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Abstract
An efficient protocol for C- O and C- S bonds formation by the cross- coupling reac-
tion of 1,2- di(pyrimidin- 2- yl) disulfides with phenols/thiophenols promoted by 
copper(I) chloride was established. It was discovered that variously substituted 
di(hetero)aryl disulfides and phenols were well tolerated. This strategy is the conver-
sion of disulfides into hetero- aryl ethers and thioethers by a copper- promoted chem-
oselective C- S bond cleavage of disulfides.

1 |  INTRODUCTION

Diaryl ethers and thioethers are the ubiquitous scaffolds in 
natural, pharmaceutical, agrochemical, and fine organic 
chemicals, and particularly, heterobiaryl ether frameworks 
containing a N- hetero- ring are found in pharmaceutically rel-
evant compounds such as Sorafenib, XK469, Tafenoquine, 
and AMG900. [1] It has been informed that one- half of 
the small molecules approved by the U.S. Food and Drug 
Administration (FDA) are heterocyclic and contain at least 
1 nitrogen. Therefore, the discovery and development of new 
synthetic methodologies for C- O and C- S bonds formation 
have played an important role in organic chemistry.[2] Usually, 
copper- catalyzed Ullmann reaction has been extensively used 
for the synthesis of ethers involving phenols and aryl halides, 
it often suffers from harsh reaction conditions such as higher 
temperatures (>125- 220°C), stronger bases.[3]

Transition metal- catalyzed C- O/C- S cross- coupling reaction 
has become a significant methodology for the formation of ethers 
and thioethers through the reaction of electrophilic aryl halides with 
nucleophilic phenols/aryl thiols including the copper- mediated or 
catalyzed Chan−Lam−Evans type Ar−B/Ar−OH couplings.[4]

In addition to the use of aryl halides, which synthesis 
often involves tedious steps, harsh reaction conditions, and 
waste production, sulfonates,[5] nitroarenes[6], aromatic es-
ters,[7] and others as alternative electrophiles were introduced 
into the C- O cross- coupling chemistry.

Di(hetero)aryl disulfides are widely used as electro-
philes instead of aryl halides for the construction of C-S 
bond through S- S bond cleavage,[8] because that disul-
fides are structurally symmetrical, air stable, and easy 
to handle.[9] Recently, we developed a series of method 
to construct C- C, C- N, and C- S bonds through C-S and 
S- S bonds cleavage of di(hetero)aryl disulfides with var-
ious nucleophiles including aryl boronic acids, alkynes, 
Grignard reagents, and amines.[10] The obtained products 
tetra- substituted pyrimidines display wide pharmacolog-
ical and biological properties[11] In continuation of our 
work in the formation of the C- C and C- Z (Z = O, N, S) 
bond utilizing 1,2- di(pyrimidin- 2- yl) disulfide as an elec-
trophile, we investigated the C- O and C- S coupling of the 
di(hetero)aryl disulfides with phenol and aryl thiol using 
CuCl to obtain oxylated and sulfenylated pyrimidines 
(Scheme 1).

We have reported the synthesis of 2- phenolic pyrimidines 
by C- S and C- O cross- coupling reaction of pyrimidin- 2- yl sul-
fonates with aryl thiols and phenols.[12] Alternatively, we have 
developed an efficient preparation of 2- arylated pyrimidines 
by the Mitsunobu reaction between 2- hydroxypyrimidine 
and phenols. [12b] Compared pyrimidin- 2- yl sulfonates from 
Biginelli 3,4- dihydropyrimidine- 2(1H)- ones via 2- step pro-
cedures of oxidation/esterification, di(hetero)aryl disulfides 
were easily available from Biginelli 3,4- dihydropyrimidine- 
2(1H)- thiones by one- step reaction.
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2 |  RESULT AND DISCUSSION

