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Synthesis of N-Fused Tricyclic Indoles by a Tandem [1,2] Stevens-Type
Rearrangement/1,2-Alkyl Migration of Metal-Containing Ammonium
Ylides**
Jun Takaya, Shuji Udagawa, Hiroyuki Kusama, and Nobuharu Iwasawa*

We reported previously that novel metal-containing carbonyl
or azomethine ylides could be generated by the nucleophilic
attack of a carbonyl oxygen atom or imino nitrogen atom onto
alkynes activated by electrophilic transition-metal complexes.
The resulting species, which behave as both ylides ([3+2]
cycloaddition) and carbene complexes (e.g. C�H insertion,
1,2-H or 1,2-alkyl shift), can be used as intermediates for the
efficient preparation of synthetically useful, polycyclic com-
pounds.[1] To expand the concept of metal-containing ylides,
we have examined the generation and reaction of a newly
designed metal-containing ammonium ylide,[2] which would
enable concise access to a variety of polycyclic indoles with an
N-fused ring. A recent report by Zhang and co-workers on a
Pt-catalyzed reaction of N-(2-alkynylphenyl)lactams[3]

prompted us to report our own approach, in which the main
difference is the use of N-(2-alkynylphenyl)amines instead of
lactams as the nucleophilic component. This transformation
requires the use of [W(CO)6] or [ReBr(CO)5] as the
alkynophilic reagent.

The underlying strategy for the catalytic process described
herein is depicted in Scheme 1: Upon the treatment of
o-alkynylphenyl pyrrolidine or piperidine derivatives 1 with
an appropriate electrophilic transition-metal complex, metal-
containing ammonium ylides A would be generated by the
nucleophilic attack of the nitrogen atom onto the electro-
philically activated alkyne moiety. Ylides A would then
undergo ring expansion through a [1,2] Stevens-type rear-
rangement[4] to give carbene complexes B, which would
undergo subsequent 1,2-alkyl migration to form N-fused
tricyclic indole derivatives 2 with regeneration of the catalyst.

After extensive screening of transition-metal catalysts and
reaction conditions with N-(2-(prop-1-ynyl)phenyl)pyrroli-
dine (1a) as the substrate, we found that the photoirradiation
of a solution of 1a and [W(CO)6] (10 mol%) in toluene in the
presence of 5-8 molecular sieves at room temperature gave
the desired tricyclic indole derivative 2a in 65% yield

(Table 1, entry 1). Photoirradiation was crucial for the
efficient generation of the unsaturated tungsten species; the
reaction under thermal conditions (toluene, 80 8C) resulted in
lower conversion even with 300 mol% of [W(CO)6] (Table 1,
entry 2).

Careful analysis of the product by 2D NMR spectroscopy
confirmed the formation of a tricyclic indole system with an
N-fused six-membered ring and a methyl substituent at the
3 position of the indole nucleus. This result supported the
validity of our original strategy.[5,6] Other metal catalysts, such
as PtCl2, PtCl4, [AuPPh3]SbF6, AuBr3, and [{IrCl(cod)}2], were
found to be inactive for this transformation under thermal or
photoirradiation conditions, probably as a result of deactiva-
tion of the catalyst through strong coordination of the amine

Scheme 1. Strategy for the generation of a metal-containing ammoni-
um ylide and its tandem [1,2] Stevens-type rearrangement/1,2-alkyl
migration.

Table 1: Examination of various electrophilic transition-metal complexes
as catalysts (1a : n= 1, R = Me).

Entry Catalyst (mol %) Conditions[a] Yield of 2a [%][b]

1 [W(CO)6] (10) A 65
2 [W(CO)6] (300) B 14
3 [ReBr(CO)5] (10) A 9
4 PtCl2 (10) A or B n.d.
5 [AuPPh3](SbF6) (10) A or B n.d.
6 AuBr3 (10) B n.d.
7 [{IrCl(cod)}2] (5) B n.d.
8 PtCl4 (10) B or C n.d.

[a] A: 5-; M.S., hn, toluene, room temperature, 10 h; B: 5-; M.S.,
toluene, 80 8C, 10 h; C: ClCH2CH2Cl, reflux under O2, 10 h. [b] n.d. =not
detected. cod = 1,5-cyclooctadiene, M.S.= molecular sieves.
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nitrogen atom to the metal center.[7] In contrast, [W(CO)6],
which has a lower affinity for harder bases, such as an amine
nitrogen atom, activates the alkyne preferentially and effec-
tively. [ReBr(CO)5] also showed some activity under photo-
irradiation conditions to give a small amount of the product
2a (Table 1, entry 3).

