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ARTICLE INFO ABSTRACT

Article history A highly efficient oxidative C2-aroyloxylation ofD-glucal with aromatic
Received _ carboxylic acids has been achieved for the fimetusing 5 mol% Pd(OAghanc
Ececcgr')‘{gg in revised form 1 equiv of PhI(OAg) to produce C2-aroyloxyglycals in good yieldshe use ¢

excess of Phl(OAg)2 equiv) provides C2-acyloxyglycal exclusively.
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I ntroduction PhI(OAc) through an oxidative cross-coupling of glycals

Transition metal catalyzed modification of glycais a with carboxylic acids (Scheme 1).

o
powerful tool to produce substituted glycals angtgsided?™ AcO \ i
In particular, the cross-coupling of glycals witletimated - o PA(OAC)(5 mol%) AcO" I, 0" 'Ph
alkenes through a transition metal catalysis iseasatile L I+ Prcogp ——————= 33
. . AcO" Phi(OAc), (1 equiv)

strategy to generate C-2 functionalized glyéAl3hese C-2 dac  2eauiv ACO o} o
substituted glycals are common intermediates foturah 1 2a | e

: . . AcO 0" “CHs
products and other biological active molecés.0n the Ohc
other hand, 2-hydroxy-/2-acyloxyglycals are common 4

building blocks for the synthesis o00-glycosides, C-  Scheme 1. C2-aroyloxylation of 3,4,6-triacetyd-glucal
glycosides S-glycosides and\-glycosides® Generally, these

2-acetoxy glycals are prepared from glycosyl brasid or Initially, we attempted the cross-coupling of 3;&rjécetyl-D-
from thioglycoside$” Subsequently, alternative routes for 2- glucal () with benzoic acidZa) in the presence of 5 mol% of
hydroxyglycals have been develop®d.Recently, C2- Pd(OAc) under diverse reaction conditions. The reactios wa
acyloxyglycals are preapred from glucose pentateétatwo  carried out with 1 equiv of benzoic acid and 1 eqaf
steps using,JPMHS and excess of DBU. In addition, the PhI(OAc), at 80°C. The desired product was obtained in 70%
substrtae directed aroyloxylation of aromatic systeas been yield as a mixture o8a and4 in a 1:1 ratio (Table 1, entry a).
also reported using a transition metal cataljSisHowever, To improve the ratio, the reaction was performeaimgyith 2

there are no reports on the C2-aroyloxylation gtals. equiv of benzoic acid and 1 equiv of Phl(OA&} the same
temperature. To our delight, the ratio 8& and 4 was
Results and Discussion increased to 3:1 (Table 1, entry b). To know tffece of

] ) N temperature, the above reaction was carried oi0@fC. A
Folloyvmg.our. Ir:][tﬁ]reSt on trr?msmon metal catalyZeH bond slight increase in yield was observed (Table 1ryea). The
functionalizationt;™ we herein report a novel strategy for the best conversion and selectivity were achieved wiiem

synthesis of C2 functionalized glycals using a lytita reaction was conducted using 2 equiv of benzoid aod 1.0

amount of Pd(OAg) and a stoichiometric amount of equiv of Phi(OAc) at 120°C (Table 1, entry d). A trace
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amount of desired product was formed in the abserice 11H}, along with scalar coupling constant analyiave
PhiI(OAc), (Table 1, entry e). On the other hand, in theconfirmed that the six-membered ring is in halficha
absence of PhC@8, the product4 was formed exclusively conformation. The energy-minimizedstructure of 3k
(Table 1, entry f). To know the effect of the saitiethe  adequately supports our NMR analysis (Figure 1).
reaction was performed in different solvents sushDMF,
1,4-dioxane and toluene. These solvents failedive the
required product (Table 1, entries, g-i). Furthemmono
desired product was obtained in the absence of RggO

