ORGANIC LETTERS

2008 Vol. 10, No. 21 5031-5033

Iron-Mediated Intramolecular Metalative Cyclization of α , β -Unsaturated Esters and Amides. Versatile One-Pot Preparation of Bicyclic Ketoesters

Takeshi Hata, Naoki Hirone, Shiro Sujaku, Kirihiro Nakano, and Hirokazu Urabe*

Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

hurabe@bio.titech.ac.jp

Received September 17, 2008

ABSTRACT

$$COX = \frac{\text{FeCl}_2}{4 \text{ t-BuMgCl}} = \frac{COX}{4 \text{ t-BuMgCl}} = \frac{COX}{COY} = \frac{COX}{COX} = \frac{COX}{COY} = \frac{COX}{C$$

2-Nonen-7-ynedioic or 2-decen-8-ynedioic acid derivatives were treated with an iron reagent generated from FeCl₂ and *t*-BuMgCl in a ratio of 1:4 to give cyclized products after hydrolysis, deuteriolysis, or the addition of carbonyl compounds. Upon reaction with the same iron reagent, 2,7-nonadienedioates afforded bicyclic ketoesters (and their enol forms) after the addition of *s*-BuOH or carbonyl compounds.

Cyclization of enynes and dienes derived from unsaturated carbonyl compounds with a stoichiometric amount of a metal species may produce synthetically useful functionalized organometallic compounds, but reactions belonging to this class are still limited, probably because of the poor compatibility of a reactive metallic portion and the carbonyl group. Here, we report that an iron reagent, generated from FeCl₂ and *t*-BuMgCl, is particularly useful for this type of cyclization, in conjunction with another advantage that iron is abundant, inexpensive, and nontoxic, which should contribute to economical and sustainable organic synthesis.²

Treatment of (*E*)-2-nonen-7-ynedioic acid derivative **2** with reagent **1** generated from FeCl₂ and *t*-BuMgCl in a ratio of $1:4^{3,4}$ afforded cyclized product **4** in good yield after aqueous

workup, with both carbonyl groups remaining untouched (Scheme 1). $^{5-8}$ When the aqueous workup was replaced with deuteriolysis, dideuterated product $\mathbf{4}$ - d_2 was obtained, showing the presence of the dimetalated intermediate $\mathbf{3}$. This intermediate regioselectively reacted with carbonyl compounds to give carbon chain-elongated products $\mathbf{5}$ - $\mathbf{7}$ in one pot. 9

Other products prepared from various (*E*)-2-nonen-7-ynedioic acid derivatives according to Scheme 1 by hydrolysis are shown in Figure 1, where a dotted line refers to a newly formed carbon—carbon bond. Cyclopentanes 4 and 8–10 having various ester and amide side chains were obtained in good yields. While a benzyloxymethyl group in the tether portion was not effective enough to control the stereochemistry of product 11, a highly diastereoselective

⁽¹⁾ For functionalized titanacycles and their synthetic applications, see: (a) Sato, F.; Urabe, H. In *Titanium and Zirconium in Organic Synthesis*; Marek, I., Ed.; Wiley-VCH: Weinheim, 2002; pp 319—354. (b) Sato, F.; Okamoto, S. *Adv. Synth. Catal.* **2001**, *343*, 759–784. (c) Sato, F.; Urabe, H.; Okamoto, S. *Chem. Rev.* **2000**, *100*, 2835–2886. (d) Urabe, H.; Suzuki, K.; Sato, F. *J. Am. Chem. Soc.* **1997**, *119*, 10014–10027. (e) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki, D.; Takayama, Y.; Sato, F.; Urabe, H. *J. Am. Chem. Soc.* **2005**, *127*, 7774–7780. For functionalized nickelacycles, see: (f) Montgomery, J. *Acc. Chem. Res.* **2000**, *33*, 467–473. (g) Mahandru, G. M.; Skauge, A. R. L.; Chowdhury, S. K.; Amarasinghe, K. K. D.; Heeg, M. J.; Montgomery, J. *J. Am. Chem. Soc.* **2003**, *125*, 13481–13485.

⁽²⁾ For reviews on iron-mediated organic reactions, see: (a) Enthaler, S.; Junge, K.; Beller, M. *Angew. Chem., Int. Ed.* **2008**, 47, 3317–3321. (b) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. *Chem. Rev.* **2004**, 104, 6217–6254. For enyne cyclization, see: (c) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. *Angew. Chem., Int. Ed.* **2008**, 47, 4268–4315. For coupling reactions, see: (d) Fürstner, A.; Rubén, M. *Chem. Lett.* **2005**, 34, 624–629. For iron carbonyl complexes, see: (e) Semmelhack, M. F. In *Organometallics in Organic Synthesis. A Manual*, 2nd ed.; Schlosser, M., Ed.; John Wiley & Sons: Chichester, 2002; pp 1006–1121.

