Reversible, solid state capture of carbon dioxide by hydroxylated amidines[†]

Myungsook Kim and Ji-Woong Park*

Received (in Cambridge, UK) 16th October 2009, Accepted 7th January 2010 First published as an Advance Article on the web 1st February 2010 DOI: 10.1039/b921688j

Hydroxylated amidine derivatives can capture, store, and release CO_2 reversibly in the solid state in a quantitative manner under clean and dry conditions at ambient temperature.

Energy-efficient CO_2 absorbents are required for capturing CO_2 emitted into indoor or outdoor environments and also for its storage and reutilization as a carbon resource.^{1–3} Aqueous solutions of alkanolamines are the most commonly employed chemical CO_2 absorption systems. However, the use of aqueous amine solutions has several disadvantages including high energy consumption due to the high specific heat of water and the generation of corrosive vapors.^{1,3} Many studies have focused on the development of dry amine absorbents to avoid these disadvantages of aqueous solutions.^{4–8}

Of the various amine types used in CO_2 capture, amidine compounds react with CO_2 in the presence of an alcohol to produce alkylcarbonate salts in the form of a trimolecular complex consisting of amidine, CO_2 , and the alcohol in a 1:1:1 ratio.^{9–11} The high nucleophilicity and stabilization of cationic species that result from delocalization in the amidine moiety enable their complexation with CO_2 and the alcohol at room temperature. The resulting amidinium alkylcarbonate salts contain less hydrogen bonding than the carbamate or bicarbonate salts of other amines, so they decompose to equimolar amounts of amidine, CO_2 , and the alcohol at relatively low temperatures.¹² It should therefore be possible to develop new materials for CO_2 capture and storage by exploiting the unique nonaqueous, quantitative, and low temperature carbonation characteristics of amidines.

Endo *et al.*^{13,14} reported that solid polymers containing amidine moieties in their side chains could capture CO_2 under atmospheric pressure. Although the materials could trap CO_2 without supplying water, the presence of a sufficient amount of water or alcohol is likely to facilitate the amidine– CO_2 complexation to enhance the capability of CO_2 capture.

Here we report new hydroxylated amidine (HAM) derivatives that can capture and store CO_2 in a quantitative manner under clean conditions. We synthesized three hydroxyalkylamidines, each of which contain equal numbers of amidine and hydroxyl groups that can react with an equimolar amount of CO_2 with no additional protic solvents. In particular, HAMs with a

Gwangju 500-712, Korea. E-mail: jiwoong@gist.ac.kr; Fax: (+82) 62-970-2304; *Tel:* (+82) 62-970-2315

[†] Electronic supplementary information (ESI) available: Experimental section, ¹H and ¹³C NMR, HMQC and FT-IR spectra of the HAMs and the HAM-CO₂ salts. TGA of HAM/silica mixtures with various HAM contents. See DOI: 10.1039/b921688j

relatively large molecular mass are expected to capture or release CO_2 in the solid state. The HAM- CO_2 salts can be stored at ambient temperature and pressure and are expected to generate pure CO_2 gas after brief heat treatment.

The HAMs were synthesized via lithiation of the aliphatic bicyclic amidines 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) followed by reaction with epoxides (see the ESI[†]). Combining the amidine moiety with an alcoholic moiety effectively reduces the volatility of these compounds. In principle, the reaction of the lithiated amidines with stoichiometric equivalents of a molecule with multiple epoxy groups will result in the corresponding polymeric amidines with multiple hydroxyl groups. In this study, we synthesized mono- and dihydroxyalkylamidines, which are designated as DBUOH, (DBUOH)₂, and (DBNOH)₂, as shown in Fig. 1. Whereas DBUOH was a liquid, (DBUOH)2 and (DBNOH)2 were obtained as crystalline solids which melt near 116 and 149 °C, respectively. The HAM compounds do indeed react with equimolar amounts of CO_2 in the absence of any protic solvent (Fig. 1b). DBUOH-CO₂, the carbonated salt of DBUOH, was obtained as a white solid by directly bubbling anhydrous CO₂ gas into DBUOH. The carbonate salts of the other two HAMs as well as DBUOH were conveniently obtained as powders by bubbling CO₂ gas into their THF solutions followed by filtration of the precipitates. The structures of the three HAMs and the corresponding alkylcarbonate salts were confirmed by examination of their ¹H and ¹³C NMR spectra (see Fig. 1c and d, respectively for the DBUOH results; see the ESI[†] for the data for the other compounds). The peaks in all NMR spectra were assigned using the HMQC spectra (see ESI[†]). The FT-IR spectra of the alkylcarbonate salts contain peaks due to the out-of-plane vibration of the carbonate group near 835 cm^{-1} (see Fig. 88†).

