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1 | INTRODUCTION

Diaryl ethers and thioethers are the ubiquitous scaffolds in
natural, pharmaceutical, agrochemical, and fine organic
chemicals, and particularly, heterobiaryl ether frameworks
containing a N-hetero-ring are found in pharmaceutically rel-
evant compounds such as Sorafenib, XK469, Tafenoquine,
and AMG900. ' It has been informed that one-half of
the small molecules approved by the U.S. Food and Drug
Administration (FDA) are heterocyclic and contain at least
1 nitrogen. Therefore, the discovery and development of new
synthetic methodologies for C-O and C-S bonds formation
have played an important role in organic chemistry.’”! Usually,
copper-catalyzed Ullmann reaction has been extensively used
for the synthesis of ethers involving phenols and aryl halides,
it often suffers from harsh reaction conditions such as higher
temperatures (>125-220°C), stronger bases.!

Transition metal-catalyzed C-O/C-S cross-coupling reaction
has become a significant methodology for the formation of ethers
and thioethers through the reaction of electrophilic aryl halides with
nucleophilic phenols/aryl thiols including the copper-mediated or
catalyzed Chan—Lam—Evans type Ar—B/Ar—OH coup]jngs.[4]

In addition to the use of aryl halides, which synthesis
often involves tedious steps, harsh reaction conditions, and
waste production, sulfonates,[s] [6], aromatic es-
ters,m and others as alternative electrophiles were introduced
into the C-O cross-coupling chemistry.
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An efficient protocol for C-O and C-S bonds formation by the cross-coupling reac-
tion of 1,2-di(pyrimidin-2-yl) disulfides with phenols/thiophenols promoted by
copper(I) chloride was established. It was discovered that variously substituted
di(hetero)aryl disulfides and phenols were well tolerated. This strategy is the conver-
sion of disulfides into hetero-aryl ethers and thioethers by a copper-promoted chem-

oselective C-S bond cleavage of disulfides.

Di(hetero)aryl disulfides are widely used as electro-
philes instead of aryl halides for the construction of C-S
bond through S-S bond cleavage,[s] because that disul-
fides are structurally symmetrical, air stable, and easy
to handle.”! Recently, we developed a series of method
to construct C-C, C-N, and C-S bonds through C-S and
S-S bonds cleavage of di(hetero)aryl disulfides with var-
ious nucleophiles including aryl boronic acids, alkynes,
Grignard reagents, and amines.!"”) The obtained products
tetra-substituted pyrimidines display wide pharmacolog-
ical and biological properties''' In continuation of our
work in the formation of the C-C and C-Z (Z =0, N, S)
bond utilizing 1,2-di(pyrimidin-2-yl) disulfide as an elec-
trophile, we investigated the C-O and C-S coupling of the
di(hetero)aryl disulfides with phenol and aryl thiol using
CuCl to obtain oxylated and sulfenylated pyrimidines
(Scheme 1).

We have reported the synthesis of 2-phenolic pyrimidines
by C-S and C-O cross-coupling reaction of pyrimidin-2-yl sul-
fonates with aryl thiols and phenols.[lz] Alternatively, we have
developed an efficient preparation of 2-arylated pyrimidines
by the Mitsunobu reaction between 2-hydroxypyrimidine
and phenols. [126] Compared pyrimidin-2-yl sulfonates from
Biginelli 3,4-dihydropyrimidine-2(1H)-ones via 2-step pro-
cedures of oxidation/esterification, di(hetero)aryl disulfides
were easily available from Biginelli 3,4-dihydropyrimidine-
2(1H)-thiones by one-step reaction.
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2 | RESULT AND DISCUSSION

Recently, we reported that CuCI'%! and Cu(OAc),-H,O
(20 mol%)/NaAsc (30 mol%)!"? catalyst systems promoted
the C-N cross-coupling reaction of di(hetero)aryl disulfides
and aryl halides with amines or amides. So, we tested the
CuCl and CuSO,-H,0 (100 mol%)/NaAsc (200 mol%) pro-
moter systems in the C-O coupling of 1,2-di(pyrimidin-2-yl)