Scheme 1. Cyclization of Enynedioic Acid Derivative and Subsequent Reactions

cyclization giving a single bicyclic compound 12 should be also noted. Substituted cyclohexane 13 was similarly produced from the corresponding (E)- and (Z)-2-decen-8-ynedioic acid derivatives in good yields, regardless of their olefinic geometries.

When we attempted the cyclization of dienedioate **14** with iron reagent **1** under the same conditions, the expected cyclopentane **15** was not isolated after aqueous workup (Scheme 2). Instead, the isolable product here was a bicyclic ketoester **16** as a 1:1 mixture of tautomeric keto and enol forms ¹⁰ in varying yields between 17 and 32%. The ketoester itself was a single isomer, which should have a thermody-

(8) For experimental details, see the Supporting Information.

Figure 1. Products formed according to Scheme 1.

namically stable *exo*-alkoxycarbonyl group. The proposed reaction course from **14** to **16** involves the iron-mediated cyclization to form metallacycle **17**, protonation to one of its carbon—metal bonds, and Dieckmann condensation of **18** to **16**. Proper choice of the proton source regarding its reactivity and equivalents appeared critical for the efficient conversion from **14** to **16**, and we found that *s*-BuOH as indicated in Scheme 2 attained a satisfactory and stable product yield of **16** (50%). 8,11–13

Figure 2 shows ketoesters prepared from various *E,E*-dienedioates according to Scheme 2. The type of alcohol portion of the starting esters did not affect the efficiency of cyclization to give **19-21** in comparable yields. The yields of **20** from the corresponding *E,E*- and *Z,E*-dienedioates (61 and 35%, respectively) show that the former is a more preferable starting material than the latter. Differently substituted ketoesters **16** and **22** and those having an oxaor aza-heterocycle **23** and **24** were produced in satisfactory yields.

In the transformation of Scheme 2, the carbon—metal bond in **17** is cleaved by a proton, which is followed by the second cyclization. However, this proton may be replaced by another electrophile. In fact, when a ketone or aldehyde was added

5032 Org. Lett., Vol. 10, No. 21, 2008

⁽³⁾ For our recent work on iron-catalyzed addition of Grignard reagents to dienoates and dienamides, see: (a) Fukuhara, K.; Urabe, H. *Tetrahedron Lett.* **2005**, *46*, 603–606. (b) Okada, S.; Arayama, K.; Murayama, R.; Ishizuka, T.; Hara, K.; Hirone, N.; Hata, T.; Urabe, H. *Angew. Chem., Int. Ed.* **2008**, *47*, 6860–6864.

⁽⁴⁾ The use of fewer equivalents of *t*-BuMgCl resulted in considerable decrease in the product yield. It has been reported that FeCl₂ and 4 equiv of RCH₂CH₂MgX form a species of the formal composition of [Fe(MgX)₂]_n. To the best of our knowledge, the use of *t*-BuMgCl for this purpose has not been mentioned. (a) Bogdanović, B.; Schwickardi, M. *Angew. Chem., Int. Ed.* **2000**, *39*, 4610–4613. (b) Fürstner, A.; Leitner, A.; Mendez, M.; Krause, H. *J. Am. Chem. Soc.* **2002**, *124*, 13856–13863. (c) Fürstner, A.; Krause, H.; Lehmann, C. W. *Angew. Chem., Int. Ed.* **2006**, *45*, 440–444.

⁽⁵⁾ Even with the metal species listed in ref 1, cyclization of enynedioic acid derivatives to the products such as those in Scheme 1 and Figure 1 has not been reported.

⁽⁶⁾ Other iron-mediated cyclizations of enynes and dienes are as follows. In these reports, α,β -unsaturated carboxylic acid derivatives are not included as the starting material. For the Pauson—Khand-type enyne cyclization, see: (a) Pearson, A. J.; Dubbert, R. A. Organometallics **1994**, 13, 1656–1661. For [2 + 2] cyclization and polymerization of dienes, see: (b) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. **2006**, 128, 13340–13341. (c) Takeuchi, D.; Matsuura, R.; Park, S.; Osakada, K. J. Am. Chem. Soc. **2007**, 129, 7002–7003. Cyclization of diynes initiated by iron-catalyzed carbometalation was recently reported: (d) Zhang, D.; Ready, J. M. J. Am. Chem. Soc. **2006**, 128, 1505–1506.