Recently, we reported that CuCl[10e] and Cu(OAc)2·H2O 
(20 mol%)/NaAsc (30 mol%)[13] catalyst systems promoted 
the C- N cross- coupling reaction of di(hetero)aryl disulfides 
and aryl halides with amines or amides. So, we tested the 
CuCl and CuSO4·H2O (100 mol%)/NaAsc (200 mol%) pro-
moter systems in the C- O coupling of 1,2- di(pyrimidin- 2- yl) 

disulfides 1a and phenol 2a (Table 1). We found that CuCl 
gave a good yield of the product 3a (61%) in the presence 
of K3PO4 as a base; however, CuSO4·H2O/NaAsc system 
only obtained 3a in a yield of 35%. Other tested conditions 
could not obviously improve the reaction yield (entries 
3- 8). For examples, CuI and 2- OHPhCOOCu facilitated 
the formation of product 3a albeit with low yield, respec-
tively (entries 3- 4). No desired product was detected in the 

S C H E M E  1  Synthesis of the 
tetra- substituted pyrimidines from 
1,2- di(pyrimidin- 2- yl) disulfides

R

ArB(OH)2

2

N

N
Ar

Me

S
R

RMgBr

Pd, Ligand

Pd, Cu

Ar2B(OH)2Cu(I)

EtO

O

N

N
Ar

Me

S
EtO

O

N

N
Ar

Me

R
EtO

O

Fe(C5H5)2

RMgBr

N

N
Ar1

Me

Ar2

EtO

O

Pd, Cu
N

N

Ar1

Me

EtO

O

R

N

N
Ar1

Me

S
Ar2

EtO

O

N

N
Ar

Me

N
EtO

O

R2

R1

HN
R2

R1

Pd or Cu

N

N
Ar1

Me

X
Ar2

EtO

O

Ar2XH
CuCl

This work

X = S, O

Our previous work:

T A B L E  1  Optimization of reaction conditions for the C- O coupling of di(pyrimidin- 2- yl) disulfide and phenola

1a 2a 3a

Entry Cat. (eq.) Base (equiv) Temp. (oC) Time (h) Solvent Yieldb (%)

1 CuSO4 (1.0)/NaAsc (2.0) K3PO4 (3.0) 80 12 Xylene 35

2 CuCl (1.0) K3PO4 (3.0) 80 12 Xylene 61

3 CuI (1.0) K3PO4 (3.0) 80 12 Xylene 56

4 o- OHC6H4COOCu (1.0) K3PO4 (3.0) 80 12 Xylene 38

5 - K3PO4 (3.0) 80 12 Xylene - 

6 CuCl (1.0) K3PO4 (3.0) 80 24 Dioxane 28

7 CuCl (0.5) K3PO4 (3.0) 80 12 Xylene 45

8 CuCl (1.5) K3PO4 (3.0) 80 12 Xylene 65

9 CuCl (1.0) K3PO4 (3.0) 140 12 Xylene 76

10 CuCl (1.0) K3PO4 (3.0) 140 24 Xylene 77

NaAsc = L- ascorbic acid sodium salt.
aCatalytic conditions: 1a (0.2 mmol), 2a (0.6 mmol), solvent (3 mL), under a N2 atmosphere.
bIsolated yield based on disulfide 1a (based on both pyrimidine groups from one molecule).
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absence of promoter, but the starting material 1a was re-
covered (entry 5). Lowering or enhancing the loading of 
CuCl could not improve the obtained product (entries 7- 8). 
Notably, when the reaction was carried out at a high tem-
perature 140°C, the product 3a was isolated in 76%- 77% 
yield (entries 9- 10).

To test the scope of the C- O coupling reaction, the 
 phenols 2a-h were reacted with 1a under the optimized 
conditions (Scheme 2) and the yields of the obtained 
products are shown in Scheme 2. In general, good yields 
(67%- 75%) of the desired products 3a-g were obtained 
from phenols when the aryl group containing either an 
electron- withdrawing (Cl, Br) or an electron- donating 
(Me) group. However, moderate yield (37%) of the de-
sired ether derivative 3h was obtained when employed 
2,4- dichlorophenol 2h.