1,2-di(pyrimidin-2-yl) disulfides

disulfides 1a and phenol 2a (Table 1). We found that CuCl
gave a good yield of the product 3a (61%) in the presence
of K;PO, as a base; however, CuSO,-H,O/NaAsc system
only obtained 3a in a yield of 35%. Other tested conditions
could not obviously improve the reaction yield (entries
3-8). For examples, Cul and 2-OHPhCOOCu facilitated
the formation of product 3a albeit with low yield, respec-
tively (entries 3-4). No desired product was detected in the

TABLE 1 Optimization of reaction conditions for the C-O coupling of di(pyrimidin-2-yl) disulfide and phenol®
O Ph OH
N atalyst/L
- | /)N\ : gondl};ons )EEKN @
Me~ N° 'S 2*
1a 2a 3a

Entry Cat. (eq.) Base (equiv) Temp. (°C) Time (h) Solvent Yield” (%)
1 CuSO, (1.0)/NaAsc (2.0) K5PO, (3.0) 80 12 Xylene 35
2 CuCl (1.0) K;PO, (3.0) 80 12 Xylene 61
3 Cul (1.0) K;PO, (3.0) 80 12 Xylene 56
4 0-OHC¢H,COOCu (1.0) K5PO, (3.0) 80 12 Xylene 38
5 - K;PO, (3.0) 80 12 Xylene -
6 CuCl (1.0) K;PO, (3.0) 80 24 Dioxane 28
7 CuCl (0.5) K;PO, (3.0) 80 12 Xylene 45
8 CuCl (1.5) K;PO, (3.0) 80 12 Xylene 65
9 CuCl (1.0) K5PO, (3.0) 140 12 Xylene 76
10 CuCl (1.0) K;PO, (3.0) 140 24 Xylene 77

NaAsc = L-ascorbic acid sodium salt.
“Catalytic conditions: 1a (0.2 mmol), 2a (0.6 mmol), solvent (3 mL), under a N, atmosphere.
“Isolated yield based on disulfide 1a (based on both pyrimidine groups from one molecule).
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absence of promoter, but the starting material 1la was re-
covered (entry 5). Lowering or enhancing the loading of
CuCl could not improve the obtained product (entries 7-8).
Notably, when the reaction was carried out at a high tem-
perature 140°C, the product 3a was isolated in 76%-77%
yield (entries 9-10).

To test the scope of the C-O coupling reaction, the
phenols 2a-h were reacted with 1a under the optimized
conditions (Scheme 2) and the yields of the obtained
products are shown in Scheme 2. In general, good yields
(67%-75%) of the desired products 3a-g were obtained
from phenols when the aryl group containing either an
electron-withdrawing (Cl, Br) or an electron-donating
(Me) group. However, moderate yield (37%) of the de-
sired ether derivative 3h was obtained when employed
2,4-dichlorophenol 2h.

To further expand the scope of the nucleophilic coupling
partners, we explored the C-S couplings of the disulfides 1
with 4-methoxybenzenethiol 4a. These C-S coupling reac-
tions smoothly proceeded under the optimal reaction con-
ditions to give the desired products (Scheme 3). Various
pyrimidine functionalized-disulfides (la-f) were suitable
partners for the coupling reaction giving the C-S cross-
coupling products (Sa-g) in good yields. Notably, cou-
plings of 4-fluoro-, 4-chloro-, 4-bromo-, 4-methyl-, and
4-nitrophenyl substituted disulfides proceeded with 4a
to yield the C-S coupling products in good yields (5a-g).
The process also tolerated a variety of steric and electronic
changes to thiophenols such as 4-chloro-, 4-bromo-, and
4-methyl-substituted thiophenols to deliver the products 5h-i
in good yields of 52%-59%.

