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A very efficient and environmentally benign method has been developed for the synthesis of
25-hydroxycholesterol. The reaction was performed in THF–water (4:1, v/v) using NBS as the brominat-
ing agent, followed by the easy reduction of C–Br with lithium aluminum hydride in THF, to yield the final
product corresponding to a Markovnikov’s rule. Excellent yields and regioselectivity have been obtained.

� 2014 Published by Elsevier Inc.
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1. Introduction

Vitamin D3 is an important biological regulator of calcium and
phosphorus metabolism [1]. It is now established that the parent
vitamin D3 is sequentially metabolized in various tissues to the
steroid hormone 1,25-(OH)2-D3 which exerts the highest biological
activity of all vitamin D3 metabolites. This hormonal derivative
stimulates the intestinal absorption of calcium and phosphorus,
and the mobilization of bone calcium through a target organ recep-
tor mediated mechanism [2]. A common characteristic feature of
these metabolites is the C-25 hydroxy group. Thus, the introduc-
tion of 25-hydroxy group into an appropriate substrate would be
a key step in the synthesis of these compounds.

Using in situ generated ethyl(trifluoromethyl)dioxirane (ETDO),
a facile synthesis was developed by Ogawa et al. [3] for 25-hydrox-
ycholesterol, as well as its 3-sulfate (overall yield of the sulfate,
24%) and 24-oxocholesterol (16%), starting from cholesterol. How-
ever, long linear synthetic route and low yields are major hitches.
Unlike cholesterol, the conventional starting material for preparing
certain steroids (for example 25-hydroxycholesterol), desmosterol
already contains a reactive side chain (D24). Desmosterol plays an
important role, as a labile intermediate, in the biosynthesis of cho-
lesterol in animals. It was included in a filtrate of recrystallization
of crude lanolin which was made from lanolin alcohol obtained by
saponification of wool grease, a washing waste of wool, and the
content of desmosterol reached 10–25% [4,5].
85

86

87

88
The reaction of mercuric acetate with desmosterol leads to the
addition on the double bond of the groups –OH on one side, and –
HgOAc on the other. It can be followed by the easy reduction of the
C–Hg bond with sodium borohydride in sodium hydroxide/water,
to yield the 25-hydroxycholesterol corresponding to a Markovni-
kov addition of water on the double bond. The nuclear D5 double
bond, which is quite reactive towards most electrophilic reagents,
was left untouched. This remarkable selectivity has been con-
firmed in 1992, but this study has not been extended. Mercuric
acetate is an environmental problem, obviously because of the poi-
sonous nature of the reagent and of the products of the reaction.
Care must be taken, even when working with small amounts, dur-
ing the reaction and for the disposal of the residues [6].

The vicinal functionalization of carbon–carbon double bond is a
powerful synthetic tool for organic chemists. In particular, selec-
tive introduction of two different functional groups, such as hydro-
xyl and halogen, has attracted sustained attention in organic
synthesis [7]. Halohydrins are usually prepared via the ring open-
ing of epoxides using hydrogen halides or metal halides. These pro-
cedures are associated with the formation of byproducts such as
vic-dihalides and 1,2-diols. Meanwhile, these procedures require
prior synthesis of epoxide. Apart from this, there are two general
approaches for heterolytic addition of water and halogen to an ole-
finic bond. One involves the usage of molecular halogen, TsNBr2,
[8] N-halosaccharin [9] or N-halosuccinimide [10–23] for haloge-
nation, and the other employs metal halide along with an oxidizing
agent [24,25]. Cheap and available N-halosuccinimide, in particular
N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS), are
the better choice of halogen sources over other hazardous reagents
for such transformations.
0.1016/
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From these points of view we have undertaken the syntheses of
the 25-hydroxycholesterol using inexpensive reagents and avail-
able steroid starting compound. We were able to develop a facile
synthesis of naturally occurring oxysterols, 25-hydroxycholesterol
(1), from desmosterol (2) by using N-halosuccinimide via halohy-
drin reaction. Then, the reductive of halides is achieved by lithium
aluminum hydride (LiAlH4) in THF (Scheme 1). To the best of our
knowledge, there are no examples describing the formation of
25-hydroxycholesterol via halohydrin reaction.