To further expand the scope of the nucleophilic coupling 
partners, we explored the C- S couplings of the disulfides 1 
with 4- methoxybenzenethiol 4a. These C- S coupling reac-
tions smoothly proceeded under the optimal reaction con-
ditions to give the desired products (Scheme 3). Various 
pyrimidine functionalized- disulfides (1a-f) were suitable 
partners for the coupling reaction giving the C- S cross- 
coupling products (5a-g) in good yields. Notably, cou-
plings of 4- fluoro- , 4- chloro- , 4- bromo- , 4- methyl- , and 
4- nitrophenyl substituted disulfides proceeded with 4a 
to yield the C- S coupling products in good yields (5a-g). 
The process also tolerated a variety of steric and electronic 
changes to thiophenols such as 4- chloro- , 4- bromo- , and 
4- methyl- substituted thiophenols to deliver the products 5h-i 
in good yields of 52%- 59%.

Unfortunately, some limitations were noted in case of di-
aryl disulfides; such as 2,2′- dithiodipyridine and diphenyl 
disulfide (treated with phenol 2a) were unreactive. Likewise, 
the reaction of 1a with some strong electron- withdrawing 
group- substituted phenols (nitrophenol) or alkyl alcohols such 
as 2- propanol or benzyl alcohol were also failed to achieve 
the desired product, but the starting materials were recovered 
(Figure 1). Compared with the active 1,2- di(pyrimidin- 2- yl) 
disulfides, the diaryl disulfides were relatively unactive and 
failed to coupling with phenol to give the corresponding 
products.

Finally, we proposed a possible mechanism for the C- 
O/C- S coupling reaction described in Scheme 4. It can be 
informed that pyrimidine- containing disulfides are more ef-
ficient than aryl disulfides in the reaction due to the coordina-
tion of a soft basic N- atom to the copper salt promoting C- S 
activation to give the intermediate A. Subsequently, the com-
plex A reacts with phenol producing the intermediate species 
B, which subsequently undergoes reductive cleavage of the 
C- S bond giving the C- O coupling product 3a. [10b-f]

3 |  CONCLUSIONS

In summary, we developed an efficient method for C- O and 
C- S cross- coupling reaction of 1,2- di(pyrimidin- 2- yl) di-
sulfides with phenols and thiophenols via Cu- promoted C- S 
bond cleavage of disulfides. The use of promoter CuCl was 
necessary for efficient formation of the C- O and C- S bond in 
this reaction in a homogeneous system heightens the overall 
efficiency of the given synthesis.

S C H E M E  2  Scope of disulfides 
(1a) and phenol in the C- O cross- coupling 
reaction
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4 |  EXPERIMENTAL

4.1 | General procedure for the synthesis of 
C- S coupling products
Under an atmosphere of nitrogen, disulfide 1a (0.2 mmol), 
phenol 2a (0.6 mmol), CuCl (0.2 mmol), and K3PO4 

(0.6 mmol) were added to an oven- dried Schlenk tube. The 
tube was stoppered and degassed with nitrogen 3 times. 
Water- free xylene (3 mL) was added by syringe, and the mix-
ture was stirred for 12 hours at 140°C, and the reaction was 
monitored by TLC analysis. Then, the reaction was quenched 
by adding into NH4Cl aqueous and extracted with ethyl ace-
tate (3 × 20 mL). The combined organic layers were washed 
with aqueous NH4Cl, NaOH (5%), and then brine, dried over 
MgSO4, filtered, and the volatiles were removed in vacuum. 
The residue was purified by column chromatography on sil-
ica gel (ethyl acetate/petroleum ether 1:30) to give the cor-
responding products.

4.2 | Ethyl 4- methyl- 2- phenoxy- 6- 
phenylpyrimidine- 5- carboxylate (3a)
Colorless oil; 1H NMR (600 MHz, CDCl3) δ = 7.59 (d, 
J = 7.2 Hz, 2H), 7.46- 7.36 (m, 5H), 7.27- 7.20 (m, 3H), 
4.18 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 1.06 (t, J = 7.2 Hz, 
3H) ppm. 13C NMR (150 MHz, CDCl3) δ = 169.14, 168.05, 
166.59, 163.94, 152.82, 137.30, 130.26, 129.33, 128.39, 

S C H E M E  3  Scope of disulfides (1a) 
and thiophenol in the C- S cross- coupling 
reaction

F I G U R E  1  Limitations of the C- O coupling of disulfides with 
alcohols. Reaction conditions are those of Table 1

S C H E M E  4  Possible mechanism for 
the C- O coupling reaction of disulfide 1a 
with phenol 2a(A) (B)
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128.35, 125.17, 121.56, 121.04, 77.24, 77.03, 76.82, 61.77, 
22.73, 13.60 ppm. EI- MS: m/z = 334 (M+).