The facile introduction of substituents of various types at
the 3-position of the indole nucleus by incorporating these
substituents into the substrate at the alkyne terminus is a
valuable feature of this reaction. Tricyclic indole derivatives
functionalized with silyl or benzyl ethers were prepared
successfully in good yield (Table 2, entries 2 and 3). Further-
more, the reaction of 1e (n= 1, R=Ph), in which an aromatic
sp2-hybridized carbon atom is bonded to the alkyne terminus,
also proceeded smoothly to give the product 2e of 1,2-phenyl
migration in good yield. As the substrates can be prepared
readily by coupling reactions, and as the reaction proceeds
catalytically under mild reaction conditions, the present
protocol provides a useful method for the construction of
variously functionalized N-fused tricyclic indole skele-
tons.[8,9, 10]

Table 3 shows the generality of this tandem [1,2] Stevens-
type rearrangement/1,2-alkyl migration reaction of pyrroli-
dine derivatives. Other 5-membered azacycles, such as indo-
line and isoindoline derivatives, are suitable for this trans-
formation; thus, substrates 3 and 5 were converted into the
tetracyclic indole derivatives 4 and 6, respectively, in good
yield (Table 3, entries 1 and 2). The ring expansion of the
tungsten-containing ammonium ylide generated from 3
proceeded regioselectively at the sp3 carbon atom adjacent
to the N atom. The presence of an electron-donating or
electron-withdrawing group on the benzene ring did not
affect the reaction significantly (Table 3, entries 3–5).

In contrast to the reaction of pyrrolidine derivatives, the
reaction of the piperidine derivative 13 did not proceed
smoothly even with an increased loading of [W(CO)6].

[11]

Reexamination of the metal catalyst revealed that
[ReBr(CO)5] was highly effective for the reaction of 13, in
remarkable contrast to that of the pyrrolidine derivative 1a,
and afforded the desired ring-expansion product 14 in good
yield (Table 4, entry 1).[12] The [ReBr(CO)5]-catalyzed reac-
tion of the silyl ether derivative 15 was also successful.
Furthermore, the Re catalyst system was effective for a
variety of 6-membered azacycles, such as the 4-phenylpiper-
idine and morpholine derivatives 17 and 19, which were
converted into the corresponding tricyclic indoles fused with a
7-membered ring in good yield (Table 4, entries 3 and 4). The

high regioselectivity of the [1,2] Stevens-type rearrangement
was again observed in the reaction of the tetrahydroisoquino-
line derivative 21 (Table 4, entry 5).

Table 2: Variation of the alkyne substituent (n =1).[a]

Entry R Yield [%]

1 nPr (2b) 62
2 CH2CH2OTIPS (2c) 74
3 CH2CH2OBn (2d) 65
4[b] Ph (2e) 65

[a] Reaction conditions: [W(CO)6] (10 mol%), 5-; M.S., toluene, hn,
room temperature, 10 h. [b] 30 mol% [W(CO)6]. Bn =benzyl; TIPS=

triisopropylsilyl.

Table 3: Generality of the reaction (n = 1).[a]

Entry Substrate Product t [h] Yield [%]

1 10 45

2 5 80[b]

3 4 70

4 4 68

5 10 52 (63[b])

[a] Reaction conditions: [W(CO)6] (10 mol%), 5-; M.S., toluene, hn,
room temperature. [b] 1 equivalent [W(CO)6].

Table 4: Generality of the reaction (n= 2).[a]

Entry Substrate Product t [h] Yield [%]

1 10 73

2 4 63

3 10 74

4 10 75

5 8 54

[a] Reaction conditions: [ReBr(CO)5] (10 mol%), 5-; M.S., toluene, hn,
room temperature.
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Finally, the intermediacy of carbene complex B was
confirmed by the following trapping experiment: The treat-
ment of 1c with a stoichiometric amount of [W(CO)6] in the
presence of triethylsilane (10 equiv) under photoirradiation
gave the Et3Si-substituted tricyclic indoline derivative 24 in
7% yield along with the usual tricyclic indole product in 71%
yield (Scheme 2). The formation of 24 indicates unambigu-
ously the existence of the carbene complex 23 as an
intermediate. Such species are the key intermediates of the
[1,2] Stevens-type rearrangement of metal-containing ammo-
nium ylides, and the intermediacy of 23 strongly supports the
proposed mechanism of this reaction.[13,14]

In conclusion, we have developed an efficient method for
the preparation of N-fused tricyclic indole derivatives through
a tandem [1,2] Stevens-type rearrangement/1,2-alkyl migra-
tion reaction of newly designed metal-containing ammonium
ylides. By using [W(CO)6] or [ReBr(CO)5] as the catalyst, the
alkyne moiety was activated efficiently even in the presence
of the amine functionality.

Experimental Section
General procedure: An N-(o-alkynylphenyl)amine (0.150 mmol) was
added as a solution in toluene (1.0 mL) to a suspension of tungsten
hexacarbonyl or bromopentacarbonylrhenium (0.015 mmol) and 5-8
molecular sieves in toluene (1.0 mL) at room temperature. The
resulting mixture was irradiated with a high-pressure Hg lamp at
room temperature until the complete disappearance of the starting
material was confirmed by TLC. The mixture was then filtered
through a short pad of celite, and the filtrate was concentrated under
reduced pressure. The residue was purified by preparative TLC to
afford the corresponding polycyclic indole derivative.
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