Me N S/ 2
1a
Ph
BTN /@
Me N/)\O
3a 76%
O Ph
EtO ‘ SN
Me N/)\O/gj
3d 69%  Me
O Ph
EtO ‘ ~N
SCHEME 2  Scope of disulfides Me N/)\O/Q

(1a) and phenol in the C-O cross-coupling
3g 67%

Cl

_Wl LEYM

Unfortunately, some limitations were noted in case of di-
aryl disulfides; such as 2,2'-dithiodipyridine and diphenyl
disulfide (treated with phenol 2a) were unreactive. Likewise,
the reaction of la with some strong electron-withdrawing
group-substituted phenols (nitrophenol) or alkyl alcohols such
as 2-propanol or benzyl alcohol were also failed to achieve
the desired product, but the starting materials were recovered
(Figure 1). Compared with the active 1,2-di(pyrimidin-2-yl)
disulfides, the diaryl disulfides were relatively unactive and
failed to coupling with phenol to give the corresponding
products.

Finally, we proposed a possible mechanism for the C-
O/C-S coupling reaction described in Scheme 4. It can be
informed that pyrimidine-containing disulfides are more ef-
ficient than aryl disulfides in the reaction due to the coordina-
tion of a soft basic N-atom to the copper salt promoting C-S
activation to give the intermediate A. Subsequently, the com-
plex A reacts with phenol producing the intermediate species
B, which subsequently undergoes reductive cleavage of the
C-S bond giving the C-O coupling product 3a. [106-]

3 | CONCLUSIONS

In summary, we developed an efficient method for C-O and
C-S cross-coupling reaction of 1,2-di(pyrimidin-2-yl) di-
sulfides with phenols and thiophenols via Cu-promoted C-S
bond cleavage of disulfides. The use of promoter CuCl was
necessary for efficient formation of the C-O and C-S bond in
this reaction in a homogeneous system heightens the overall
efficiency of the given synthesis.

OH O Ph
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7 KsPOy (3 eq.) BOT N 7L
A /)\ N R
R xylene 140 °C, 12 h, N, Me”™ "N” "O
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FIGURE 1
alcohols. Reaction conditions are those of Table 1

Limitations of the C-O coupling of disulfides with

4 | EXPERIMENTAL
4.1 | General procedure for the synthesis of
C-S coupling products

Under an atmosphere of nitrogen, disulfide 1a (0.2 mmol),
phenol 2a (0.6 mmol), CuCl (0.2 mmol), and K;PO,

CuCl O Ph PhOH, 2a

1a \ EtO

SN—Cu*

2
(A)

5h 52% 5i 53%

R L.

Ar
BUE
TR
SN
5a-i

OMe

SCHEME 3 Scope of disulfides (1a)
and thiophenol in the C-S cross-coupling
reaction

(0.6 mmol) were added to an oven-dried Schlenk tube. The
tube was stoppered and degassed with nitrogen 3 times.
Water-free xylene (3 mL) was added by syringe, and the mix-
ture was stirred for 12 hours at 140°C, and the reaction was
monitored by TLC analysis. Then, the reaction was quenched
by adding into NH,CI aqueous and extracted with ethyl ace-
tate (3 X 20 mL). The combined organic layers were washed
with aqueous NH,Cl, NaOH (5%), and then brine, dried over
MgSO,, filtered, and the volatiles were removed in vacuum.
The residue was purified by column chromatography on sil-
ica gel (ethyl acetate/petroleum ether 1:30) to give the cor-
responding products.

4.2 | Ethyl 4-methyl-2-phenoxy-6-
phenylpyrimidine-5-carboxylate (3a)

Colorless oil; '"H NMR (600 MHz, CDCl;) 8 =7.59 (d,
J=7.2Hz, 2H), 7.46-7.36 (m, 5H), 7.27-7.20 (m, 3H),
4.18 (q, J=7.2 Hz, 2H), 2.57 (s, 3H), 1.06 (t, J = 7.2 Hz,
3H) ppm. *C NMR (150 MHz, CDCl;) & = 169.14, 168.05,
166.59, 163.94, 152.82, 137.30, 130.26, 129.33, 128.39,

SCHEME 4 Possible mechanism for
Ph the C-O coupling reaction of disulfide 1a
with phenol 2a
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128.35, 125.17, 121.56, 121.04, 77.24, 77.03, 76.82, 61.77,
22.73, 13.60 ppm. EL-MS: m/z = 334 (M),

4.3 | Ethyl 4-methyl-6-phenyl-2-(4-tolyloxy)
pyrimidine-5-carboxylate (3b)