4.3 | Ethyl 4- methyl- 6- phenyl- 2- (4- tolyloxy)
pyrimidine- 5- carboxylate (3b)
Colorless oil; 1H NMR (600 MHz, CDCl3) δ = 7.59 (d, 
J = 7.2 Hz, 2H), 7.45- 7.39 (m, 3H), 7.20 (d, J = 8.4 Hz, 2H), 
7.12 (d, J = 8.4 Hz, 2H), 4.17 (q, J = 7.2 Hz, 2H), 2.56 (s, 
3H), 2.37 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm. 13C NMR 
(150 MHz, CDCl3) δ = 169.07, 168.10, 166.61, 164.06, 
150.57, 137.37, 134.68, 130.21, 129.83, 128.37, 128.35, 
121.21, 120.92, 77.20, 76.98, 76.77, 61.74, 22.73, 20.88, 
13.59 ppm. EI- MS: m/z = 348 (M+).

4.4 | Ethyl 4- methyl- 6- phenyl- 2- (3- tolyloxy)
pyrimidine- 5- carboxylate (3c)
Colorless oil; 1H NMR (600 MHz, CDCl3) δ = 7.61- 7.59 
(m, 2H), 7.44- 7.39 (m, 3H), 7.28 (t, J = 7.8 Hz, 1H), 7.04 (d, 
J = 7.8 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 2.38 
(s, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (150 MHz, 
CDCl3) δ = 169.11, 168.10, 166.63, 164.01, 152.76, 139.50, 
137.32, 130.25, 129.00, 128.39, 128.35, 125.97, 122.04, 
120.98, 118.52, 77.21, 77.00, 76.79, 61.79, 22.71, 21.38, 
13.60 ppm. EI- MS: m/z = 348 (M+).

4.5 | Ethyl 4- methyl- 6- phenyl- 2- (2- tolyloxy)
pyrimidine- 5- carboxylate (3d)
Yellow oil; 1H NMR (400 MHz, CDCl3) δ = 7.57 (d, 
J = 8.0 Hz, 2H, ArH), 7.46- 7.37 (m, 2H, ArH), 7.28- 7.22 (m, 
2H, ArH), 7.18- 7.11 (m, 2H, ArH), 4.18 (q, J = 8.0 Hz, 2H, 
CH2), 2.55 (s, 3H, CH3), 2.22 (s, 3H, CH3), 1.06 (t, J = 8.0 Hz, 
3H, CH3); 

13C NMR (100 MHz, CDCl3) δ = 169.14, 168.15, 
166.62, 163.87, 151.35, 137.34, 131.10, 130.55, 130.21, 
128.37, 128.35, 126.80, 125.44, 121.86, 120.82, 61.76, 
22.74, 16.44, 13.61; EI- MS: m/z = 348 (M+); Anal. Calcd 
for C21H20N2O3: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.37; 
H, 5.75; N, 8. 02.

4.6 | Ethyl 2- (4- bromophenoxy)- 4- methyl- 6- 
phenylpyrimidine- 5- carboxylate (3e)
Colorless oil; 1H NMR (600 MHz, CDCl3) δ = 7.58 
(d, J = 7.2 Hz, 2H), 7.50 (d, J = 9.0 Hz, 2H), 7.45 
(t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.4 Hz, 2H), 7.13 (d, 
J = 8.4 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 
1.06 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (150 MHz, CDCl3) 
δ = 169.28, 167.92, 166.73, 163.52, 151.79, 137.04, 132.35 
(d, J = 19.7 Hz), 130.45, 128.49, 128.31, 123.41, 121.38, 
118.19, 117.29, 61.92, 22.67, 13.60. EI- MS: m/z = 412 
(M+), 414 (M + 2).