2. Experimental

Melting points were determined using WRR melting point
apparatus. 1H and 13C NMR spectra were recorded on Bruker AV-
400 spectrometer (Bruker Corporation, America) at working fre-
quencies 400 and 100 MHz. respectively in CDCl3 And with TMS
as the internal standard. Chemical shifts are expressed in ppm
downfield from TMS and observed coupling constants (J) are given
in Hertz (Hz). Starting materials and reagents were commercially
purchased and used without further purification. The progress of
the reactions was monitored by thin-layer chromatography (TLC)
Analytical thin-layer chromatography (TLC) was conducted using
silica gel plates (200 lm) containing a fluorescent indicator (silica
gel 60 F254). Detection was performed by spraying with molybdo-
phosphoric acid (5%) at 120 �C Column chromatography was per-
formed using silica gel, 200–300 mesh, and elution was
performed with n-hexane/ethyl acetate.

2.1. General procedure for the synthesis of desmosterol acetate 3

To a solution of the desmosterol (20 g, 0.05 mol) in hexane
(150 mL), DMAP (200 mg) and acetic anhydride (10 g, 0.1 mol)
were added, after stirring at 50 �C in 3 h (TLC control, TLC solvents:
n-hexane/EtOAc (8:1, v/v)), the reaction mixture was successively
washed with water, HCl solution (5%wt.) and saturated NaHCO3

solution. Desmosterol acetate (18.85 g, 85.0%) was obtained by
evaporating in a vacuum and recrystallization in EtOH.

3 [26]: mp: 89.1–90.1 �C (lit. Mp: 91–92 �C) 1H NMR (CDCl3,
400 MHz): d 5.38 (d, J = 4.0 Hz, 1H, 6-CH), 5.10 (t, J = 6.4 Hz, 1H,
24-CH), 4.60 (m, 1H, 3-CH), 1.61 (s, 3H, 26-CH3), 1.53 (s, 3H, 27-
CH3), 1.01 (s, 3H, 19-CH3), 0.86 (d, J = 6.5 Hz, 3H, 21-CH3), 0.69 (s,
3H, 18-CH3). 13C NMR (CDCl3, 100 MHz): d 12.52 (C-18), 18.31
(C-21), 19.29 (C-19), 19.97 (C-23), 21.68 (C-11), 22.12 (–COCH3),
24.95 (C-27 and C-28), 25.37 (C-15), 26.40 (C-16), 28.42 (C-2),
HO AcO

Ac2O

AcO

Br

OH

LiAlH4

THF

2

4

Scheme 1. Synthesis of 25-hydroxycholesterol (1
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32.52 (C-7 and C-8), 36.27 (C-20), 36.70 (C-22), 37.23 (C-10),
37.64 (C-1), 38.77 (C-12), 40.36 (C-4), 42.98 (C-13), 50.66 (C-9),
56.69 (C-17), 57.31 (C-14), 74.64 (C-3), 123.31 (C-6), 125.88
(C-24), 131.59 (C-25), 140.29 (C-5), 171.23 (–COCH3).

2.2. General procedure for the synthesis of bromohydrins 4

To a well-stirred solution of desmosterol acetate 3 (0.427 g,
1 mmol) in THF–water (4:1) (50 mL), NBS (0.213 g, 1.2 mmol)
was added, and the reaction mixture was allowed to stir at �10
�C. Progress of the reaction was monitored by TLC (TLC solvents:
n-hexane/EtOAc (8:1, v/v)). After 2 h, 10% aqueous sodium thiosul-
fate was added to destroy the excess NBS. The reaction mixture
was extracted with dichloromethane (3 � 20 mL) and successively
washed with saturated NaHCO3 solution (20 mL � 2) and saturated
NaCl solution (20 mL). The extract was dried over anhydrous
sodium sulfate and then concentrated under reduced pressure.
Purification of the crude product by column chromatography on
silica gel (200–300 mesh) with a mixture of n-hexane/EtOAc (8:1,
v/v) as an eluent to give bromohydrins 4 (0.44 g, 85%).