The thermogravimetric analysis (TGA) curves for the carbonate salts of the HAMs indicate that decarbonation of HAM-CO₂ commences in the range 55-65 °C and ends near 90-100 °C (Fig. 2). However, the TGA weight loss occurring below 120 °C appeared larger than the percentages of CO₂ per amidine moiety in the expected 1:1 alkylcarbonate salts of DBUOH, (DBUOH)₂, and (DBNOH)₂. It is most likely that the excess weight loss occurred due to the moisture adsorbed onto hygroscopic salts while the HAM-CO₂ salts were loaded into TGA sample pans. To exclude moisture from TGA weight loss data, the carbonated salt of DBUOH was prepared in situ by flowing anhydrous CO2 gas into the TGA chamber loaded with a DBUOH sample pan at room temperature. The TGA curve for the resultant salts showed weight loss corresponding to the percentage of CO2 in an DBUOH-CO2 adduct (see Fig. S9[†]). This result indicates that the HAM

Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500 712 Kong E weilt insere Original Science and

Fig. 1 Reversible CO_2 capture by HAMs. (a) The chemical structures of the HAMs investigated in this study, (b) the carbonation and decarbonation reactions of the HAMs, (c) and (d) ¹H and ¹³C NMR spectra of DBUOH and DBUOH-CO₂, respectively (see Fig. S5 for peak assignment[†]).

compounds comprised of equal numbers of amidine and hydroxyl groups form a 1:1 complex with CO_2 in the absence of water. Theoretical capture capacities of DBUOH, (DBUOH)₂, and (DBNOH)₂ are 224, 225, and 263 mg CO_2/g HAM, respectively.

To confirm that alkylcarbonate salts, not bicarbonate salts, form upon bubbling CO_2 into the HAM solutions, we obtained two types of salts by bubbling CO_2 into two different solutions of DBUOH in THF without and with one equivalent of water, respectively, and compared their ¹H and ¹³C NMR spectra (Fig. S10†). The salts obtained from the anhydrous DBUOH solution exhibited different peak positions and splitting patterns in ¹H NMR spectra when compared with those obtained from the solution of a 1:1 DBUOH/water mixture. This result indicates that the salts formed by bubbling CO_2 into anhydrous HAM solutions are exclusively alkylcarbonate forms.

Although the HAMs can form bimolecular complexes with CO_2 in a quantitative manner in their solution or liquid states, their complexation reactions are sluggish when they are solid.

Fig. 2 TGA curves for the three carbonated salts of the HAMs generated by bubbling CO_2 gas into their liquid or solution states.

Fig. 3 TGA curves showing the CO_2 uptake by neat HAMs and HAM/silica mixtures under a CO_2 flow of 100 mL min⁻¹ at 25 °C. (a) Neat HAM samples (2 mg each), (b) HAM/silica mixtures with a HAM content of 35%.

Fig. 3 shows the TGA curves that describe the progress of the complexation reactions between neat HAM samples and CO₂; liquid DBUOH absorbed nearly an equimolar amount of CO₂, whereas, solid (DBUOH)₂ and (DBNOH)₂ absorbed only approximately 0.1 equivalent of CO₂ during the same duration of exposure to a CO₂ atmosphere. The sluggish solid state reactions are most likely due to the slow diffusion of CO₂ gas through solid absorbents.

To facilitate the carbonation process without dissolving the HAMs in a solvent, the solid HAMs must have sufficiently large surface area. Hence, the HAM compounds were impregnated into porous supports consisting of silica gel particles. Solutions of the HAMs in anhydrous THF were mixed with pre-baked, dry amorphous silica gel particles, and subsequent solvent evaporation under reduced pressure resulted in silica-supported HAMs (HAM/silica) as powders. The liquid DBUOH also becomes a powdery solid on mixing with silica for contents less than 40%. To test their capture capacity, the HAM/silica were baked at 110 °C in a TGA sample pan under a nitrogen stream and then exposed to a CO₂ stream. Fig. 3b shows that the HAMs impregnated into silica with a content¹⁵ of 35% exhibit faster CO₂ absorption with higher efficiencies than the neat samples, the results for which are shown in Fig. 3a. The silica-impregnated (DBUOH)₂ and (DBNOH)₂ absorbed CO₂ of 0.6-0.8 equivalents to the amidine moiety, which are much higher than those with the corresponding neat HAMs. We anticipate that the capture capacity of the HAM/silica mixtures might be further improved by impregnating the HAMs into other types of porous solid supports.