4.7 | Ethyl 2- (4- chlorophenoxy)- 4- methyl- 6- 
phenylpyrimidine- 5- carboxylate (3f)
Colorless oil; 1H NMR (400 MHz, CDCl3) δ = 7.58 (d, 
J = 8.0 Hz, 2H, ArH), 7.44- 7.34 (m, 5H, ArH), 7.18 (d, 
J = 8.0 Hz, 2H, ArH), 4.17 (q, J = 8.0 Hz, 2H, CH2), 2.56 (s, 
3H, CH3), 1.05 (t, J = 8.0 Hz, 3H, CH3); 

13C NMR (100 MHz, 
CDCl3) δ = 169.05, 167.68, 166.48, 163.43, 151.10, 136.92, 
130.26, 130.19, 129.20, 129.07, 128.25, 128.12, 122.77, 
121.15, 116.57, 61.65, 22.47, 13.39. EI- MS: m/z = 368 (M+); 
Anal. Calcd for C20H17ClN2O3: C, 65.13; H, 4.65; N, 7.60. 
Found: C, 65.07; H, 4.60; N, 7. 61.

4.8 | Ethyl 2- (2- chlorophenoxy)- 4- methyl- 6- 
phenylpyrimidine- 5- carboxylate (3g)
Colorless oil; 1H NMR (400 MHz, CDCl3) δ = 7.49 (d, 
J = 4.0 Hz, 2H, ArH), 7.38- 7.27 (m, 4H, ArH), 7.20- 7.06 (m, 
2H, ArH), 7.11- 7.07 (m, 1H, ArH), 4.09 (q, J = 8.0 Hz, 2H, 
CH2), 2.47 (s, 3H, CH3), 0.97 (t, J = 8.0 Hz, 3H, CH3); 

13C 
NMR (100 MHz, CDCl3) δ = 169.21, 167.91, 166.50, 163.27, 
148.88, 137.15, 130.28, 128.32, 128.30, 127.70, 127.33, 126.44, 
123.70, 121.24, 61.73, 22.64, 13.55. EI- MS: m/z = 368 (M+); 
Anal. Calcd for C20H17ClN2O3: C, 65.13; H, 4.65; N, 7.60. 
Found: C, 65.08; H, 4.61; N, 7.62. HRMS (ESI): calculated for 
C20H17ClN2O3: [M+H]+ 369.1000; found: 369.0998.

4.9 | Ethyl 2- (2,4- dichlorophenoxy)- 4- 
methyl- 6- phenylpyrimidine- 5- carboxylate (3h)
White solid, m.p. = 88- 89°C. 1H NMR (600 MHz, CDCl3) 
δ = 7.56 (d, J = 7.8 Hz, 2H), 7.47 (s, 1H), 7.44 (t, J = 6.8 Hz, 
1H), 7.39 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 9.0 Hz, 1H), 7.19 
(d, J = 8.4 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 2.55 (s, 3H), 
1.05 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (150 MHz, CDCl3) 
δ = 169.40, 167.86, 166.63, 163.02, 147.64, 137.01, 131.28, 
130.38, 130.13, 128.43, 128.33, 127.96, 124.60, 121.52, 77.21, 
77.00, 76.79, 61.87, 22.70, 13.60 ppm. EI- MS: m/z = 402 
(M+), 404 (M + 2).

4.10 | Ethyl 2- (4- methoxyphenylthio)- 4- 
methyl- 6- phenylpyrimidine- 5- carboxylate (5a)
Orange oil; 1H NMR (400 MHz, CDCl3) δ = 7.46 (q, 
J = 8.0 Hz, 4H, ArH), 7.29 (t, J = 8.0 Hz, 3H, ArH), 6.87 
(d, J = 12.0 Hz, 2H, ArH), 4.05 (q, J = 8.0 Hz, 2H, CH2), 
3.76 (s, 3H, CH3), 2.42 (s, 3H, CH3), 0.96 (t, J = 8.0 Hz, 
3H, CH3); 