In a large scale, to a well-stirred solution of desmosterol acetate
3 (4.27 g, 10 mmol) in THF–water (4:1) (300 mL), NBS (2.13 g,
12 mmol) was added, and the reaction mixture was allowed to stir
at �10 �C. Progress of the reaction was monitored by TLC (TLC sol-
vents: n-hexane/EtOAc (8:1, v/v)). After 4 h, 10% aqueous sodium
thiosulfate was added to destroy the excess NBS. The reaction mix-
ture was extracted with dichloromethane (3 � 300 mL) and succes-
sively washed with saturated NaHCO3 solution (200 mL � 2) and
saturated NaCl solution (200 mL). The extract was dried over anhy-
drous sodium sulfate and then concentrated under reduced
pressure. Purification of the crude product by column chromatogra-
phy on silica gel (200–300 mesh) with a mixture of n-hexane/EtOAc
(8:1, v/v) as an eluent to give bromohydrins 4 (4.2 g, 80.8%).

4: mp: 148.7–149.9 �C. 1H NMR (CDCl3, 400 MHz): d 5.38
(d, J = 4.0 Hz, 1H, 6-CH), 4.60 (m, 1H, 25-OH), 2.68 (m. 1H,
24-CH), 1.31 (s, 3H, 26-CH3), 1.27 (s, 3H, 27-CH3), 1.01 (s, 3H, 19-
CH3), 0.94 (d, J = 6.5 Hz, 3H, 21-CH3), 0.69 (s, 3H, 18-CH3). 13C
NMR (CDCl3, 100 MHz): d 11.76 (C-18), 18.56 (C-21), 19.20
(C-19), 20.90 (C-11), 21.34 (–COCH3), 25.30 (C-27 and C-28),
25.58 (C-15), 27.65 (C-16), 28.12 (C-2), 31.73 (C-23), 32.25 (C-7
and C-8), 35.55 (C-20), 36.47 (C-22), 36.87 (C-10), 38.00 (C-1),
39.60 (C-12), 42.23 (C-4), 49.87 (C-13), 55.80 (C-9), 56.56 (C-17),
58.05 (C-14), 64.71 (C-24), 64.84 (C-25), 73.87 (C-3), 122.50
(C-6), 139.53 (C-5), 171.23 (–COCH3).
H2O

N-halosuccinimide

HO

OH

3

1

) with desmosterol (2) as starting compound.

sis of 25-hydroxycholesterol. Steroids (2014), http://dx.doi.org/10.1016/
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Table 2
Bromohydrination of 3 with different solvents.a

Entry Solvent Time (h) Yieldb (%)

1 CH2Cl2:H2O(4:1) 24 19.8
2 EtOAc: H2O(4:1) 24 21.1
3 Toluene:H2O(4:1) 24 15.0
4 Butanone:H2O(4:1) 2 68.8
5 t-Butanol:H2O(4:1) 2 60.0

6c Glyme:H2O(5:1) 2 70.0
7c Acetone:H2O(10:1) 5 72.3
8 THF:H2O(4:1) 2 85.0
9 THF:H2O(10:1) 4 78.8

10 THF:H2O(30:1) 10 56.6

a The substrate 3 was treated with NBS (1.2 equiv.) at �10 �C in different solvents
(40 mL).

b Isolated yield.
c The ratio was determined by solubility of the substrate 3.

Table 3
Effect of different amount of NBS.a

Entry NBS (eq.) Yieldb/%

1 1.0 77.8
2 1.2 85.0
3 1.5 80.3
4 2.0 65.1

a The substrate 3 was treated with NBS in 20% aqueous THF at �10 �C.
b Isolated yield.

AcO

NBS

AcO

Br
+

H2O
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2.3. General procedure for the synthesis of 25-hydroxycholesterol 1

A solution of bromohydrins 4 (0.523 g, 1 mmol) in THF (30 mL)
under a nitrogen atmosphere was treated with LiAlH4 (0.15 g,
4 mmol) at 5 �C. Then the reaction mixture was stirred at 70 �C
for 3 h (TLC control, TLC solvents: n-hexane/EtOAc (2:1, v/v)).
Again cooled, the reaction mixture was added dropwise to a HCl
solution (5%wt.). Then the mixture extracted with dichlorometh-
ane (3 � 20 mL) and successively washed with saturated NaHCO3

solution (20 mL � 2) and saturated NaCl solution (20 mL). The ex-
tract was dried over anhydrous sodium sulfate and then concen-
trated under reduced pressure. 25-hydroxycholesterol (0.38 g,
95%) was thus obtained after recrystallization in toluene.

