

Stereoselective Construction of Tetra-Substituted Tetrahydrofuran Compounds from Benzylic Hemiacetal in the Presence of H_2 and a Pd Catalyst: Stereoselective Synthesis of a Stereoisomer of (–)-Virgatusin and Its Antimicrobiological Activity

Tomofumi Nakato,¹ Ryosuke Tago,¹ Koichi Акıyама,² Masafumi Maruyaмa,¹ Takuya Sugahara,¹ Taro Kishida,¹ and Satoshi Yamauchi^{1,†}

¹Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan ²Integrated Center for Sciences, Tarumi Station, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan

Received August 29, 2007; Accepted September 22, 2007; Online Publication, January 7, 2008 [doi:10.1271/bbb.70554]

Tetra-substituted tetrahydrofuran compounds were stereoselectively prepared from benzylic hemiacetal in the neutral condition by employing the simple reagent, H_2 , and a Pd catalyst. The stereoselective conversion of benzylic hemiacetal to two different stereoisomers of the tetrasubstituted tetrahydrofuran compound was observed. One of these tetrahydrofuran compounds was converted to the virgatusin stereoisomer to estimate its antimicrobiological activity.

Key words: virgatusin; tetrahydrofuran lignan; antimicrobiological activity

The tetrahydrofuran structure is widely distributed and is a synthetic target for organic chemists. The reduction of hemiacetal has been employed to obtain tetrahydrofuran compounds. Although stereoselectivity is required in synthetic studies of natural products, the stereocontrolled synthesis of a tetra-substituted tetrahydrofuran compound is difficult because of the existence of four chiral centers. In previous studies, stereocontrolled reduction of the benzylic hemiacetal to a substituted tetrahydrofuran compound using Lewis acid^{1–7)} and hydride⁸⁾ has been reported. However, there is a possibility of epimerization of the benzylic stereocenter of benzyl ether under the Lewis acid condition because of the occurrence of the benzyl cation. In some cases, neutral conditions for the reduction of benzylic hemiacetal would be important to obtain a tetrahydrofuran compound bearing the desired stereochemistry. In this present study, stereoselective reduction of benzylic hemiacetal using the simple reagent, H₂ gas, and a Pd catalyst was tried. To achieve this objective, silyloxy ketone 1 was prepared, and then unstable benzylic hemiacetal 2 converted from 1 was used for this study (Scheme 1). Resulting tetrahydrofuran compound 3 or 4 contained two benzylic chiral centers on a benzyl ether. It could be assumed that the neutral condition was better for the reduction of hemiacetal 2 to avoid epimerization of the benzylic chiral center. This article describes the stereoselective reduction of benzylic hemiacetal under the neutral condition using H_2 and a Pd catalyst, giving a tetra-substituted tetrahydrofuran derivative.

Results and Discussion

The preparation of ketone 9 is shown in Scheme 2. Lactone 5 was prepared from (1S,2R)-2-allyl-1-(3,4methylenedioxyphenyl)-1,3-propanediol⁹⁾ by tritylation of the primary hydroxy group, oxidative cleavage of the olefin, and oxidation to the lactone. Lactone 5 was subjected to the aldol reaction with 3,4-dimethoxybenzaldehyde to give the corresponding aldol product (erythro/threo = 4/1). Pure erythro-form 6 was obtained by protection of the resulting benzyl alcohol as a TIPS ether. This lactone 6 was treated with LiBH₄ to give the corresponding diol, which was converted to a diacetate, before detritylation was performed under a formic acid-ether system to give 7. Detritylation without acetylation was accompanied by desilylation. Deacetylation followed by protection of the primary hydroxy groups as pivaloates gave 8, before oxidation of benzyl alcohol 8 gave ketone 9.

After desilylation of ketone **9**, resulting unstable benzylic hemiacetal **10** was treated with H₂ and a Pd catalyst (Table 1). In entry 1, hemiacetal **10** was reacted with H₂ and Pd(OH)₂ in EtOAc. Unexpectedly, this reaction predominantly gave **11**,¹⁰ which was a 2,5-*cis*, 3,4-*trans*-tetra-substituted tetrahydrofuran compound. Two reaction mechanisms could be assumed, one being

[†] To whom correspondence should be addressed. Fax: +81-89-977-4364; E-mail: syamauch@agr.ehime-u.ac.jp

Scheme 1. Reduction of the Benzylic Hemiacetal.

d
$$7: R_1 = H, R_2 = Ac, R_3 = Ac$$

8: $R_1 = Piv, R_2 = Piv, R_3 = H$

Scheme 2. Preparation of Ketone 9.