13C NMR (100 MHz, CDCl3) δ = 172.67, 168.09, 
165.78, 163.46, 160.41, 137.37, 136.91, 130.06, 128.34, 
128.29, 121.27, 121.27, 114.48, 109.71, 61.67, 55.30, 
22.57, 13.56. EI- MS: m/z = 380 (M+); Anal. Calcd for 
C21H20N2O3S: C, 66.29; H, 5.30; N, 7.36. Found: C, 66.22; 
H, 5.28; N, 7. 33.
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4.11 | Ethyl 4- (4- fluorophenyl)- 2- (4- 
methoxyphenylthio)- 6- methylpyrimidine- 5- 
carboxylate (5b)
Yellow oil; 1H NMR (400 MHz, CDCl3) δ = 7.54 (t, 
J = 8.0 Hz, 4H, ArH), 7.05 (t, J = 8.0 Hz, 2H, ArH), 6.95 (d, 
J = 8.0 Hz, 2H, ArH), 4.19 (q, J = 8.0 Hz, 2H, CH2), 3.84 (s, 
3H, CH3), 2.50 (s, 3H, CH3), 1.10 (t, J = 8.0 Hz, 3H, CH3); 
13C NMR (100 MHz, CDCl3) δ = 172.78, 168.04, 165.88, 
162.15, 160.51, 136.96, 130.55, 130.46, 121.06, 115.53, 
115.32, 114.52, 61.77, 55.32, 31.89, 22.57, 13.67. EI- MS: 
m/z = 398 (M+); Anal. Calcd for C21H19FN2O3S: C, 63.30; 
H, 4.81; N, 7.03. Found: C, 63.27; H, 4.79; N, 7.01.

4.12 | Ethyl 4- (4- chlorophenyl)- 2- (4- 
methoxyphenylthio)- 6- methylpyrimidine- 5- 
carboxylate (5c)
White solid, m.p. 35- 37°C; 1H NMR (400 MHz, CDCl3) 
δ = 7.53 (d, J = 8.0 Hz, 2H, ArH), 7.46 (d, J = 8.0 Hz, 2H, 
ArH), 7.34 (d, J = 8.0 Hz, 2H, ArH), 6.95 (d, J = 12.0 Hz, 
2H, ArH), 4.19 (q, J = 8.0 Hz, 2H, CH2), 3.85 (s, 3H, CH3), 
2.50 (s, 3H, CH3), 1.11 (t, J = 8.0 Hz, 3H, CH3); 

13C NMR 
(100 MHz, CDCl3) δ = 172.89, 167.90, 165.98, 162.08, 
160.50, 136.95, 136.44, 129.73, 128.57, 121.06, 119.89, 
114.50, 61.81, 55.31, 31.88, 22.59, 13.66. EI- MS: m/z = 414 
(M+); Anal. Calcd for C21H19ClN2O3S: C, 60.79; H, 4.62; N, 
6.75. Found: C, 60.73; H, 4.58; N, 6. 69.

4.13 | Ethyl 4- (4- bromophenyl)- 2- (4- 
methoxyphenylthio)- 6- methylpyrimidine- 5- 
carboxylate (5d)
Colorless oil; 1H NMR (400 MHz, CDCl3) δ = 7.55- 7.44 
(m, 6H, ArH), 6.73 (d, J = 8.0 Hz, 2H, ArH), 4.13 (q, 
J = 8.0 Hz, 2H, CH2), 3.69 (s, 3H, CH3), 2.52 (s, 3H, CH3), 
1.04 (t, J = 8.0 Hz, 3H, CH3); 

13C NMR (100 MHz, CDCl3) 
δ = 171.10, 167.54, 166.43, 162.83, 160.27, 136.11, 133.69, 
131.69, 130.02, 127.20, 125.04, 122.25, 114.51, 61.97, 
55.30, 22.59, 13.65. EI- MS: m/z = 458 (M+); Anal. Calcd for 
C21H19BrN2O3S: C, 54.91; H, 4.17; N, 6.10. Found: C, 54.87; 
H, 4.12; N, 5.98.