In a large scale, A solution of bromohydrins 4 (5.23 g, 10 mmol)
in THF (100 mL) under a nitrogen atmosphere was treated with
LiAlH4 (1.5 g, 40 mmol) at 5 �C. Then the reaction mixture was stir-
red at 70 �C for 3 h (TLC control, TLC solvents: n-hexane/EtOAc
(2:1, v/v)). Again cooled, the reaction mixture was added dropwise
to a HCl solution (5%wt.). Then the mixture extracted with dichlo-
romethane (3 � 300 mL) and successively washed with saturated
NaHCO3 solution (200 mL � 2) and saturated NaCl solution
(200 mL). The extract was dried over anhydrous sodium sulfate
and then concentrated under reduced pressure. 25-hydroxycholes-
terol (3.9 g, 97%) was thus obtained after recrystallization in
toluene.

1 [3]: mp: 176.4–177.1 �C (lit. Mp: 178–180 �C). 1H NMR (CDCl3,
400 MHz): d 5.37 (d, J = 3.4 Hz, 1H, 6-CH), 3.50 (m, 1H, 3-CH), 1.23
(s, 6H, 26- and 27-CH3), 1.03 (s, 3H, 19-CH3), 0.94 (d, J = 6.5 Hz, 3H,
21-CH3), 0.70 (s, 3H, 18-CH3). 13C NMR (CDCl3, 100 MHz): d 11.76
(C-18), 18.58 (C-21), 19.30 (C-19), 20.66 (C-23), 20.97 (C-11),
24.18 (C-15), 28.15 (C-16), 29.09 (C-26), 29.25 (C-27), 31.54 (C-
2), 31.79 (C-7 and C-8), 35.64 (C-20), 36.36 (C-22 and C-10),
37.15 (C-1), 39.67 (C-12), 42.21 (C-4 and C-13), 44.31 (C-24),
50.01 (C-9), 55.96 (C-17), 56.65 (C-14), 71.03 (C-25), 71.67 (C-3),
121.58 (C-6), 140.67 (C-5).
221

222

223

3 5

4
AcO

OH

Br

Scheme 2. Probable mechanism of bromination.
3. Results and discussion

Desmosterol (2), obtained from crude lanolin by extraction, was
chosen as a suitable starting material. Initially, the desmosterol 2
was transformed into the 3-protected ester 3 by treating with
acetic anhydride in the presence of DMAP at 50 �C via the usual
acetylation to avoid the side reaction of the nuclear D5 double
bond.

In the next sequence of reactions, 3-protected ester 3 was trans-
formed into the halohydrins derivative 4 (Scheme 1). As mentioned
above, N-halosuccinimide was powerful and versatile. In search for
an effective halogenation reagent for the halohydrin reaction, we
first studied the reaction of 3-protected ester 3 with NBS or NCS
in aqueous THF at different reaction temperature, and the results
was presented in Table 1.

Compared with the NCS (Table 1, entry 6), NBS worked much
better as the halogenation reagent under the same conditions.
224
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229

230

231

232

233
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236

Table 1
Effect of different halogenation reagent.a

Entry Reagent Temp (�C) Yieldb (%)

1 NBS 20 58.1
2 NBS 10 63.7
3 NBS 0 72.3
4 NBS �10 85.0
5 NBS �20 84.8
6 NCS �10 65.6

a The substrate 3 was treated with NBS/NCS (1.2 equiv.) in 20% aqueous THF.
b Isolated yield.

Please cite this article in press as: Zhao Q et al. Investigation on the synthe
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The bromohydrin reaction of 3 proceeded smoothly at �10 �C
within 2 h, it afforded the desired bromohydroxylation product 4
in 85.0% yield (Table 1, entry 4). Then, the reaction temperature
was varied from �20 to 20 �C using NBS as the halogenation re-
agent. Unfortunately, the decrease of the yield was observed as
the temperature was increased (Table 1, entries 1–3), which could
be ascribed to the selectivity of the nuclear D5 double bond and
side chain D24 double bond. Lower reaction temperature �20 �C
has little effect on the yield (Table 1, entry 5). Therefore, �10 �C
was chosen for the further experiments.