(a) (1) TrCl, 4-DMAP, pyridine, r.t., 1 h (92% yield); (2) OsO₄, NMO, aq. acetone, *tert*-BuOH, r.t., 13 h; (3) NaIO₄, MeOH, r.t., 2 h (85%, 2 steps); (4) PCC, CH₂Cl₂, MS 4A, r.t., 13 h (90% yield); (b) (1) KHMDS, 3,4-dimethoxybenzaldehyde, THF, -70° C, 1 h (68% yield, mixture of *erythro/threo* = 4/1); (2) TIPSOTf, 2,6-lutidine, CH₂Cl₂, r.t., 2 h (46% yield, 2 steps); (c) (1) LiBH₄, THF, 60 °C, 14 h; (2) Ac₂O, pyridine, DMAP, r.t., 13 h; (3) HCO₂H, Et₂O, 0 °C 1 h (53% yield, 3 steps); (d) (1) K₂CO₃, MeOH, r.t., 12 h; (2) PivCl, pyridine, r.t., 11 h (85%, 2 steps); (e) PCC, MS 4A, CH₂Cl₂, r.t., 16 h (83% yield). Ar₁, 3,4-methylenedioxyphenyl; Ar₂, 3,4-dimethoxyphenyl.

Ar ₂ Pivo	Ar ₁ <u><i>n</i>-Bu₄NF</u> , OPiv	AcOH PivO 10 Ar2 """ PivO 10	Ar _{2 //////} tion 3 4 PivO 11	r ₁ Ar ₂ , 4r ₂ , 4r ₂ , 4r ₁	Ar ₁ 4 OPiv	
Entry	Catalyst	Solvent	Time (min)	11 (%)	12 (%)	
1	Pd(OH) ₂ /C	EtOAc	5	44	0	
2	Pd/C	THF	30	0	0	
3	$Pd(OH)_2/C$	THF	60	0	0	
4	Pd	EtOAc	5	3	26	
5	$Pd(OH)_2/C$	EtOAc, AcOH (4 eq)	10	20	17	
6	$Pd(OH)_2/C$	EtOAc, AcOH (23 eq)	10	39	16	
7	$Pd(OH)_2/C$	EtOH	15	0	28	
8	$Pd(OH)_2/C$	EtOAc-EtOH (1:1)	15	0	25	
9	$Pd(OH)_2/C$	EtOAc-EtOH (1:1)	4	0	53	

Table 1.	Reaction of Benzylic	Hemiacetal	10 with H ₂	and a Pd Catalyst
Ar. 3.	4-methylenedioxyphen	vl· Ar ₂ 34-0	dimethoxyn	henvl

production of a dihydrofuran, and the other being epimerization at the 4 position. It could be assumed that the dihydrofuran had been formed from hemiacetal 10 by dehydration, and then hydrogenation occurred from the opposite side of the aryl group at the 2 position (Ar_2) .¹¹⁾ To ascertain the validity of this reaction

Scheme 3. Synthesis of Virgatusin Stereoisomer (+)-14. (a) aq. NaOH, EtOH, r.t., 5h (63% yield); (b) NaH, MeI, r.t., 5h (66% yield). Ar₁, 3,4-methylenedioxyphenyl; Ar₂, 3,4-dimethoxyphenyl

Table 2. Antibacterial Activity [MIC values (mM)] of (+)- and (-)-13, (+)- and (-)-15, and (+)-17

mechanism, hemiacetal 10 was treated with $Pd(OH)_2/C$ in EtOAc under N2 gas; however, the hemiacetal was recovered and no products were yielded. The unstable dihydrofuran, which was easily transformed to a high polar compound, was prepared from hemiacetal 10 by treating with mesyl chloride and Et₃N. The reaction of this dihydrofuran with H₂ and Pd(OH)₂ in EtOAc did not give 11. The reaction mechanism giving 11 could consequently not be determined.

The reaction conditions were examined to obtain the other stereoisomer. Although the reaction conditions of H₂, Pd/C-THF and H₂, and Pd(OH)₂/C-THF did not yield any product (entries 2 and 3), employing Pd-black in EtOAc under H₂ gas gave different stereoisomer 12 together with 11 (11/12 = 1/9, entry 4). In this case, 2,5-trans, 3,4-cis form 12 was favored. For the next step, a reaction under acidic conditions was examined. In entries 5 and 6, the selectivity between 11 and 12 was decreased. Complete selectivity for stereoisomer 12 was achieved by employing $Pd(OH)_2$ in ethanol as a protic solvent under H₂ gas (entry 7). The application of the EtOAc-EtOH solvent also gave only 12 as a single isomer (entry 8), and the yield was increased by a shorter reaction time (entry 9). The stereochemistry of 12 was confirmed by a differential NOE experiment. Upon irradiation at 5-H, NOEs were observed at 3-H and 4-H. Hemiacetal 10 did not give any product by treatment with $Pd(OH)_2/C$ and N_2 in EtOAc and EtOH. The unstable dihydrofuran prepared from hemiacetal 10 could not be converted to a tetrahydrofuran compound by a reaction with $Pd(OH)_2/C$ and H_2 in EtOAc-EtOH. The reaction mechanism could not be determined in this experiment.

Compound 12 was converted to virgatusin stereoisomer (+)-14 by hydrolysis followed by methylation (Scheme 3). Enantiomer (-)-14 was also synthesized from (1R,2S)-2-allyl-1-(3,4-methylenedioxyphenyl)-1,3propanediol by the same synthetic method as that just described. The optical purity was determined as being more than 99% ee. Stereoisomer 11 has been reported as an important synthetic intermediate to (-)-virgatusin.¹⁰ The highly stereoselective syntheses of the two tetrasubstituted tetrahydrofuran compounds were achieved by using the simple reagent, H₂, and a Pd catalyst in a suitable solvent.