Colorless oil; '"H NMR (600 MHz, CDCl;) & =7.59 (d,
J =7.2 Hz, 2H), 7.45-7.39 (m, 3H), 7.20 (d, J = 8.4 Hz, 2H),
7.12 (d, J = 8.4 Hz, 2H), 4.17 (g, J = 7.2 Hz, 2H), 2.56 (s,
3H), 2.37 (s, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm. *C NMR
(150 MHz, CDCl;) & =169.07, 168.10, 166.61, 164.06,
150.57, 137.37, 134.68, 130.21, 129.83, 128.37, 128.35,
121.21, 120.92, 77.20, 76.98, 76.77, 61.74, 22.73, 20.88,
13.59 ppm. EI-MS: m/z = 348 (M™).

44 | Ethyl 4-methyl-6-phenyl-2-(3-tolyloxy)
pyrimidine-5-carboxylate (3c)

Colorless oil; '"H NMR (600 MHz, CDCly) 6 =7.61-7.59
(m, 2H), 7.44-7.39 (m, 3H), 7.28 (t,J = 7.8 Hz, 1H), 7.04 (d,
J=17.8Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H), 2.38
(s, 3H), 1.06 (t, J = 7.2 Hz, 3H) ppm. BC NMR (150 MHz,
CDCl;) 6 =169.11, 168.10, 166.63, 164.01, 152.76, 139.50,
137.32, 130.25, 129.00, 128.39, 128.35, 125.97, 122.04,
120.98, 118.52, 77.21, 77.00, 76.79, 61.79, 22.71, 21.38,
13.60 ppm. EI-MS: m/z = 348 (M™).

4.5 | Ethyl 4-methyl-6-phenyl-2-(2-tolyloxy)
pyrimidine-5-carboxylate (3d)

Yellow oil; '"H NMR (400 MHz, CDCl;) 8=7.57 (d,
J =28.0 Hz, 2H, ArH), 7.46-7.37 (m, 2H, ArH), 7.28-7.22 (m,
2H, ArH), 7.18-7.11 (m, 2H, ArH), 4.18 (q, J = 8.0 Hz, 2H,
CH,),2.55 (s, 3H, CHj3), 2.22 (s, 3H, CH;), 1.06 (t,J = 8.0 Hz,
3H, CHy); 3C NMR (100 MHz, CDCly) 8 = 169.14, 168.15,
166.62, 163.87, 151.35, 137.34, 131.10, 130.55, 130.21,
128.37, 128.35, 126.80, 125.44, 121.86, 120.82, 61.76,
22.74, 16.44, 13.61; EI-MS: m/z = 348 (M"); Anal. Calcd
for C,;H,yN,O5: C, 72.40; H, 5.79; N, 8.04. Found: C, 72.37;
H, 5.75; N, 8. 02.

4.6 | Ethyl 2-(4-bromophenoxy)-4-methyl-6-
phenylpyrimidine-5S-carboxylate (3e)

Colorless oil; 'H NMR (600 MHz, CDCl;) & =7.58
(d, J=72Hz, 2H), 7.50 (d, J=9.0Hz, 2H), 7.45
(t, J=7.4Hz, 1H), 7.40 (t, J=7.4Hz, 2H), 7.13 (d,
J=8.4Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 2.57 (s, 3H),
1.06 (t, J = 7.2 Hz, 3H) ppm. >C NMR (150 MHz, CDCl5)
& = 169.28,167.92, 166.73, 163.52, 151.79, 137.04, 132.35
(d, J =19.7 Hz), 130.45, 128.49, 128.31, 123.41, 121.38,
118.19, 117.29, 61.92, 22.67, 13.60. EI-MS: m/z = 412
(M"), 414 (M + 2).