We studied the reversibility of the CO₂ capture and release behaviors of the HAM/silica mixtures. The changes in sample weight were recorded *in situ* on a TGA instrument; the flow gas and temperature were alternated between two conditions, 100 mL min⁻¹ of N₂ flow at 65 °C and 100 mL min⁻¹ of CO₂ flow at 25 °C. The resulting TGA curves are shown in Fig. 4: the carbonation and decarbonation of the HAMs impregnated into silica occur reversibly. In all experimental runs, the loss of the HAMs was negligible. Although the HAM/silica mixtures contain approximately 65% inactive silica, the CO₂ sorption capacities with respect to the total sorbent weight are still comparable to those of the other supported amine sorbents reported.¹⁶

In conclusion, we have synthesized hydroxyalkylamidine derivatives that can capture, store, and release CO_2 gas in clean and dry conditions at low temperatures. These new

Fig. 4 Reversible CO₂ capture and release by silica-supported HAMs with a HAM content of 35%. (a) DBUOH/silica, (b) (DBNOH)₂/ silica, where capture was performed at 25 °C with a CO₂ flow rate of 100 mL min⁻¹ and release at 65 °C with a N₂ flow rate of 100 mL min⁻¹. In these graphs, mg CO₂/g HS and mg CO₂/g H are the weight of CO₂ (in mg) per gram of the HAM/silica mixture (HS) and HAM (H), respectively.

compounds can be used to store pure CO_2 gas in the solid state at ambient temperature. In particular, their volatile-free CO_2 capture and release conditions might enable their application in the removal of CO_2 impurities from the sources of gaseous fuels or in the reduction of indoor CO_2 concentrations in poorly-ventilated spaces such as found in submarines or aeroplanes. The combination of the HAMs with ionic liquids,^{17,18} or the utilization of HAM-CO₂ as a solid CO_2 source in new synthetic chemistry¹⁹ are of interest for future study.

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant [R01-2008-000-12246-0], the BK 21 Program funded by the Korean Government (MEST), and the Program for Integrated Molecular Systems (PIMS) at GIST in Korea. We thank Mr Seungkyu Lee and Prof. Jae II Kim for helping with high resolution NMR spectra.

Notes and references

- 1 D. Aaron and C. Tsouris, Sep. Sci. Technol., 2005, 40, 321–348.
- 2 X. L. Xu, X. X. Zhao, L. B. Sun and X. Q. Liu, *J. Nat. Gas Chem.*, 2009, **18**, 167–172.
- 3 H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland and I. Wright, *J. Environ. Sci.*, 2008, **20**, 14–27.
- 4 C. Chen, S.-T. Yang, W.-S. Ahn and R. Ryoo, *Chem. Commun.*, 2009, 3627–3629.
- 5 M. L. Gray, K. J. Champagne, D. Fauth, J. P. Baltrus and H. Pennline, *Int. J. Greenhouse Gas Control*, 2008, **2**, 3–8.
- 6 G. P. Knowles, J. V. Graham, S. W. Delaney and A. L. Chaffee, *Fuel Process. Technol.*, 2005, 86, 1435–1448.
- 7 M. B. Yue, Y. Chun, Y. Cao, X. Dong and J. H. Zhu, Adv. Funct. Mater., 2006, 16, 1717–1722.
- 8 J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi and C. W. Jones, J. Am. Chem. Soc., 2008, 130, 2902–2903.
- 9 D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert and C. L. Liotta, J. Org. Chem., 2005, 70, 5335–5338.
- 10 Y. Hori, Y. Nagano, J. Nakao, T. Fukuhara and H. Taniguchi, *Chem. Express*, 1986, 1, 224–227.
- 11 P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert and C. L. Liotta, *Nature*, 2005, **436**, 1102.
- 12 D. J. Heldebrant, C. R. Yonker, P. G. Jessop and L. Phan, *Energy Environ. Sci.*, 2008, 1, 487–493.
- 13 T. Endo, D. Nagai, T. Monma, H. Yamaguchi and B. Ochiai, *Macromolecules*, 2004, 37, 2007–2009.
- 14 B. Ochiai, K. Yokota, A. Fujii, D. Nagai and T. Endo, *Macro-molecules*, 2008, 41, 1229–1236.
- 15 The composition of the HAM/silica mixture was optimized by measuring the CO_2 uptake of mixtures with different HAM contents. The CO_2 uptake appeared to be the greatest when the HAM content in the mixture was about 30–40% (See ESI⁺).
- 16 S. Choi, J. H. Drese and C. W. Jones, *ChemSusChem*, 2009, 2, 796–854.
- 17 E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, J. Am. Chem. Soc., 2002, 124, 926–927.
- 18 J. Tang, H. Tang, W. Sun, H. Plancher, M. Radosz and Y. Shen, Chem. Commun., 2005, 3325–3327.
- 19 J. M. Hooker, A. T. Reibel, S. M. Hill, M. J. Schueller and J. S. Fowler, *Angew. Chem.*, *Int. Ed.*, 2009, 48, 3482–3485.