The antimicrobiological activity of synthesized (+)and (-)-13 and of (+)- and (-)-14 was examined with previously synthesized (+)- and (-)-15 and (+)- and (-)-16.¹²⁾ The antibacterial activity of (+)-17 against Bacillus subtilis has been reported in our previous study (MIC of 12.5 mM).¹³⁾ Compounds (-)-13, (+)-15 and (-)-15 showed antibacterial activity against Listeria denitrificans instead of Bacillus subtilis, the activity of (-)-15 being strongest (Table 2). The activity of (-)-16 against Colletotrichum lagenarium was observed in the antifungal test (growth %: 80.9 ± 3.06), although the activity was weaker than that of natural (-)-virgatusin (18; growth %: 49.4 ± 3.92)¹⁴⁾ (Table 3).

Experimental

Optical rotation values were measured with a Horiba SEPA-200 instrument. NMR data were obtained with a JNM-EX400 spectrometer, and EIMS data were measured with a JMS-MS700V spectrometer. The silica gel used was Wakogel C-300 (Wako, 200-300 mesh). HPLC

analyses were performed with Shimadzu LC-6AD and SPD-6AV instruments. The numbering of compounds follows IUPAC nomenclatural rules.

(3R,4S)-4-(3,4-Methylenedioxyphenyl)-3-trityloxymethyl-4-butanolide (5). A reaction solution of (1S,2R)-2-allyl-1-(3,4-methylenedioxyphenyl)-1,3-propanediol⁹⁾ (4.40 g, 18.6 mmol), trityl chloride (5.19 g, 18.6 mmol), and 4-DMAP (0.10 g) in pyridine (25 ml) was stirred at room temperature for 1 h before additions of H₂O and EtOAc. The organic solution was separated, washed with sat. aq. CuSO₄ solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). After evaporation, the organic residue was applied to silica gel column chromatography (EtOAc-hexane = 93:7) to give trityl ether (7.20 g, 17.2 mmol, 92%) as a colorless oil, $[\alpha]^{20}_{D} = -3.1$ (c 2.8, CHCl₃); δ_{H} (CDCl₃) 1.98 (1H, m, CH₂=CHCH₂CH), 2.13–2.17 (2H, m, CH₂= CHCH₂), 3.10 (1H, s, OH), 3.19 (2H, d, J 4.9 Hz, CH₂OTr), 4.82–4.90 (3H, m, ArCH(OH), CH₂=CH), 5.58 (1H, m, CH=CH₂), 5.88 (2H, s, OCH₂O), 6.67 (2H, s, ArH), 6.75 (1H, s, ArH), 7.20-7.30 (9H, m, ArH), 7.40–7.42 (6H, m, ArH); $\delta_{C}(CDCl_{3})$ 30.4, 45.7, 63.9, 75.5, 87.3, 100.8, 106.9, 107.7, 116.3, 119.5, 127.0, 127.8, 128.6, 136.6, 136.9, 143.7, 146.4, 147.4. Anal. Found: C, 79.93; H, 6.42. Calcd. for C₃₂H₃₀O₄: C, 80.31; H, 6.32%. (+)-Trityl ether: $[\alpha]^{20}_{D} = +3.0 \ (c \ 1.1,$ CHCl₃) A reaction solution of trityloxy olefin (7.20 g, 17.2 mmol), 4-methylmorpholine N-oxide (2.40 g, 20.5 mmol), and OsO₄ (aq. 2% solution, 1.5 ml) in acetone (140 ml), tert-BuOH (35 ml), and H_2O (35 ml) was stirred at room temperature for 13 h before addition of sat. aq. Na₂S₂O₃ solution. After the mixture was concentrated, the residue was dissolved in EtOAc and H₂O. The organic solution was separated, washed with brine, and dried (Na₂SO₄). Evaporation gave crude glycol. A reaction mixture of the crude glycol and $NaIO_4$ (4.32 g, 20.2 mmol) in MeOH (70 ml) was stirred at room temperature for 2h before concentration. The residue was dissolved in EtOAc and H₂O. The organic solution was separated, washed with brine, and dried (Na_2SO_4) . Evaporation and subsequent silica gel column chromatography (EtOAc-hexane = 1:4) gave hemiacetal (7.01) g, 14.6 mmol, 85%) as a colorless oil. A reaction mixture of this hemiacetal (7.01 g, 14.6 mmol) and PCC (4.03 g, 18.7 mmol) in CH₂Cl₂ (20 ml) containing MS 4A (0.3 g) was stirred at room temperature for 13 h before addition of dry ether. After filtration, the resulting filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane = 1:9) to give lactone 5 (6.33 g, 13.2 mmol, 90%) as a colorless oil, $[\alpha]_{D}^{20} = +0.9 (c \ 2.0, \text{CHCl}_{3}); \delta_{\text{H}}(\text{CDCl}_{3})$ 2.56 (1H, m, 3-H), 2.61-2.73 (2H, m, 2-H₂), 3.22 (1H, dd, J 9.8, 3.9 Hz, TrOCHH), 3.27 (1H, dd, J 9.8, 5.4 Hz, TrOCHH), 5.24 (1H, d, J 7.3 Hz, 4-H), 5.94 (2H, s, OCH2O), 6.60 (1H, dd, J 7.8, 2.0 Hz, ArH), 6.68 (1H, d, J 2.0 Hz, ArH), 6.71 (1H, d, J 7.8 Hz, ArH), 7.22-7.31 (9H, m, ArH), 7.37–7.39 (6H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 31.8, 44.7, 61.8, 83.5, 86.9, 101.2, 106.3, 108.2, 119.7, 127.2, 127.9, 128.5, 132.4, 143.4, 147.8, 148.1, 175.8. Anal. Found: C, 77.51; H, 5.71. Calcd. for C₃₁H₂₆O₅: C, 77.81; H, 5.48%. (3*S*,4*R*)-**5**: $[\alpha]^{20}{}_{\rm D} = -1.0$ (*c* 1.1, CHCl₃).

