84.8, 79.5, 75.1, 73.9, 70.5, 63.5, 60.6, 58.4, 21.2, 21.2, 20.9.

4.21. *p*-Methylphenyl 4,6-di-O-acetyl-2,3-di-O-methyl-1-thioα-D-mannopyranoside (9c)

General procedure A, B and C, white solid; ¹H NMR (400 MHz, CDCl3) δ 7.40 (d, 2H, *J*=8.1 Hz), 7.14 (d, 2H, *J*=8.0 Hz), 5.60 (d, 1H, *J*=1.4 Hz), 5.29 (t, 1H, *J*=9.8 Hz), 4.36–4.41 (m, 1H), 4.31 (t, 1H, *J*=6.7 Hz), 4.25 (dd, 1H, *J*=6.1, 12.2 Hz), 4.10 (dd, 1H, *J*=2.2, 12.1 Hz), 3.89 (dd, 1H, *J*=1.8, 2.9 Hz), 3.57 (dd, 1H, *J*=3.1, 9.4 Hz), 3.48 (s, 3H), 3.45 (s, 3H), 2.34 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H).

4.22. *p*-Methoxyphenyl 3,6-di-O-acetyl-2,4-di-O-methyl-α-D-mannopyranoside (10b)

General procedure A, B and C, white solid, 30%; ¹H NMR (400 MHz, CDCl₃) δ 7.02–7.04 (m, 2H), 6.81–6.83 (m, 2H), 5.44 (d, 1H, *J*=1.8 Hz), 5.35 (dd, 1H, *J*=3.4, 9.5 Hz), 4.28–4.29 (m, 2H), 3.89–3.93 (m, 1H), 3.84 (dd, 1H, *J*=2.1, 3.3 Hz), 3.77 (s, 3H), 3.64 (t, 1H, *J*=9.7 Hz), 3.51 (s, 3H), 3.48 (s, 3H), 2.19 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.3, 155.2, 150.2, 117.9, 114.6, 96.3, 78.3, 74.8, 73.6, 70.2, 63.2, 60.5, 59.4, 55.7, 21.3, 20.9.

4.23. *p*-Methoxyphenyl 4,6-di-O-acetyl-2,3-di-O-methyl-α-D-mannopyranoside (10c)

General procedure A, B and C, white solid, 27%; ¹H NMR (400 MHz, CDCl₃) δ 7.02–7.04 (m, 2H), 6.83–6.85 (m, 2H), 5.52 (d, 1H, *J*=1.7 Hz), 5.31 (t, 1H, *J*=9.8 Hz), 4.22 (dd, 1H, *J*=5.7, 12.2 Hz), 4.06 (dd, 1H, *J*=2.2, 12.2 Hz), 3.93–3.97 (m, 1H), 3.80–3.83 (m, 1H), 3.78 (s, 3H), 3.56 (s, 3H), 3.50 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 155.3, 150.3, 117.8, 114.8, 96.8, 78.8, 76.8, 69.6, 67.9, 62.8, 59.6, 58.1, 55.8, 21.0, 20.9.

4.24. *p*-Methoxyphenyl 3,4,6-tri-*O*-acetyl-2-*O*-methyl-α-D-mannopyranoside (10d)

General procedure A, B and C, white solid, 8%; ¹H NMR (400 MHz, CDCl₃) δ 7.03–7.05 (m, 2H), 6.82–6.85 (m, 2H), 5.50 (d, 1H, *J*=1.9 Hz), 5.38–5.47 (m, 2H), 4.27 (dd, 1H, *J*=5.5, 12.6 Hz), 4.02–4.07 (m, 2H), 3.83 (dd, 1H, *J*=2.0, 2.8 Hz), 3.78 (s, 3H), 3.52 (s, 3H), 2.12 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H).

