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Introduction 

Transition metal catalyzed modification of glycals is a 
powerful tool to produce substituted glycals and glycosides.[1] 
In particular, the cross-coupling of glycals with activated 
alkenes through a transition metal catalysis is a versatile 
strategy to generate C-2 functionalized glycals.[2] These C-2 
substituted glycals are common intermediates for natural 
products and other biological active molecules.[3,4] On the 
other hand, 2-hydroxy-/2-acyloxyglycals are common 
building blocks for the synthesis of O-glycosides, C-
glycosides, S-glycosides and N-glycosides.[5] Generally, these 
2-acetoxy glycals are prepared from glycosyl bromides,[6] or 
from thioglycosides.[7] Subsequently, alternative routes for 2-
hydroxyglycals have been developed.[8] Recently, C2-
acyloxyglycals are preapred from glucose pentaacetate in two 
steps using I2/PMHS and excess of DBU.[9] In addition, the 
substrtae directed aroyloxylation of aromatic system has been 
also reported using a transition metal catalysis.[10] However, 
there are no reports on the C2-aroyloxylation of glycals. 
 
Results and Discussion 

 
Following our interest on transition metal catalyzed C-H bond 
functionalization,[11] we herein report a novel strategy for the 
synthesis of C2 functionalized glycals using a catalytic 
amount of Pd(OAc)2 and a stoichiometric amount of 

PhI(OAc)2 through an oxidative cross-coupling of glycals 
with carboxylic acids (Scheme 1).  

 
Scheme 1. C2-aroyloxylation of 3,4,6-triacetyl-D-glucal  
 
Initially, we attempted the cross-coupling of 3,4,6-triacetyl-D-
glucal (1) with benzoic acid (2a) in the presence of 5 mol% of 
Pd(OAc)2 under diverse reaction conditions. The reaction was 
carried out with 1 equiv of benzoic acid and 1 equiv of 
PhI(OAc)2 at 80 oC. The desired product was obtained in 70% 
yield as a mixture of 3a and 4 in a 1:1 ratio (Table 1, entry a). 
To improve the ratio, the reaction was performed again with 2 
equiv of benzoic acid and 1 equiv of PhI(OAc)2 at the same 
temperature. To our delight, the ratio of 3a and 4 was 
increased to 3:1 (Table 1, entry b).  To know the effect of 
temperature, the above reaction was carried out at 100 oC. A 
slight increase in yield was observed (Table 1, entry c). The 
best conversion and selectivity were achieved when the 
reaction was conducted using 2 equiv of benzoic acid and 1.0 
equiv of PhI(OAc)2 at 120 oC (Table 1, entry d). A trace 
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amount of desired product was formed in the absence of 
PhI(OAc)2 (Table 1, entry e). On the other hand, in the 
absence of PhCO2H, the product 4 was formed exclusively 
(Table 1, entry f). To know the effect of the solvent, the 
reaction was performed in different solvents such as DMF, 
1,4-dioxane and toluene. These solvents failed to give the 
required product (Table 1, entries, g-i). Furthermore, no 
desired product was obtained in the absence of Pd(OAc)2 
(Table 1, entry j). 

 
Table1.  Optimization of reaction conditions 
_____________________________________________ 
Entry  PhCO2H  PhI(OAc)2  Pd(OAc)2   Solvent  Temp  Ratio  Yield 
            (equiv)    (equiv)          (mol%)                    (oC)    (3/4)    (%)a 
_______________________________________________________ 
a          1.0          1.0                    5.0          CH3CN          80          (50/50)  (80) 
 
b          2.0          1.0                    5.0           CH3CN          80          (75/25)  (80) 
 
c          2.0          1.0                    5.0           CH3CN          100        (75/25)  (85) 
 
d          2.0          1.0                    5.0           CH3CN          120        (98/2)    (90) 
 
e          2.0            -                      5.0           CH3CN          120        (99/0)    (10) 
 
f            -             2.0                   5.0           CH3CN          120        (0/99)    (90) 
 
g          2.0          0.75                  5.0            DMF             120            -           -  
 
h          2.0          0.75                  5.0           Dioxane         120            -           - 
 
i           2.0          0.75                  5.0          Toluene          120            -           - 
 
j           2.0          0.75                    -            CH3CN           120            -            - 
______________________________________________________________ 
aYield refers to pure products after chromatography. 
 

Inspired by these initial results, we extended this method to 
different substrates bearing various substituents such as 
halide, methyl, methoxy, trifluoromethyl and nitro groups on 
the aromatic ring of the carboxylic acid (Table 2). This 
method is compatible and quite successful with a wide range 
of aromatic carboxylic acids. No dehalogenation was 
observed in case of chloro-, bromo-, and fluoro- substituted 
aromatic acids (Table 2, entries b,c,j,m,n & o). The 
substituent present on the aromatic rind had shown some 
effect on the conversion. Indeed, electron rich aromatic 
carboxylic acids are found to be superior than electron 
deficient counter parts. A sterically hindered 2-naphthoic acid 
also gave the product in good yield (Table 2, entry l). The 
structure of 3k was confirmed by the incisive NMR studies  
and J-coupling analysis (Figure 1). From the one dimensional 
1H NMR data, the observed strong scalar coupling constants, 
3J4-H/3-H/5-H = 4.7, clearly indicate that the 4-H protons are in 
axial position in the six-membered ring. 3-H and their 
corresponding scalar coupling values 

3J3-H/4-H = 4.3Hz, 
respectively have suggested that 3H protons are in equatorial 
position in the six membered ring. The characteristic NOE 
correlations {5H-4H}, {4H-3H}, {4H-6H(a)}, and {10H-

11H}, along with scalar coupling constant analysis have 
confirmed that the six-membered ring is in half-chair 

conformation. The energy-minimized structure of 3k 
adequately supports our NMR analysis (Figure 1). 

 

 

 

 

 

 

 

 

 

 

Figure 1. Characteristic NOEs and energy-minimized 
structure of 3k 

Table 2. Synthesis of C2-aroyloxy-glycals  
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aAll products were characterzed by NMR, IR and mass spectroscopy.
bYield refers to pure products after chromatography.
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The use of 2 equiv of PhI(OAc)2, the product 4 was formed 
exclusively in 90% yield. In this case, PhI(OAc)2 acts as an 
oxidant as well as the source of acetoxy group (Scheme 2).  

 
Scheme 2. C2-acyloxylation of 3,4,6-triacetyl-D-glucal 
 
The structure of 4 was confirmed by comparing its spectral 
data with the data reported in the literature.[3i]  
 
Conclusion 
 

In summary, a novel strategy has been developed 
for the synthesis C2 functionalized glycals through 
an oxidative cross coupling of glucal with aromatic 
carboxylic acids. These C2-acyloxyglycals are 
useful building blocks for the synthesis of 
biologically active natural products. This method is 
simple, exquisitely selective and works with a 
diverse range of aromatic acids, which makes it an 
attractive strategy. 
 
Supporting Information  
 

Characterization data and copies of 1H & 13C NMR 
spectra of products 3a-p and 4 are provided in the 
supporting information. 
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• First report on aroyloxylation of glycals at C2 position.  
• C2-acyloxyglycals are useful chiral building blocks.  
• It is compatible with various functional groups.  

• This method works with a diverse range of acids. 

 