(2R,3R,4S)-2-[(R)-(3,4-Dimethoxyphenyl)(triisopropylsilyloxy)methyl]-4-(3,4-methylenedioxyphenyl)-3-trityloxymethyl-4-butanolide (6). To a solution of KHMDS (18.0 ml, 0.5 M toluene solution, 9.00 mmol) in THF (20 ml) was added a solution of lactone 5 (3.33 g, 6.96 mmol) in THF (10 ml) at -70 °C. After stirring at -70 °C for 15 min, 3,4-dimethoxybenzaldehyde (1.35 g, 8.12 mmol) in THF (5 ml) was added, and then the reaction solution was stirred at -70 °C for 1 h before addition of sat. aq. NH₄Cl solution. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After evaporation, the residue was applied to silica gel column chromatography (EtOAc-hexane = 1:3) to give a diastereomeric mixture of aldol product (erythro/ three = 4/1, 3.04 g, 4.72 mmol, 68%) as a colorless oil. To an ice-cooled solution of this diastereomeric mixture of aldol product (3.04 g, 4.72 mmol), 2,6-lutidine (1.37 ml, 11.8 mmol) in CH₂Cl₂ (20 ml) was added TIPSOTf (1.58 ml, 5.88 ml). After the reaction solution was stirred at room temperature for 2 h, sat. aq. NaHCO₃ solution was added. The organic solution was separated, washed with sat. aq. CuSO₄ solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). After concentration, the residue was applied to silica gel column chromatography

(1% EtOAc in toluene) to give pure erythro product 6 (2.54 g, 3.17 mmol, 46%, 2 steps) as a colorless oil, $[\alpha]^{20}_{D} = +64 \ (c \ 1.8, \ \text{CHCl}_3); \ \delta_{\text{H}}(\text{CDCl}_3) \ 1.01-1.06$ (18H, m, CH(CH₃)₂), 1.08–1.17 (3H, m, CH(CH₃)₂, 2.80 (1H, dd, J 9.8, 4.9 Hz, CHHOTr), 2.86 (1H, dd, J 9.8, 2.4 Hz, CHHOTr), 3.03 (1H, m, 3-H), 3.26 (1H, dd, J 9.8, 2.0 Hz, 2-H), 3.77 (3H, s, OCH₃), 3.85 (3H, s, OCH₃), 4.90 (1H, d, J 8.8 Hz, 4-H) 5.67 (1H, d, J 2.0 Hz, ArCHOTIPS), 5.93 (2H, s, OCH₂O), 6.30 (1H, dd, J 8.3, 2.0 Hz, ArH), 6.57 (1H, d, J 2.0 Hz, ArH), 6.63 (1H, d, J 7.8 Hz, ArH), 6.67 (1H, d, J 8.3 Hz, ArH), 6.89-6.91 (2H, m, ArH), 7.10–7.15 (6H, m, ArH), 7.19–7.22 (9H, m, ArH); $\delta_{C}(CDCl_3)$ 12.6, 18.0, 18.1, 43.1, 51.4, 55.6, 55.8, 59.9, 72.6, 82.0, 86.5, 101.1, 107.1, 107.7, 108.4, 110.8, 117.7, 120.8, 127.0, 127.7, 128.5, 132.9, 135.2, 143.3, 147.7, 147.9, 148.2, 148.8, 176.6. Anal. Found: C, 73.18; H, 6.94. Calcd. for C₄₉H₅₆O₈Si: C, 73.47; H, 7.05%. (-)-6: $[\alpha]^{20}_{D} = -64$ (*c* 0.7, CHCl₃).