4.25. Methyl 2,3,4-tri-O-methyl-6-O-triethyl-silyl-α-D-glucopyranoside (11b)

General procedure A, colorless oil, 55%; ¹H NMR (400 MHz, CDCl₃) δ 4.80 (d, 1H, *J*=3.6 Hz), 3.81 (d, 2H, *J*=3.1 Hz), 3.63 (s, 3H), 3.55 (s, 3H), 3.45–3.51 (m, 5H), 3.39 (s, 3H), 3.15–3.20 (m, 2H), 0.98 (t, 10H, *J*=8.0 Hz), 0.60–0.66 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 97.1, 83.6, 81.8, 79.0, 71.2, 61.7, 60.5, 60.1, 58.7, 54.6, 6.6, 4.3.

4.26. Triethyl-silyl 2,3,4-tri-O-methyl-6-O-triethyl-silyl-D-glucopyranoside (11c)

General procedure A, colorless oil, 43%; ¹H NMR (400 MHz, CDCl₃) δ 4.84 (d, 1H, *J*=3.6 Hz), 4.56 (d, 1H, *J*=3.7 Hz), 3.79–3.86 (m, 5H), 3.61 (s, 3H), 3.40–3.57 (m, 13H), 3.37 (s, 3H), 3.36 (s, 3H), 3.04–3.15 (m, 3H), 0.96–1.00 (m, 36H), 0.60–0.70 (m, 24H). ¹³C NMR (100 MHz, CDCl₃) δ 100.2, 96.8, 84.4, 82.5, 80.5, 79.6, 74.3, 73.7, 71.5, 71.4, 62.2, 62.1, 61.3, 60.9, 60.4, 58.4, 55.0, 54.9, 7.0, 6.9, 6.8, 5.2, 4.9, 4.6, 4.6.

4.27. *p*-Methylphenyl (2,3,4-tri-O-methyl-6-O-triethyl-silyl- α -p-glucopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-methyl-1-thiol- β -p-glucopyranoside (12b)

General procedure A, colorless oil, 30%; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (d, *J*=8.1 Hz, 1H), 7.11–7.09 (d, *J*=8.0 Hz, 1H), 5.59 (d, *J*=3.8 Hz, 1H), 4.48–4.46 (d, *J*=9.9 Hz, 1H), 3.85–3.75 (m, 4H), 3.65–3.53 (m, 19H), 3.45–3.40 (m, 5H), 3.32–3.24 (m, 5H), 3.19–3.16 (dd, *J*=9.8, 3.8 Hz, 1H), 2.33 (s, 3H), 0.98–0.95 (3, 10H), 0.64–0.58 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 132.1, 130.3, 129.5, 96.4, 88.7, 87.7, 83.3, 83.1,81.8, 79.2, 79.1, 71.5, 70.8, 62.3, 60.7, 60.5, 60.3, 60.0, 59.7, 59.2, 21.1, 6.8, 4.6.

4.28. *p*-Methylphenyl (2,3,4,6-tetra-O-methyl- α -D-glucopyr-anosyl)-(1 \rightarrow 4)-2,3-di-O-methyl-6-O-triethyl-silyl-1-thiol- β -D-glucopyranoside (12c)

General procedure A, colorless oil, 30%; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (d, *J*=8.1 Hz, 1H), 7.11–7.09 (d, *J*=7.9 Hz, 1H), 5.53 (d, *J*=3.8 Hz, 1H), 4.45–4.43 (d, *J*=9.9 Hz, 1H), 3.85–3.74 (m, 4H), 3.64 (s, 3H), 3.62 (s, 3H), 3.60 (m, 4H), 3.56 (m, 7H), 3.53–3.46 (m, 2H), 3.44–3.36 (m, 5H), 3.33–3.25 (m, 5H), 3.16–3.08 (m, 2H), 2.33 (s, 3H), 0.99–0.95 (3, 10H), 0.65–0.60 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 132.3, 131.9, 130.1, 129.6, 129.5, 96.6, 88.7, 87.8, 83.7, 83.1, 81.9, 78.9, 78.1, 72.0, 71.9, 71.3, 61.4, 60.7, 60.6, 60.4, 60.1, 59.7, 59.1, 21.1, 6.8, 4.5.