Hp, Ha

(Table 1, entry j). 0
8 11
Tablel. Optimization of reaction conditions 1 2
H 13 OMe
Entry PhCQH PhI(OAc) Pd(OAc) Solvent Temp Ratio Yield NO,
(equiv) (equiv) (mol%) © (3/4) (%)
a 1.0 1.0 50 CHCN 80 (50/50) (80)
b 2.0 1.0 50 CHCN 80 (75/25) (80)
c 2.0 1.0 50 CHCN 100 (75/25) (85)
d 2.0 1.0 50 CHCN 120 (98/2) (90)
e 2.0 - 05. CHCN 120 (99/0) (10)
f - 2.0 05. CHCN 120  (0/99) (90) Figure 1. Characteristic NOEs and energy-minimized
structure of3k
g 2.0 0.75 50 DMF 120 ,
Table 2. Synthesis of C2-aroyloxy-glycals
h 2.0 0.75 5.0 Dioxane 120 -
. AcO © \ PA(OAC) (5 mol%)  AcO © 1 9
i 2.0 0.75 5.0 Toluene 120 - - + ACOH —————= .
AcO PhI(OAC), (1 equiv) AcO 07 ar
1 OAc 2 (2 equiv) 3 OAc
j 2.0 0.75 - CHCN 120
2Yield refers to pure products after chromatography. /\Q\)K@\ n /\Q\ Il l
OAc
Inspired by these initial results, we extended thisthod to 3a, 87% 30, 90% 36, 89%

different substrates bearing various substituentsh sas o o o

halide, methyl, methoxy, trifluoromethyl and nitgooups on Aciw\o i AC(:;Q\O i ACZ;?Q\O i

the aromatic ring of the carboxylic acid (Table Zhis OAc [1Me OAc )KQ\% OAc )ﬁNo
method is compatible and quite successful with dewange 3d, 91% 3e, 90% 31,78%

of aromatic carboxylic acids. No dehalogenation was, on

observed in case of chloro-, bromo-, and fluordsssituted /\Q\ : ACOAQ\ I Acon
aromatic acids (Table 2, entries b,c,jmn & 0).eTh )5@\ )K© )KQ\
substituent present on the aromatic rind had sheame 3. 86% 3n, 89% 31, 90%

effect on the conversion. Indeed, electron richnatic

carboxylic acids are found to be superior than tedec AQ\ )K©\ AQ\ J\Q\ /\Q\)K“

Me

deficient counter parts. A sterically hindered pimthoic acid
also gave the product in good yield (Table 2, etitryrhe
structure of3k was confirmed by the incisive NMR studies

0.
andJ-coupling analysis (Figure 1). From the one dimenai Acoﬁ 2 chon 2 o Acoﬁ o F
'H NMR data, the observed strong scalar couplingtaonts, ~ *° T O)KCV AT O)KCL he0" T O)ﬁ

3j, 89% 3k, 80% 31, 86%

SJansrsn = 4.7,clearly indicate that the 4-H protons are in- s e . 5096 R
axial position in the six-membered ring. 3-H anckith A0S o

corresponding scalar coupling valuéd .y = 4.3Hz, AT ‘ o

respectively have suggested that 3H protons aegjimtorial onc Ph

3p, 90%
position in the six membered ring. The characterisSlOE

Correlations {5H_4H}’ {4H_3H}, {4H_6H(a)}, and {10H 3All products were characterzed by NMR, IR and mass spectroscopy.

byield refers to pure products after chromatography.




The use of 2 equiv of Phl(OAg)the producéd was formed
exclusively in 90% yield. In this case, Phl(OA&cts as an

oxidant as well as the source of acetoxy group €8&h2).

o
0,
ACO (0] | Pd(OAc),(5 mol%) _ AcO | o)

PhI(OAc), (2 equiv)' AcO" OJ\
OAc OAc
1 4

Scheme 2. C2-acyloxylation of 3,4,6-triacetyd-glucal

AcO"

The structure ot was confirmed by comparing its spectral

data with the data reported in the literatdte.

Conclusion

In summary, a novel strategy has been developed
for the synthesis C2 functionalized glycals through
an oxidative cross coupling of glucal with aromatic
carboxylic acids. These C2-acyloxyglycals are
useful building blocks for the synthesis of
biologically active natural products. This methsd i
simple, exquisitely selective and works with a
diverse range of aromatic acids, which makes it an

attractive strategy.

Supporting Information

Characterization data and copies f & *C NMR
spectra of producta-p and 4 are provided in the

supporting information.
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Highlights

First report on aroyloxylation of glycals at C2 position.
C2-acyloxyglycals are useful chiral building blocks.

It is compatible with various functional groups.

This method works with a diverse range of acids.