(1S,2R,3S)-3-[(R)-(3,4-Dimethoxyphenyl)(triisopropylsilyloxy)methyl]-2-hydroxymethyl-1-(3,4-methylenedioxyphenyl)tetramethylene diacetate (7). To a solution of LiBH₄ (1.41 g, 6.47 mmol) in THF (40 ml) was added a solution of silvloxy lactone 6 (2.54 g, 3.17 mmol) in THF (10 ml) at room temperature. After the reaction solution was stirred for 14 h at 60 °C, sat. aq. NH₄Cl solution was added, and then the mixture was concentrated. The residue was dissolved in EtOAc and H₂O. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After evaporation, the residue was dissolved in pyridine (2.4 ml) and Ac₂O (2.4 ml) containing 4-DMAP (20 mg). After the reaction solution was stirred at room temperature for 13 h, ice was added. The mixture was stood at room temperature for 6 h, and then the mixture was dissolved in EtOAc and H₂O. The organic solution was separated, washed with 6 M aq. HCl solution, sat aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). Evaporation gave crude diacetate. To a solution of this crude diacetate in ether (90 ml) was added formic acid (135 ml) at below 0 °C. The resulting reaction solution was stirred at below 0 °C for 1 h before addition of CHCl₃. The organic solution was separated, washed with sat. aq. NaHCO₃ solution and brine, and dried (Na₂SO₄). Concentration and subsequent silica gel column chromatography (EtOAc-hexane = 1:5) gave hydroxy diacetate 7 (1.09 g, 1.68 mmol, 53%, 3 steps) as a colorless oil. (+)-7: $[\alpha]^{20}{}_{D} = +3.7$ (c 0.9, CHCl₃); δ_H(CDCl₃) 1.02–1.03 (21H, m, *iso*-Pr), 1.91 (3H, s, Ac), 2.03 (3H, s, Ac), 2.38 (1H, m, OH), 2.51 (1H, m, CH), 2.63 (1H, m, CH), 3.36 (1H, m, CHHOH), 3.50 (1H, m, CHHOH), 3.88 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 3.98 (1H, dd, J 11.5, 6.1 Hz, CHHOAc), 4.06 (1H, dd, J 11.5, 7.6 Hz, CHHOAc), 5.06 (1H, d, J 7.8 Hz, ArCHOTIPS), 5.68 (1H, d, J 10.7 Hz, ArCHOAc), 5.95 (2H, s, OCH₂O), 6.75–6.79 (3H, m, ArH), 6.83–6.85 (2H, m, ArH), 6.92 (1H, s, ArH); $\delta_{C}(CDCl_{3})$ 12.7, 18.07, 18.10, 20.8, 21.4, 44.9, 47.6, 55.8, 55.9, 63.2, 63.7, 75.9, 76.2, 101.1, 107.2, 108.2, 109.7, 110.5, 119.3, 121.0, 133.7, 135.5, 147.3, 147.8, 148.7, 149.0, 169.3, 170.9. *Anal.* Found: C, 63.74; H, 7.96. Calcd. for $C_{34}H_{50}O_{10}Si$: C, 68.13; H, 7.79%. (–)-7: $[\alpha]^{20}_{D} = +3.8$ (*c* 1.3, CHCl₃).

(2R,3S)-3-[(R)-(3,4-Dimethoxyphenyl)(triisopropylsilyloxy)methyl]-2-[(S)-(hydroxy)(3,4-methylenedioxyphenyl)methyl]tetramethylene dipivaloate (8). A reaction mixture of alcohol 7 (1.09 g, 1.68 mmol) and K_2CO_3 (0.54 g, 3.91 mmol) in MeOH (10 ml) was stirred for 12 h at room temperature before additions of CHCl₃ and H₂O. The organic solution was separated, washed with brine, and dried (Na₂SO₄). Evaporation gave crude triol. To an ice-cooled solution of the crude triol in pyridine (7 ml) was added PivCl (0.44 ml, 3.57 mmol), and then the reaction mixture was stirred at room temperature for 11 h. After additions of EtOAc and H₂O, the organic solution was separated, washed with 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). After evaporation, the residue was applied to silica gel column chromatography (EtOAc-hexane = 1:5) to give dipivaloate 8 (1.04 g, 1.42 mmol, 85%, 2 steps) as a colorless oil, $[\alpha]^{20}{}_{\rm D} = +44$ (c 1.1, CHCl₃); δ_H(CDCl₃) 1.04–1.14 (21H, m, *iso*-Pr), 1.04 (9H, s, Piv), 1.24 (9H, s, Piv), 2.38 (1H, m, CH), 2.42 (1H, m, CH), 3.40 (1H, dd, J 11.2, 3.9 Hz, CHHOPiv), 3.61 (1H, dd, J 11.2, 7.3 Hz, CHHOPiv), 3.88 (3H, s, OCH₃), 3.93 (3H, s, OCH₃), 4.36 (1H, dd, J 11.2, 8.8 Hz, CHHOPiv), 4.45 (1H, d, J 8.8 Hz, ArCHOH), 4.59 (1H, dd, J 11.2, 5.4 Hz, CHHOPiv), 5.29 (1H, d, J 3.9 Hz, ArCHOTIPS), 5.36 (1H, s, OH), 5.92 (2H, s, OCH₂O), 6.71 (2H, s, ArH), 6.82–6.85 (3H, m, ArH), 7.01 (1H, s, ArH); $\delta_{\rm C}({\rm CDCl}_3)$ 12.5, 18.0, 27.0, 27.2, 38.5, 38.7, 42.6, 47.3, 55.7, 55.8, 62.9, 65.9, 71.6, 74.8, 100.9, 106.7, 108.0, 109.8, 110.9, 118.8, 120.4, 134.8, 137.1, 147.2, 147.9, 148.4, 148.7, 177.9. Anal. Found: C, 65.93; H, 8.55. Calcd. for $C_{40}H_{62}O_{10}Si: C, 65.72; H, 8.55\%. (-)-8: [\alpha]^{20}_{D} = -44$ (c 1.6, CHCl₃).