4.29. p-Methylphenyl (2,3,4-tri-O-methyl-6-O-triethyl-silyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(2,3,6-tri-O-methyl- β -D-glucopyranosyl) -(1 \rightarrow 4)-2,3-di-O-benzyl-6-O-tert-butyldiphenyl-silyl-1-thiol- β -D-glucopyranoside (14)

General procedure A, colorless oil, 48%. ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.78 (m, 4H), 7.45–7.23 (m, 22H), 6.98 (d, *J*=8.0 Hz, 2H), 5.51 (d, *J*=4.0 Hz, 1H), 5.20 (d, *J*=11.2 Hz, 1H), 4.77–4.60 (m, 6H), 4.19–4.06 (m, 3H), 3.83–3.71 (m, 4H), 3.68–3.62 (m, 6H), 3.59 (s, 4H), 3.58–3.52 (m, 8H), 3.51–3.39 (m, 11H), 3.34–3.22 (m, 5H), 3.17–3.11 (m, 5H), 2.28 (s, 3H), 1.10 (s, 9H), 0.99–0.93 (t, 12H), 0.64–0.57 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.4, 137.3, 136.0, 135.7, 133.8, 133.0, 132.3, 130.4, 129.6, 128.3, 128.1, 127.8, 127.7, 127.2, 102.9, 96.5, 87.9, 86.8, 85.5, 84.7, 83.5, 82.0, 80.1, 78.9, 76.9, 75.6, 75.3, 74.2, 72.4, 71.7, 70.8, 61.5, 60.7, 60.4, 60.3, 60.0, 59.2, 58.8, 26.9, 21.1, 19.5, 6.8, 4.5.

4.30. *p*-Methylphenyl (6-O-acetyl-2,3,4-tri-O-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(2,3,6-tri-O-methyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-6-O-acetyl-2,3-di-O-benzyl-1-thiol- β -D-glucopyranoside (15)

TBFA·3H₂O (1.2 equiv) was added to a solution of **14** (240 mg, 0.2 mmol) in THF, and the mixture was stirred at room temperature for 1 h. Then the solvent was removed at reduced pressure and the residue was purified by column chromatography (PE/acetone=2/1).

Then the product was dissolved in pyridine (2 ml), then acetic anhydride (0.5 ml) was added and the mixture was stirred for 3 h. The reaction was stopped by the addition of CH₃OH in ice bath, and evaporation of the solvent afforded a residue which was purified by column chromatography, giving 15 as colorless oil (168 mg, 90% in 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J*=81 Hz, 2H), 7.35–7.34 (d, J=8.4 Hz, 2H), 7.31-7.24 (m, 9H), 7.09 (d, J=8.0 Hz, 2H), 5.61 (d, *I*=3.8 Hz, 1H), 5.15 (d, *I*=11.4 Hz, 1H), 4.81 (d, *I*=10.2 Hz, 1H), 4.72–4.62 (m, 3H), 4.57 (d, *J*=9.8 Hz, 1H), 4.32–4.65 (m, 3H), 4.19-4.16(dd, J=11.9, 1.9 Hz, 1H), 3.83-3.77 (q, J=9.1 Hz, 2H), 3.67-3.60 (m, 5H), 3.56-3.49 (m, 14H), 3.46-3.30 (m, 6H), 3.18-3.15(dd, J=9.8, 3.7 Hz, 1H), 3.11-3.07 (m, 4H), 3.01-2.97 (t, J=8.0 Hz, 1H), 2.33 (s, 3H), 2.11 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.5, 139.1, 138.0, 137.9, 133.0, 129.6, 129.5, 128.3, 128.2, 127.8, 127.3, 127.2, 103.4, 95.9, 87.5, 86.8, 84.9, 84.5, 83.4, 81.8, 80.3, 79.5, 78.3, 77.1, 75.4, 75.3, 74.1, 71.4, 70.7, 69.1, 63.0, 62.8, 60.9, 60.6, 60.5, 59.8, 59.5, 58.9, 26.9, 21.0, 20.9.