4.7 | Ethyl 2-(4-chlorophenoxy)-4-methyl-6-
phenylpyrimidine-5-carboxylate (3f)

Colorless oil; 'H NMR (400 MHz, CDCly) 6="7.58 (d,
J=8.0Hz, 2H, ArH), 7.44-7.34 (m, 5H, ArH), 7.18 (d,
J =8.0 Hz, 2H, ArH), 4.17 (g, J = 8.0 Hz, 2H, CH,), 2.56 (s,
3H, CH;), 1.05 (t,J = 8.0 Hz, 3H, CH5); "?C NMR (100 MHz,
CDCl;) 6 =169.05, 167.68, 166.48, 163.43, 151.10, 136.92,
130.26, 130.19, 129.20, 129.07, 128.25, 128.12, 122.77,
121.15,116.57, 61.65, 22.47, 13.39. EI-MS: m/z = 368 (M™);
Anal. Calcd for C,4H;;CIN,O5: C, 65.13; H, 4.65; N, 7.60.
Found: C, 65.07; H, 4.60; N, 7. 61.

4.8 | Ethyl 2-(2-chlorophenoxy)-4-methyl-6-
phenylpyrimidine-5-carboxylate (3g)

Colorless oil; '"H NMR (400 MHz, CDCl;) 6=7.49 (,
J=4.0Hz, 2H, ArH), 7.38-7.27 (m, 4H, ArH), 7.20-7.06 (m,
2H, ArH), 7.11-7.07 (m, 1H, ArH), 4.09 (q, /= 8.0 Hz, 2H,
CH,), 2.47 (s, 3H, CHj), 0.97 (t, /= 8.0 Hz, 3H, CHy); Bc
NMR (100 MHz, CDCls) 6 = 169.21, 167.91, 166.50, 163.27,
148.88, 137.15, 130.28, 128.32, 128.30, 127.70, 127.33, 126.44,
123.70, 121.24, 61.73, 22.64, 13.55. EI-MS: m/z = 368 (M™);
Anal. Caled for C,0H,CIN,O5: C, 65.13; H, 4.65; N, 7.60.
Found: C, 65.08; H, 4.61; N, 7.62. HRMS (ESI): calculated for
CyoH,,CIN,O5: [M+H]" 369.1000; found: 369.0998.

4.9 | Ethyl 2-(2,4-dichlorophenoxy)-4-
methyl-6-phenylpyrimidine-5-carboxylate (3h)

White solid, m.p. =88-89°C. 'H NMR (600 MHz, CDCl;)
8="17.56 (d, J = 7.8 Hz, 2H), 7.47 (s, 1H), 7.44 (t, ] = 6.8 Hz,
1H), 7.39 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 9.0 Hz, 1H), 7.19
(d, J=84Hz, 1H), 4.17 (q, J=7.2Hz, 2H), 2.55 (s, 3H),
1.05 (t, J=7.2Hz, 3H) ppm. °C NMR (150 MHz, CDCl;)
& = 169.40, 167.86, 166.63, 163.02, 147.64, 137.01, 131.28,
130.38, 130.13, 128.43, 128.33, 127.96, 124.60, 121.52, 77.21,
77.00, 76.79, 61.87, 22.70, 13.60 ppm. EI-MS: m/z = 402
(M™), 404 (M + 2).

4.10 | Ethyl 2-(4-methoxyphenylthio)-4-
methyl-6-phenylpyrimidine-5-carboxylate (5a)

Orange oil; 'H NMR (400 MHz, CDCl;) &=7.46 (q,
J =8.0 Hz, 4H, ArH), 7.29 (t, J = 8.0 Hz, 3H, ArH), 6.87
(d, J = 12.0 Hz, 2H, ArH), 4.05 (q, J = 8.0 Hz, 2H, CH,),
3.76 (s, 3H, CH3), 2.42 (s, 3H, CH;), 0.96 (t, J = 8.0 Hz,
3H, CH,); *C NMR (100 MHz, CDCl;) 8 = 172.67, 168.09,
165.78, 163.46, 160.41, 137.37, 136.91, 130.06, 128.34,
128.29, 121.27, 121.27, 114.48, 109.71, 61.67, 55.30,
22.57, 13.56. EI-MS: m/z =380 (M"); Anal. Calcd for
C,,H,(N,0,S: C, 66.29; H, 5.30; N, 7.36. Found: C, 66.22;
H, 5.28;N, 7. 33.
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4.11 | Ethyl 4-(4-fluorophenyl)-2-(4-
methoxyphenylthio)-6-methylpyrimidine-5-
carboxylate (5b)