(2S,3R)-2-[(R)-(3,4-Dimethoxyphenyl)(triisopropylsilyloxy)methyl]-3-(3,4-methylenedioxybenzoyl)tetramethylene dipivaloate (9). A reaction mixture of benzyl alcohol 8 (1.13 g, 1.55 mmol), PCC (0.41 g, 1.90 mmol), and MS 4A (50 mg) in CH₂Cl₂ (10 ml) was stirred at room temperature for 16h before addition of dry ether. The mixture was filtered, and then the filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane = 1:6) to give ketone 9 (0.94 g, 1.29 mmol, 83%) as a colorless oil, $[\alpha]^{20}{}_{\rm D} = +36 \ (c \ 0.8, \ \text{CHCl}_3); \ \delta_{\rm H}(\text{CDCl}_3) \ 0.92-0.93$ (21H, m, iso-Pr), 0.98 (9H, s, tert-Bu), 1.02 (9H, s, tert-Bu), 2.37 (1H, m, 2-H), 3.85 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 4.03 (1H, m, 3-H), 4.26 (1H, dd, J 11.9, 6.8 Hz, CHHOPiv), 4.35 (1H, dd, J 10.5, 8.3 Hz, CHHOPiv), 4.41 (1H, dd, J 10.5, 6.6 Hz, CHHOPiv), 4.51 (1H, dd, J 11.9, 4.1 Hz, CHHOPiv), 5.07 (1H, d, J 3.9 Hz, ArCH-OTIPS), 6.03 (2H, s, OCH₂O), 6.81-6.83 (3H, m, ArH), 6.93 (1H, s, ArH), 7.42 (1H, d, J 2.1 Hz, ArH), 7.51 (1H, dd, J 8.3, 2.1 Hz, ArH); δ_C(CDCl₃) 12.4, 17.89, 17.93,

26.90, 26.94, 38.5, 38.6, 42.1, 47.9, 55.7, 55.9, 62.2, 64.9, 73.8, 101.8, 107.7, 108.3, 109.6, 110.7, 118.6, 124.9, 132.5, 135.3, 148.2, 148.3, 148.7, 151.8, 177.9, 178.0, 197.9. *Anal.* Found: C, 65.77; H, 8.21. Calcd. for $C_{40}H_{60}O_{10}Si: C$, 65.90; H, 8.30%. (–)-**9**: $[\alpha]^{20}_{D} = -36$ (*c* 1.6, CHCl₃).

(2R,3S,4S,5S)-2-(3,4-Dimethoxyphenyl)-5-(3,4-methylenedioxyphenyl)-3,4-bis(pivaloyloxymethyl)tetrahydro*furan (11).* To an ice-cooled solution of silvloxy ketone 9 (0.80 g, 1.10 mmol) in THF (20 ml) containing AcOH (0.22 ml) was added TBAF (8.80 ml, 1 M in THF, 8.80 mmol). The reaction solution was stirred at room temperature for 30 min before addition of sat. aq. NaHCO₃ solution and EtOAc. The organic solution was separated, washed with brine, and dried (Na₂SO₄). Concentration followed by silica gel column chromatography (EtOAchexane = 1:3) gave unstable hemiacetal 10 (0.55 g, 0.96 mmol, 87%) as a colorless oil. The reaction mixture of unstable hemiacetal 10 (50 mg, 0.087 mmol) and 20% $Pd(OH)_2/C$ (50 mg) in EtOAc (20 ml) was stirred at ambient temperature under H₂ gas for 5 min. After filtration, the resulting filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane = 1:7) to give tetrahydrofuran derivative 11 (21 mg, 0.038 mmol, 44%) as a colorless oil, $[\alpha]^{20}_{D} = -20$ (c 0.3, CHCl₃). NMR data agreed with those in the literature.¹⁰⁾