⁽⁷⁾ Iron-catalyzed Diels—Alder and Alder—ene reactions are also known. (a) Genet, J. P.; Ficini, J. *Tetrahedron Lett.* **1979**, 1499–1502. (b) tom Dieck, H.; Diercks, R. *Angew. Chem., Int. Ed. Engl.* **1983**, 22, 778–779. (c) Baldenius, K.-U.; tom Dieck, H.; König, W. A.; Icheln, D.; Runge, T. *Angew. Chem., Int. Ed. Engl.* **1992**, 31, 305–307. (d) Takacs, J. M.; Anderson, L. G.; Madhavan, G. V. B.; Seely, F. L. *Angew. Chem., Int. Ed. Engl.* **1987**, 26, 1013–1015. (e) Takacs, J. M.; Anderson, L. G.; Newsome, P. W. *J. Am. Chem. Soc.* **1987**, 109, 2542–2544. (f) Fürstner, A.; Majima, K.; Martin, R.; Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, C. W. *J. Am. Chem. Soc.* **2008**, 130, 1992–2004.

⁽⁹⁾ Products 6 and 7 consisted of only two diastereoisomers out of four. These diastereoisomers should be attributable to the stereochemistry between the cyclopentane carbon and the carbon α to the ester group as similarly observed for 5. In these cases, the assignment of stereochemistries to major and minor isomers has not been done.

⁽¹⁰⁾ Ketoesters in Scheme 2, Figure 2, and eq 1 are always an approximately 1:1 mixture of keto and enol forms, of which only the former is depicted for simplicity.

⁽¹¹⁾ Bicyclic ketoester **16** is a known key compound to pentalenolactone F: Cane, D. E.; Thomas, P. J. *J. Am. Chem. Soc.* **1984**, *106*, 5295–5303.

⁽¹²⁾ For reviews on the preparation and synthetic utility of five-membered bicyclic compounds, see: Mehta, G.; Srikrishna, A. *Chem. Rev.* **1997**, *97*, *671–719*. Singh, V.; Thomas, B. *Tetrahedron* **1998**, *54*, 3647–3692.

⁽¹³⁾ Dimerization of cinnamate esters to ketoesters has been reported: (a) Kise, N.; Iitaka, S.; Iwasaki, K.; Ueda, N. *J. Org. Chem.* **2002**, *67*, 8305–8315, and references cited therein. (b) Takaki, K.; Beppu, F.; Tanaka, S.; Tsubaki, Y.; Jintoku, T.; Fujiwara, Y. *J. Chem. Soc., Chem. Commun.* **1990**, *n/a*, 516–517. (c) Jensen, S. R.; Kristiansen, A.-M.; Munch-Petersen, J. *Acta Chem. Scand.* **1970**, *24*, 2641–2647. For intramolecular cyclization of $\alpha.\beta$ -olefinic esters, see: (d) Shinohara, I.; Okue, M.; Yamada, Y.; Nagaoka, H. *Tetrahedron Lett.* **2003**, *44*, 4649–4652. However, these methods did not realize the concomitant incorporation of a second constituent such as a carbonyl compound to the products as can be seen in 27–30

Scheme 2. Tandem Cyclization of Dienedioate

Figure 2. Bicyclic ketoesters prepared according to Scheme 2.

to metallacycle **26** generated from **25** and **1** (eq 1), an aldoltype reaction followed by the Dieckmann condensation took place to give bicyclic compounds **27–30** having an additional hydroxyalkyl side chain. The ketoester **27** was virtually a

single stereoisomer having the hydroxyisopropyl group at the *exo* position, and the same stereochemistry was assigned to other products 28-30 based on that of 27. This transformation could be considered as an equivalent of the generation and reaction of the dianion of ketoesters $19-21^{14}$ and is a new entry to the existing methods. 3

In conclusion, we reported new metalative cyclizations of doubly functionalized enynes and dienes with a simple iron reagent, which enable a tandem cyclization of dienedioates affording bicyclic ketoesters in one pot. Further investigations on the utility of the iron reagent and synthetic application of the products are now in progress.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research on Priority Areas (No.16073208) and a Grant-in-Aid for Young Scientists (B) (No. 20750071, to T.H.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental procedures and physical properties of products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802170Z

Org. Lett., Vol. 10, No. 21, 2008

⁽¹⁴⁾ For the generation and reactions of dianions of ketoesters, see: Thompson, C. M.; Green, D. L. C. *Tetrahedron* **1991**, *47*, 4223–4285.