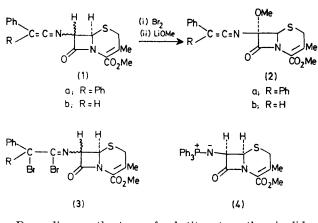
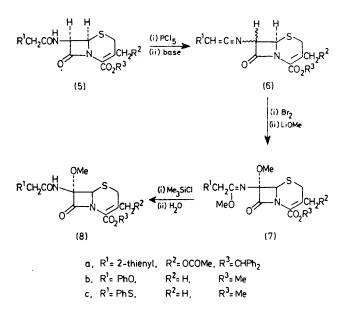
J.C.S. Снем. Сомм., 1976


A New Synthetic Route to 7*a*-Methoxycephalosporins

By TOKIO SAITO, YUKIO SUGIMURA, YUJI IWANO, KIMIO IINO, and TETSUO HIRAOKA* (Central Research Laboratories, Sankyo Co. Ltd., Hiromachi, Shinagawa-ku, Tokyo 140, Japan)

Summary 7α -Methoxy- 7β -acetamidocephalosporin derivatives were synthesized from 7-vinylidenamino-cephalosporins via 7α -methoxy- 7β -vinylidenamino-derivatives. subsequently with a methanolic solution of LiOMe at -78 °C gave the 7 α -methoxy-7 β -vinylidenamino-derivative (2a) in 55% yield. Analogously, the 7 α -methoxy-7 β -vinylidenamino-compound (2b) was obtained from (1b), which was prepared from methyl 7 β -phenylacetamido-3-methylceph-3-em-4-carboxylate according to a known method.³ The vinylidenamines (2) could be purified by silica gel chromatography without hydrolysis and were easily identified by their characteristic i.r. band at 2000 cm⁻¹. It should be noted that bromine attacked the vinylidenamine part of compounds (1) in preference to the 1 or 2 position of the cephem skeleton to give the intermediate (3).⁴ The vinylidenamine (2b) was converted into


WE have recently reported a novel synthesis of 7-methoxycephalosporins and 6-methoxypenicillins,¹ the key step of which was production of a 7- (or 6-) imino-cephalosporin (penicillin) intermediate via 1,4-elimination. We report here another route to 7α -methoxycephalosporin derivatives starting from 7-acetamido cephalosporin derivatives. Treatment of the vinylidenamine (1a) in tetrahydrofuran with slight excess of bromine² at -20 to -30 °C and

the corresponding amide quantitatively on treatment with trifluoroacetic acid at room temperature.

Depending on the type of substituent on the vinylidenamine unit, an imino-ether may be isolated during the methoxylation. Thus, a solution in tetrahydrofuran of the imino-chloride which was obtained from the ester (5a)and PCl₅-quinoline, was treated with triethylamine for 15 min at room temperature to afford the vinylidenamine (6a). Without isolation (6a) was brominated at -50 °C, and excess of lithium methoxide in methanol was added at -78 °C to give the imino-ether (7a) in 49% yield after silica gel chromatography; v_{max} (liquid) 1780, 1740, and 1650 cm⁻¹, δ (CDCl₃) 1.96 (3H, s), 3.28 and 3.45 (2H, AB q, J 18 Hz), 3·34 (3H, s), 3·69 (3H, s), 3·93 and 4·20 (2H, AB q, J 14 Hz), 4.62 and 4.90 (2H, AB q, J 14 Hz), 4.97 (1H, s), 6.90 (1H, s), 6.8-7.0 (2H, m), and 7.0-7.5 (11H, m). Treatment of the imino-ether (7a) with Me₃ClSi in CHCl₃ overnight at room temperature gave the 7α -methoxy-ester (8a) in 50% yield; i.r. and n.m.r. data similar to those for (7a). Analogously (5b) and (5c) furnished the 7α -methoxyimino-ethers (7b) and (7c), respectively.

The 7 β -acetamido cephalosporin derivatives could thus be converted into 7α -methoxy- 7β -acetamidocephalosporin derivatives by these reactions without any change in the 7β -side chain via the imino-ethers (7) or the vinylidenamines (2).

The vinylidenamine (1a) could also be prepared from the phosphorus ylide (4)⁵ and Ph₂C=C=O. However, this reaction seems to be limited to isolable ketens such as Ph₂C=C=O.

(Received, 3rd May 1976; Com. 484.)

¹Y. Sugimura, K. Iino, Y. Iwano, T. Saito, and T. Hiraoka, Tetrahedron Letters, 1976, 1307; see references cited therein for ²C. L. Stevens and J. C. French, J. Amer. Chem. Soc., 1953, 75, 657.
³R. D. Carroll, E. S. Hamanaka, D. K. Pirie, and W. M. Welch, Tetrahedron Letters, 1974, 1515.
⁴D. O. Spry, Tetrahedron Letters, 1972, 3717.

⁵ A. W. Johnson, 'Ylide Chemistry,' Academic Press, New York and London, 1966.