(2R,3S,4R,5R)-2-(3,4-Dimethoxyphenyl)-5-(3,4-methylenedioxyphenyl)-3,4-bis(pivaloyloxymethyl)tetrahydrofuran (12) and conversion to (2R,3S,4R,5R)-3,4-bis(hydroxymethyl)-2-(3,4-dimethoxyphenyl)-5-(3,4-methylenedioxyphenyl)tetrahydrofuran (13). A reaction mixture of unstable hemiacetal 10 (0.41 g, 0.72 mmol) and 20% Pd $(OH)_2/C$ (0.50 g) in EtOAc (60 ml) and EtOH (60 ml) was stirred at ambient temperature under H₂ gas for 4 min. After filtration, the resulting filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc-hexane = 1:6) to give unstable tetrahydrofuran 12 (0.21 g, 0.38 mmol, 53%) as a colorless oil, $[\alpha]^{20}_{D} = +22$ (c 1.8, CHCl₃); δ_{H} (CDCl₃) 1.09 (9H, s, Piv), 1.17 (9H, s, Piv), 2.83 (1H, m, 4-H), 2.95 (1H, m, 3-H), 3.88 (3H, s, OCH₃), 3.89–3.94 (2H, overlapped, CH2OPiv), 3.90 (3H, s, OCH3), 4.22 (1H, dd, J 11.6, 7.2 Hz, CHHOPiv), 4.27 (1H, dd, J 11.6, 7.7 Hz, CHHOPiv), 5.04 (1H, d, J 9.2 Hz), 5.51 (1H, d, J 5.6 Hz), 5.94 (2H, s, OCH₂O), 6.77 (1H, d, J 8.0 Hz, ArH), 6.84–6.94 (5H, m, ArH); δ_C(CDCl₃) 27.0, 27.2, 38.5, 45.5, 50.2, 55.9, 56.0, 61.0, 62.2, 82.7, 82.8, 101.0, 106.6, 108.2, 109.1, 111.2, 118.6, 119.1, 132.3, 134.7, 146.9, 147.7, 148.9, 149.3, 178.1. (-)-12:, $[\alpha]^{20}{}_{\rm D} =$ -22 (c 1.6, CHCl₃). A reaction solution of unstable pivaloyl ester 12 (0.21 g, 0.38 mmol) in EtOH (4.3 ml) and 1 M aq. NaOH solution (5.5 ml) was stirred at room temperature for 5 h before additions of CHCl₃ and H₂O. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After evaporation, the resulting

residue was applied to silica gel column chromatography (EtOAc-hexane = 1:1) to give corresponding diol 13(94 mg, 0.24 mmol, 63%) as a colorless oil, $[\alpha]^{20}_{D} =$ +74 (*c* 1.0, CHCl₃); δ_H(CDCl₃) 2.70 (2H, m, 3-H, 4-H), 2.93 (1H, s, OH), 3.29 (1H, m, OH), 3.58-3.69 (2H, m, CH₂OH), 3.73–3.86 (2H, m, CH₂OH), 3.86 (3H, s, OCH₃), 3.88 (3H, s, OCH₃) 4.91 (1H, d, J 8.9 Hz), 5.42 (1H, d, J 4.9 Hz), 5.94 (2H, s, OCH₂O), 6.79 (2H, s, ArH), 6.81-6.85 (2H, m, ArH), 6.89 (1H, dd, J 8.2, 1.8 Hz, ArH), 6.93 (1H, d, J 1.8 Hz, ArH); $\delta_{\rm C}({\rm CDCl}_3)$ 48.3, 54.0, 55.8, 55.9, 59.6, 59.7, 80.9, 82.9, 100.9, 106.2, 108.1, 108.9, 111.1, 118.3, 118.7, 132.9, 134.7, 146.7, 147.7, 148.6, 149.1. EIMS *m*/*z* (%): 388 (88), 207 (93), 194 (100), 189 (97), 151 (61). HREIMS (M⁺): calcd. for $C_{21}H_{24}O_7$, 388.1522; found, 388.1522. (-)-**13**: $[\alpha]^{20}{}_{\rm D} = -74$ (*c* 0.9, CHCl₃).

(2R,3S,4R,5R)-3,4-Bis(methoxymethyl)-2-(3,4-dimethoxyphenyl)-5-(3,4-methylenedioxyphenyl)tetrahydrofuran (14). To an ice-cooled suspension of NaH (25 mg, 60% oil suspension, 0.63 mmol) in THF (4 ml) was added a solution of (+)-diol 13 (50 mg, 0.13 mmol) in THF (5 ml). After the resulting solution was stirred at 0° C for 30 min, MeI (0.50 ml, 8.03 mmol) was added, and then the reaction mixture was stirred at room temperature for 5h before additions of sat. aq. NH₄Cl solution and EtOAc. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After concentration, the resulting residue was applied to silica gel column chromatography (EtOAc-hexane = 1:2) to give virgatusin stereoisomer 14 (36 mg, 0.086 mmol, 66%) as a colorless oil, $[\alpha]^{20}_{D} = +42$ (c 0.8, CHCl₃); δ_{H} (CDCl₃) 2.68 (1H, m, 3-H), 2.75 (1H, m, 4-H), 3.12 (1H, dd, J 9.8, 5.4 Hz, CHHOCH₃), 3.13 (3H, s, OCH₃), 3.22 (1H, d, J 9.8, 4.3 Hz, CHHOCH₃), 3.31 (3H, s, OCH₃), 3.44 (1H, dd, J 9.3, 5.8 Hz, CHHOCH₃), 3.62 (1H, dd, J 9.3, 8.4 Hz, CHHOCH₃), 3.87 (3H, s, OCH₃) 3.89 (3H, s, OCH3), 4.99 (1H, d, J 8.3 Hz, 2-H), 5.42 (1H, d, J 6.0 Hz, 4-H), 5.95 (2H, s, OCH₂O), 6.79 (1H, d, J 8.1 Hz, ArH), 6.83-6.86 (2H, m, ArH), 6.91-6.96 (3H, m, ArH); $\delta_{C}(CDCl_3)$ 46.0, 51.4, 55.8, 55.9, 58.5, 58.8, 69.2, 70.4, 82.6, 83.4, 100.8, 107.0, 107.7, 109.2, 110.9, 118.3, 119.4, 133.7, 135.7, 146.4, 147.4, 148.4, 149.0; m/z (EI) 416 (40), 384 (32), 224 (53), 189 (100), 165 (55), 149 (53). HREIMS (M^+): calcd. for $C_{23}H_{28}O_7$, 416.1835; found, 416.1832. ≫99% ee (HPLC, DAICEL OD-H chiral column, detected at 280 nm, 1 ml min^{-1} , 10% iso-PrOH in hexane, tR 24 min). (-)-14: $[\alpha]^{20}_{D} =$ $-42 (c \ 0.6, \text{CHCl}_3), \gg 99\% \text{ ee} (t \text{R} \ 19 \text{ min}).$