In search for an appropriate solvent for the bromohydrin reac-
tion, the reactions of 3 and NBS in different solvents (Table 2) were
scanned.

Various solvents, such as CH2Cl2, EtOAc, toluene, butanone,
t-butanol, glyme, acetone and THF, in combination with water
were studied for this purpose. CH2Cl2, EtOAc and toluene gave very
sis of 25-hydroxycholesterol. Steroids (2014), http://dx.doi.org/10.1016/
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Scheme 3. The synthetic application of bromohydrins.
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poor results due to the part conversion of 3-protected ester 3
during the long reaction time in two-phase system (Table 2, entries
1–3), except in the case of butanone (Table 2, entry 4). t-Butanol,
glyme and acetone gave 60.0–72.3% yield of the desired product
(Table 2, entries 5–7). It is interesting to observe that when
reaction was carried out in a mixture of tert-butyl alcohol and
water (4:1 volume ratio) a mixture of bromohydrin and tert-
butoxybromide was obtained due to the competitive nucleophilic-
ity of tert-butyl alcohol and water. A mixture of THF and water in a
4:1 ratio was found to be the best solvent for halohydrin formation
(Table 2, entry 8). The reaction takes a relatively longer time in a
lower yield when the THF–water ratio was decreased, especially
the THF and water in a 30:1 ratio (Table 2, entries 9–10). It pro-
vided us the clue that water played an important role to increase
the desired product 4 in this process. The nucleophilic solvent
water could compete with halide ion leading to incorporation of
the latter. An excess of water was employed as nucleophilic re-
agent to increase the yield of 4. Therefore, a mixture of THF and
water in a 4:1 ratio was selected as solvent because of its solubility
of the substrate 3, highest yield.

Having identified the optimized solvent, we next evaluated the
influence of different amount of NBS, as shown in Table 3.

The amount of NBS was varied from 1.0 to 2.0 eq. to study its
effect on the bromohydrin of 3 in 20% aqueous THF. The yield of
4 was measured after 2 h of stirring the reaction mixture at
�10 �C. It was observed that the yield increases as the amount of
NBS was increased (up to 1.2 eq.) and then slowed down (Table 3,
entries 1–4). Use of a 2.0 eq. amount of the NBS resulted in a lowest
yield. It provided us the clue that the nuclear D5 double bond of
compound 4 may react with the NBS further. Therefore, we decided
to use 1.2 eq. of NBS for further experiments.

The best result was obtained when substrate 3 was treated with
1.2 equiv. of NBS in 20% aqueous THF at �10 �C within 2 h in the
bromohydrin reaction.

A probable mechanistic pathway to explain the regioselectivity
of the bromohydrins 4 is depicted in Scheme 2. The mechanism of
bromohydrins formation occurs in two steps. A three-membered
cyclic bromonium ion intermediate 5 is formed at the initial stage
of the reaction due to electrophilic addition of the Br+ ion (gener-
ated from NBS) onto the 3. Nucleophilic addition of water to inter-
mediate 5 results in bromohydrins formation. The regioselectivity
can be explained by Markovnikov’s rule, which stated that in the
addition of an unsymmetrical reagent to a multiple bond, the posi-
tive portion of the reagent is introduced at the less-substituted
carbon.

In the next sequence of reaction, the bromohydrins products 4
was transformed into 25-hydroxycholesterol 1 by directly subject-
ing to the reduction with lithium aluminum hydride in THF, a
slight excess of lithium aluminum hydride is generally used. Mean-
while, by action of powdered K2CO3 on the bromohydrins products
4 in methanol at room temperature, 24,25-monoepoxide 6 was ob-
tained in good yield (Scheme 3).
Please cite this article in press as: Zhao Q et al. Investigation on the synthe
j.steroids.2014.02.002
4. Conclusion

In conclusion, we have developed an efficient and general
method for the synthesis of 25-hydroxycholesterol via hydrobro-
mination of desmosterol acetate by using NBS as a bromine source
with excellent regioselectivity. The procedure is rapid, easy to per-
form at �10 �C to give bromohydrins product in good yield. Com-
pared to the method of oxymercuration and hydrodemercuration,
the usage of NBS makes it environmentally friendly.
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