4.31. p-Methylphenyl (6-O-acetyl-2,3,4-tri-O-methyl- α -D-glucopyranosyl)-(1 \rightarrow 4)-(2,3-di-O-methyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-6-O-acetyl-2,3-di-O-benzyl-1-thiol- β -D-glucopyranoside (16)

General procedure A and B, colorless oil, 20% in 2 steps. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J*=81 Hz, 2H), 7.35–7.34 (d, *J*=8.4 Hz, 2H), 7.31–7.24 (m, 10H), 7.09 (d, *J*=8.0 Hz, 2H), 5.62 (d, *J*=3.5 Hz, 1H), 5.15 (d, *J*=11.4 Hz, 1H), 4.81 (d, *J*=10.1 Hz, 1H), 4.73–4.62 (m, 3H), 4.58 (d, *J*=9.8 Hz, 1H), 4.32–4.21 (m, 4H), 3.88–3.76 (m, 3H), 3.69–3.65 (m, 3H), 3.56–3.52 (m, 14H), 3.49–3.26 (m, 6H), 3.18–3.10 (m, 5H),3.02–2.98 (t, *J*=8.0 Hz, 1H), 2.33 (s, 3H), 2.11 (s, 3H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.5, 139.1, 138.0, 137.9, 133.0, 129.6, 129.5, 128.3, 128.2, 127.8, 127.3, 127.2, 103.4, 95.4, 87.6, 86.5, 84.9, 84.4, 81.4, 80.3, 79.1, 78.4, 75.4, 75.3, 74.2, 72.9, 72.1, 70.7, 69.0, 63.1, 62.8, 60.7, 60.5, 59.8, 58.8, 26.9, 21.0, 20.9.

Acknowledgements

We are grateful for the financial support of the National Basic Research Program of China (973 Program, Grant No. 2012CB822100), the National Key Technology R&D Program 'New Drug Innovation' of China (No. 2012ZX09502001-001), the National Natural Science Foundation of China (NSFC No. 21232002), the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20130001110058), and the Open Project Program of National Research Center for Carbohydrate Synthesis, Jiangxi Normal University.

Supplementary data

Supplementary data (Copies of ¹H, ¹³C NMR spectra of relative compounds) associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.tet.2016.07.081.