Antibacterial and antifungal activity test. The antimicrobiological test was performed by the same method as that previously described.^{13,14)}

Acknowledgments

Our thanks to the president of Ehime University for supporting this project. The 400 MHz NMR data were

measured in INCS at Ehime University. We thank the staff at this Center for the EIMS and FABMS measurements. We are also grateful to Marutomo Co. (Iyo, Ehime, Japan).

References

- Czernecki, S., and Ville, G., C-glycosides 7. Stereospecific C-glycosylation of aromatic and heterocyclic rings. *J. Org. Chem.*, 54, 610–612 (1989).
- Shing, T. K. M., and Gillhouley, J. G., Enantiospecific synthesis of (+)-altholactone and its three stereoisomers. *Tetrahedron*, **50**, 8685–8698 (1994).
- Nishiyama, Y., Tujino, T., Yamano, T., Hayashishita, M., and Itoh, K., Stereoselective synthesis of trans-2,5disubstituted tetrahydrofuran *via* the Lewis acid mediated reduction of cyclic hemiketals with triphenylsilane. *Chem. Lett.*, 165–166 (1997).
- Shionoya, M., and Tanaka, K., Synthetic incorporation of metal complexes into nuleic acids and peptides directed toward functionalized molecules. *Bull. Chem. Soc. Japan*, **73**, 1945–1954 (2000).
- Schmitt, A., and Reißig, H.-U., On the stereoselectivity of γ-lactol substitutions with allyl- and propargylsilanes–synthesis of disubstituted tetrahydrofuran derivatives. *Eur. J. Org. Chem.*, 3893–3901 (2000).
- Shi, H., Liu, H., Bloch, R., and Mandville, G., A novel efficient and stereoselective synthesis of *cis-* or *trans*-2,5-disubstituted tetrahydrofurans. *Tetrahedron*, 57, 9335–9341 (2001).
- 7) Yoda, H., Mizutani, M., and Takabe, K., First total synthesis of tetrasubstituted tetrahydrofuran lignan, (–)-

virgatusin. Tetrahedron Lett., 40, 4701-4702 (1999).

- Wilcox, C. S., and Cowart, M. D., New approaches to synthetic receptors. Studies on the synthesis and properties of macrocyclic C-glycosyl compounds as chiral, water-soluble cyclophanes. *Carbohydr. Res.*, **171**, 141– 160 (1987).
- Mailoli, A. T., Civiello, R. L., Foxman, B. M., and Gordon, D. M., Asymmetric synthesis of sesaminone: confirmation of its structure and determination of its absolute configuration. *J. Org. Chem.*, **62**, 7413–7417 (1997).
- Yamauchi, S., Okazaki, M., Akiyama, K., Sugahara, T., Kishida, T., and Kashiwagi, T., First enantioselective synthesis of (-)- and (+)-virgatusin, tetra-substituted tetrahydrofuran lignan. *Org. Biomol. Chem.*, 3, 1670– 1675 (2005).
- Rao, K. V., and Alvarez, F. M., Chemistry of *Saururus cernuus* III: some reactions of the diarylbutane-type neolignans. *J. Nat. Prod.*, 48, 592–597 (1985).
- 12) Yamauchi, S., Nakato, T., Tsuchiya, M., Akiyama, K., Maruyama, M., Sugahara, T., and Kishida, T., Use of benzyl mesylate for the synthesis of tetrahydrofuran lignan: syntheses of 7,8-*trans*, 7',8'-*trans*, 7,7'-*cis*, and 8,8'-*cis*-virgatusin stereoisomers. *Biosci. Biotechnol. Biochem.*, **71**, 2248–2255 (2007).
- 13) Maruyama, M., Yamauchi, S., Akiyama, K., Sugahara, T., Kishida, T., and Koba, Y., Antibacterial activity of a virgatusin-related compound. *Biosci. Biotechnol. Biochem.*, **71**, 677–680 (2007).
- Akiyama, K., Yamauchi, S., Nakato, T., Maruyama, M., Sugahara, T., and Kishida, T., Antifungal activity of tetra-substituted tetrahydrofuran lignan, (-)-virgatusin, and its structure-activity relationship. *Biosci. Biotechnol. Biochem.*, **71**, 1028–1035 (2007).