4.14 | Ethyl 2- (4- methoxyphenylthio)- 
4- methyl- 6- (4- nitrophenyl)pyrimidine- 5- 
carboxylate (5e)
Yellow oil; 1H NMR (400 MHz, CDCl3) δ = 8.23 (d, 
J = 8.0 Hz, 2H, ArH), 7.67 (d, J = 8.0 Hz, 2H, ArH), 7.53 
(d, J = 8.0 Hz, 2H, ArH), 6.96 (d, J = 8.0 Hz, 2H, ArH), 
4.19 (q, J = 8.0 Hz, 2H, CH2), 3.86 (s, 3H, CH3), 2.54 (s, 3H, 
CH3), 1.09 (t, J = 8.0 Hz, 3H, CH3); 

13C NMR (100 MHz, 
CDCl3) δ = 173.45, 167.26, 166.56, 161.25, 160.64, 148.60, 

143.48, 136.95, 129.39, 123.42, 121.36, 119.50, 114.60, 
62.00, 55.33, 22.76, 13.66; EI- MS: m/z = 425 (M+); Anal. 
Calcd for C21H19N3O5S: C, 59.28; H, 4.50; N, 9.88. Found: 
C, 59.22; H, 4.47; N, 9. 86.

4.15 | Ethyl 2- (4- methoxyphenylthio)- 4- 
methyl- 6- p- tolylpyrimidine- 5- carboxylate (5f)
Colorless oil; 1H NMR (400 MHz, CDCl3) δ = 7.55 (d, 
J = 12.0 Hz, 2H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 7.16 
(d, J = 8.0 Hz, 2H, ArH), 6.94 (d, J = 8.0 Hz, 2H, ArH), 
4.19 (q, J = 8.0 Hz, 2H, CH2), 3.85 (s, 3H, CH3), 2.49 (s, 
3H, CH3), 2.36 (s, 3H, CH3), 1.10 (t, J = 8.0 Hz, 3H, CH3); 
EI- MS: m/z = 394 (M+); Anal. Calcd for C22H22N2O3S: C, 
66.98; H, 5.62; N, 7.10. Found: C, 66.96; H, 5.60; N, 7.08.

4.16 | Ethyl 4- methyl- 6- phenyl- 2- (4- 
tolylthio)pyrimidine- 5- carboxylate (5g)
White solid, m.p. = 64- 66°C. 1H NMR (600 MHz, CDCl3) 
δ = 7.52 (d, J = 8.0 Hz, 4H), 7.41 (t, J = 7.2 Hz, 1H), 7.36 (t, 
J = 7.8 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.15 (q, J = 7.2 Hz, 
2H), 2.49 (s, 3H), 2.39 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H) ppm. 
13C NMR (100 MHz, CDCl3): δ = 172.33, 168.04, 165.76, 
163.46, 139.10, 137.37, 135.03, 130.02, 129.6, 128.30, 
125.88, 121.34, 61.64, 22.54, 21.28, 13.55 ppm. EI- MS: 
m/z = 364 (M+).

4.17 | Ethyl 2- ((4- chlorophenyl)thio)- 4- 
methyl- 6- phenylpyrimidine- 5- carboxylate (5h)
White solid, m.p. = 41- 43°C. 1H NMR (400 MHz, CDCl3): 
δ = 7.49 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 7.6 Hz, 2H), 7.35- 
7.30 (m, 5H), 4.08 (q, J = 7.2 Hz, 2H), 2.43 (s, 3H), 0.97 (t, 
J = 7.0 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ = 171.66, 
168.14, 166.26, 163.90, 137.47, 136.66, 135.58, 130.47, 129.34, 
128.64, 128.57, 128.27, 121.98, 77.58, 77.27, 76.95, 62.02, 
22.80, 13.84 ppm. EI- MS: m/z = 384 (M+), 386 (M + 2).

4.18 | Ethyl 2- ((4- bromophenyl)thio)- 4- 
methyl- 6- phenylpyrimidine- 5- carboxylate (5i)
White solid, m.p. = 59- 61°C. 1H NMR (400 MHz, CDCl3): 
δ = 7.41 (d, J = 5.6 Hz, 6H), 7.28 (d, J = 7.2 Hz, 3H), 4.05 (d, 
J = 7.2 Hz, 2H), 2.40 (s, 3H), 0.93 (t, J = 7.2 Hz, 3H) ppm. 13C 
NMR (100 MHz, CDCl3): δ = 171.24, 167.86, 166.00, 163.63, 
137.20, 136.58, 136.39, 132.02, 130.20, 129.07, 128.67, 
128.38, 128.31, 123.53, 121.75, 77.32, 77.00, 76.68, 61.74, 
22.53, 13.57 ppm. EI- MS: m/z = 428 (M+), 430 (M + 2).
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