Yellow oil; 'H NMR (400 MHz, CDCl;) &=7.54 (t,
J=8.0Hz, 4H, ArH), 7.05 (t, J/ = 8.0 Hz, 2H, ArH), 6.95 (d,
J = 8.0 Hz, 2H, ArH), 4.19 (q, / = 8.0 Hz, 2H, CH,), 3.84 (s,
3H, CH3), 2.50 (s, 3H, CHy), 1.10 (t, J = 8.0 Hz, 3H, CH;);
BC NMR (100 MHz, CDCl;) & = 172.78, 168.04, 165.88,
162.15, 160.51, 136.96, 130.55, 130.46, 121.06, 115.53,
115.32, 114.52, 61.77, 55.32, 31.89, 22.57, 13.67. EI-MS:
m/z =398 (M"); Anal. Calcd for C,;H,,FN,0,S: C, 63.30;
H, 4.81; N, 7.03. Found: C, 63.27; H, 4.79; N, 7.01.

4.12 | Ethyl 4-(4-chlorophenyl)-2-(4-
methoxyphenylthio)-6-methylpyrimidine-5-
carboxylate (5¢)

White solid, m.p. 35-37°C; 'H NMR (400 MHz, CDCl;)
8=7.53 (d, J = 8.0 Hz, 2H, ArH), 7.46 (d, J = 8.0 Hz, 2H,
ArH), 7.34 (d, J = 8.0 Hz, 2H, ArH), 6.95 (d, J = 12.0 Hz,
2H, ArH), 4.19 (q, J = 8.0 Hz, 2H, CH,), 3.85 (s, 3H, CH;),
2.50 (s, 3H, CH;), 1.11 (t, J = 8.0 Hz, 3H, CH;); '*C NMR
(100 MHz, CDCl;) &=172.89, 167.90, 165.98, 162.08,
160.50, 136.95, 136.44, 129.73, 128.57, 121.06, 119.89,
114.50, 61.81, 55.31, 31.88, 22.59, 13.66. EI-MS: m/z = 414
(M™); Anal. Calcd for C,,H,oCIN,0,S: C, 60.79; H, 4.62; N,
6.75. Found: C, 60.73; H, 4.58; N, 6. 69.

4.13 | Ethyl 4-(4-bromophenyl)-2-(4-
methoxyphenylthio)-6-methylpyrimidine-5-
carboxylate (5d)

Colorless oil; 'H NMR (400 MHz, CDCly) 6 =7.55-7.44
(m, 6H, ArH), 6.73 (d, J=8.0Hz, 2H, ArH), 4.13 (q,
J = 8.0 Hz, 2H, CH,), 3.69 (s, 3H, CH;), 2.52 (s, 3H, CH,),
1.04 (t, J = 8.0 Hz, 3H, CH,); *C NMR (100 MHz, CDCl;)
§=171.10, 167.54, 166.43, 162.83, 160.27, 136.11, 133.69,
131.69, 130.02, 127.20, 125.04, 122.25, 114.51, 61.97,
55.30, 22.59, 13.65. EI-MS: m/z = 458 (M"); Anal. Calcd for
C,HoBrN,05S: C, 54.91; H, 4.17; N, 6.10. Found: C, 54.87,
H, 4.12; N, 5.98.

4.14 | Ethyl 2-(4-methoxyphenylthio)-
4-methyl-6-(4-nitrophenyl)pyrimidine-5-
carboxylate (Se)

Yellow oil; 'H NMR (400 MHz, CDCl;) &=8.23 (d,
J =8.0 Hz, 2H, ArH), 7.67 (d, J = 8.0 Hz, 2H, ArH), 7.53
(d, J=8.0 Hz, 2H, ArH), 6.96 (d, J = 8.0 Hz, 2H, ArH),
4.19 (q, J = 8.0 Hz, 2H, CH,), 3.86 (s, 3H, CH;), 2.54 (s, 3H,
CH;), 1.09 (t, J = 8.0 Hz, 3H, CH;); >*C NMR (100 MHz,
CDCly) & = 173.45, 167.26, 166.56, 161.25, 160.64, 148.60,

143.48, 136.95, 129.39, 123.42, 121.36, 119.50, 114.60,
62.00, 55.33, 22.76, 13.66; EI-MS: m/z =425 (M"); Anal.
Calcd for C,HoN;05S: C, 59.28; H, 4.50; N, 9.88. Found:
C,59.22; H,4.47; N, 9. 86.