References and notes

- (a) Harry, R. B.; Ander, T. C.; Bruce, D.; Herv, D.; Alex, S. G.; Michael, G.; Gerard, P.; Franco, P.; Martin, H. P.; Gary, E. R. *N. Engl. J. Med.* **2007**, 357, 1094–1104; (b) Xiao, S.-L.; Yang, M.; Sinaÿ, P.; Blériot, Y.; Sollogoub, M.; Zhang, Y.-M. *Eur. J. Org. Chem.* **2010**, 1510–1516; (c) Kamitakahara, H.; Nakatsubo, F.; Klemm, D. *Cellulose* **2007**, *14*, 513–528.
- (a) Bextox, F. L.; Dillon, T. E. J. Am. Chem. Soc. **1942**, 64, 1128–1129; (b) Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D. M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W. B. J. Org. Chem. **1999**, 64, 9719–9721; (c) Ji, X.-J.; Cheng, B.-W.; Song, J.; Liu, C.; Wang, Y.-F. **2009**, 39, 2053–2057. (d) Zewge, D.; King, A.; Weissman, S.; Tschaen, D. Tetrahedron Lett. **2004**, 45, 3729–3732; (e) Yukinori, S.; Shigeru, Ar; Atsushi, N. Eur. J. Org. Chem. **2006**, 752–758; (f) Bao, K.; Fan, A.-X.; Dai, Y.; Zhang, L.; Zhang, W.-G.; Cheng, M.-S.; Yao, X.-S. Org. Biomol. Chem. **2009**, 7, 5084–5090; (g) Ehud, K.; Daniel, P. J. Org. Chem. **1987**, 52, 4846–4851.
- (a) Hwu, J. R.; Wong, F. F.; Huang, J. J.; Tsay, S. C. J. Org. Chem. 1997, 62, 4097–4104; (b) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org. Chem. 2002, 67, 6406–6414; (c) Javier, M.; Michael, H. C.; Jerry, D. C.; Thomas, N. J. Org. Chem. 2006, 71, 7103–7105.
- Simon, W. B.; Andrew, C.; Stephen, M. H.; John, W. L. Helv. Chim. Acta 1999, 82, 1978–1980.
- (a) Madsen, J.; Bols, M. Angew. Chem., Int. Ed. 1998, 37, 3177–3178; (b) Xiao, S.-L.; Zhou, D.-M.; Yang, M.; Yu, F.; Zhang, L.-H.; Sinaÿ, P.; Zhang, Y.-M. Chin. Chem. Lett. 2012, 23, 1315–1318.
- 6. Boovanahalli, S. K.; Kim, D. W.; Chi, D. Y. J. Org. Chem. 2004, 69, 3340-3344.
- 7. Stephen, H.; Yvan, G. Tetrahedron Lett. 1980, 21, 2305–2308.
- Boto, A.; Hernandez, D.; Hernandez, R.; Suarez, E. Org. Lett. 2004, 6, 3785–3788.
 Lewis, J. C.; Bastian, S.; Bennett, C. S.; Fu, Y.; Mitsuda, Y.; Chen, M.-M.; Greenberg, W. A.; Wong, C. H.; Arnold, F. H. PNAS 2009, 10, 16550–16555.
- Herbert, J. M.; Herault, J. P.; Bernat, A.; van Amsterdam, R. G. M.; Lormeau, J. C.; Petitou, M.; van Boeckel, C.; Hoffmann, P.; Meuleman, D. G. Blood 1998, 91, 4197–4205.
- (a) Trellu, M.; Fau, J.-B.; Cortez, P.; Cheng, S.; Paty, I.; Boëlle, E.; Donat, F.; Sanderink, G.-J. Br. J. Clin. Pharmacol. 2012, 75, 1255–1264; (b) Song, Y.-Z.; Li, X.-D.; Pavithra, S.; Li, D. Plos One 2013, 8, e78972.
- (a) Westerduin, P.; van Boeckel, C. A. A.; Basten, J. E. M.; Broekhoven, M. A.; Lucas, H.; Rood, A. A.; vander Heijden, H.; van Amsterdam, R. G. M.; van Dinther, T. G.; Meuleman, D. G.; Visser, A.; Vogel, G. M. T.; Damn, J. B. L.; Overkliftc, G. T. Bioorg. Med. Chem. Lett. **1994**, 2, 1267–1280; (b) Chen, C.; Yu, B. Bioorg. Med. Chem. Lett. **2009**, 19, 3875–3879; (c) Herczeg, M.; Mezó, E.; Lázár, L.; Fekete, A.; Kövér, K. E.; Antus, S.; Borbás, A. Tetrahedron **2013**, 69, 3149–3158; (d) Herczeg, M.; Mezó, E.; Eszenyi, D.; Antus, S.; Borbás, A. Tetrahedron **2014**, 70, 29192–32927.
- (a) Yin, Z.-J.; Wang, B.; Li, Y.-B.; Meng, X.-B.; Li, Z.-J. Org. Lett. 2010, 12, 536–539; (b) Wang, B.; Yin, Z.-J.; Li, Y.-B.; Yang, T.-X.; Meng, X.-B.; Li, Z.-J. J. Org. Chem. 2011, 76, 9531–9535; (c) Zhao, Y.-T.; Niu, S.; Huang, L.-B.; Wang, J.-M.; Yin, Z.-J.; Li, Q.; Li, Z.-J. Tetrahedron 2013, 69, 5022–5028; (d) Qian, P.-Z.; Yao, W.; Huang, L.-B.; Meng, X.-B.; L, Z.-J. Tetrahedron Lett. 2015, 56, 5238–5241.
- (a) Jensen, H. H.; Pedersen, C. M.; Bols, M. Chem. Eur. J. 2007, 13, 7576–7582;
 (b) Jensen, H. H.; Bols, M. Acc. Chem. Res. 2006, 39, 259–265.