4.15 | Ethyl 2-(4-methoxyphenylthio)-4-
methyl-6-p-tolylpyrimidine-5-carboxylate (5f)

Colorless oil; '"H NMR (400 MHz, CDCl;) &6 =7.55 (d,
J=12.0Hz, 2H, ArH), 7.42 (d, J = 8.0 Hz, 2H, ArH), 7.16
(d, J=8.0Hz, 2H, ArH), 6.94 (d, J=8.0 Hz, 2H, ArH),
4.19 (q, J = 8.0 Hz, 2H, CH,), 3.85 (s, 3H, CHjy), 2.49 (s,
3H, CHy), 2.36 (s, 3H, CHy), 1.10 (t, J = 8.0 Hz, 3H, CHj;);
EI-MS: m/z = 394 (M"); Anal. Caled for Cp,H,,N,0,S: C,
66.98; H, 5.62; N, 7.10. Found: C, 66.96; H, 5.60; N, 7.08.

4.16 | Ethyl 4-methyl-6-phenyl-2-(4-
tolylthio)pyrimidine-5-carboxylate (5g)

White solid, m.p. = 64-66°C. 'H NMR (600 MHz, CDCl5)
8=7.52(d,J = 8.0 Hz, 4H), 7.41 (t,J = 7.2 Hz, 1H), 7.36 (t,
J =17.8 Hz,2H),7.21 (d,J = 8.4 Hz, 2H),4.15(q,J = 7.2 Hz,
2H), 2.49 (s, 3H), 2.39 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H) ppm.
C NMR (100 MHz, CDCl,): & = 172.33, 168.04, 165.76,
163.46, 139.10, 137.37, 135.03, 130.02, 129.6, 128.30,
125.88, 121.34, 61.64, 22.54, 21.28, 13.55 ppm. EI-MS:
m/z =364 (M™).

4.17 | Ethyl 2-((4-chlorophenyl)thio)-4-
methyl-6-phenylpyrimidine-5-carboxylate (Sh)

White solid, m.p. =41-43°C. 'H NMR (400 MHz, CDCl,):
8=7.49 (d, J=8.0Hz, 2H), 744 (d, J=7.6 Hz, 2H), 7.35-
7.30 (m, 5H), 4.08 (q, J = 7.2 Hz, 2H), 2.43 (s, 3H), 0.97 (t,
J =7.0 Hz, 3H) ppm. "*C NMR (100 MHz, CDCl,): & = 171.66,
168.14, 166.26, 163.90, 137.47, 136.66, 135.58, 130.47, 129.34,
128.64, 128.57, 128.27, 121.98, 77.58, 77.27, 76.95, 62.02,
22.80, 13.84 ppm. EI-MS: m/z = 384 (M™), 386 (M + 2).

4.18 | Ethyl 2-((4-bromophenyl)thio)-4-
methyl-6-phenylpyrimidine-5-carboxylate (5i)

White solid, m.p. = 59-61°C. '"H NMR (400 MHz, CDCl,):
§=7.41(d,J = 5.6 Hz, 6H), 7.28 (d, J = 7.2 Hz, 3H), 4.05 (d,
J = 7.2 Hz, 2H), 2.40 (s, 3H), 0.93 (t, J = 7.2 Hz, 3H) ppm. 1*C
NMR (100 MHz, CDCl,): & = 171.24, 167.86, 166.00, 163.63,
137.20, 136.58, 136.39, 132.02, 130.20, 129.07, 128.67,
128.38, 128.31, 123.53, 121.75, 77.32, 77.00, 76.68, 61.74,
22.53, 13.57 ppm. EI-MS: m/z = 428 (M™), 430 (M + 2).
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