

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 1358-1361

Synthesis and SAR of 1,2-*trans*-(1-hydroxy-3-phenylprop-1-yl) cyclopentane carboxamide derivatives, a new class of sodium channel blockers

Dong Ok,^{a,*} Chunshi Li,^a Catherine Abbadie,^c John P. Felix,^b Michael H. Fisher,^a Maria L. Garcia,^b Gregory J. Kaczorowski,^b Kathryn A Lyons,^a William J. Martin,^c Birgit T. Priest,^b McHardy M. Smith,^b Brande S. Williams,^b Matthew J. Wyvratt^a and William H. Parsons^a

> ^aDepartment of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA ^bDepartment of Ion Channels, Merck Research Laboratories, Rahway, NJ 07065, USA ^cDepartment of Pharmacology, Merck Research Laboratories, Rahway, NJ 07065, USA

Received 29 September 2005; revised 13 November 2005; accepted 14 November 2005 Available online 5 December 2005

Abstract—Novel cyclopentane-based 3-phenyl-1-hydroxypropyl compounds were evaluated for inhibitory activity against the peripheral nerve sodium channel Na_V1.7 and off-target activity against the cardiac potassium channel hERG. The stereochemistry of the hydroxyl group and substitution on the phenyl rings with either fluorinated *O*-alkyl or alkyl groups were found to be critical for conferring potency against Na_V1.7. A benchmark compound from this series displayed efficacy in rat models of inflammatory and neuropathic pain.

© 2005 Elsevier Ltd. All rights reserved.

Neuropathic pain is defined as chronic pain that arises from injury to the peripheral or central nervous system or from diseases that affect the nervous system, such as diabetes mellitus and HIV. Neuropathic pain is thought to be associated with hyperexcitability of sensory afferents, leading to abnormal spontaneous firing.¹ Voltage-gated sodium channels (VGSCs) have been shown to accumulate in injured sensory nerves², and block of VGSCs inhibits injury-induced spontaneous firing.³ Several sodium channel blockers are used clinically in the treatment of neuropathic pain. These include local anesthetics (e.g., lidocaine), antiarrhythmics (e.g., mexiletine) and anticonvulsants (e.g., lamotrigine and carbamazepine).⁴

Recently, the structurally novel sodium channel blocker N-{[2'-(aminosulfonyl)biphenyl-4-yl]methyl}-N'-(2,2'-bithien-5-ylmethyl)succinamide (BPBTS)⁵ was identified through high-throughput screening, using

a FRET-based membrane potential assay that measures the activity of the Na_V1.7 channel subtype. Nav1.7 channels are highly expressed in sensory neurons and are thought to contribute to nociception.⁶ BPBTS (compound 1) has good in vitro potency, blocking the inactivated state of the VGSC subtype Na_V1.7 with a K_i of 0.15 μ M. When injected locally, BPBTS dose-dependently inhibited pain behavior in a rat model of tonic pain. Recently, we reported the synthesis of CDA5 $\hat{4}^7$ (compound 2), which has improved pharmacokinetics compared to that of BPBTS and is orally active in the spinal nerve ligation (SNL) model, a rat model of neuropathic pain.8 Despite a reasonable pharmacokinetic profile in rats $(F = 44\%, Clp = 14 \text{ mL/min/kg}, T_{0.5} = 0.98 \text{ h}), \text{ human}$ liver microsomal (HLM) stability studies with CDA54 indicated rapid metabolic oxidation of the N-Me amide side chain, leading to dealkylated metabolites, and of the biphenylsulfonamide group. The purpose of the present study was to further define the key structure-activity relationships (SARs) of 2 and identify analogs with improved pharmacokinetic properties.

^{*} Corresponding author. Tel.: +1 732 594 7364; fax: +1 732 594 5350; e-mail: dong_ok@merck.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.11.051

Initial SAR studies began with the removal of the metabolically labile biphenylsulfonamide group leading to the *N*-Me benzylamide 3^9 , which showed a 5-fold loss in potency in the functional Na_V1.7 assay¹⁰, when compared to that of **2** (IC₅₀ ~ 1.5 vs 0.29 µM for **2**). We next sought to decrease the peptidyl nature of the compound by replacing an amide bond in **3** with various surrogates. Ether, amine, sulfonamide, reverse amide, and hydroxypropyl tethers led to a further decrease in potency. However, phenyl substitution, and modifications of the right-hand benzyl amide region in molecules containing a 1-hydroxy-3-phenylprop-1-yl tether produced several compounds with Na_V1.7 potency similar to that of **2**.

The synthesis of the compounds in Table 1 is described in Scheme 1. Commercially available methyl 1-cyclopentene-1-carboxylate (5a) was treated with N,O-dimethylhydroxylamine hydrochloride and isopropyl magnesium chloride to give Weinreb amide 5b. This was reacted with excess Grignard reagent to give ketones 6 (range of yields 53-65% from 5a).¹¹ In a key step, a high selectivity of the *trans* stereochemistry of nitriles 7 (>88% dec) was obtained in \ge 90% yield via the reaction of 6 with potassium cyanide in refluxing methanol. The nitriles 7 were then hydrolyzed to the corresponding acids 8 (concd HCl, 80 °C, 5 h, dioxane) in quantitative yield.¹² The acids 8 were converted to the benzyl amides 9 using the requisite benzylamine through BOP-mediated amide bond formation. The carbonyl group in 9 was finally reduced with NaBH₄ to provide a set of racemic, diastereomeric alcohols 10-20. The two diastereomers were readily separated by standard silica gel chromatography.¹³ The faster moving diastereomers were typically more potent against $Na_V 1.7$, and all compounds shown in Tables 1 and 2 refer to the faster moving diastereomer, except for 10 which is a mixture of two diastereomers.

Table 1. Potencies in functional $Na_V 1.7$ and hERG binding assays

Compound	R^1	R ²	Na _V 1.7 IC ₅₀ (μM)	MK-0499 binding (% inhibition at 10 μM)
2			0.29	54
3			1.49	nd ^c
10	Н	Н	>3	nd ^c
11	$2-OCF_3$	Н	0.32	92
12	3-OCF ₃	Н	0.23	89
13	$4-OCF_3$	Н	0.64	52
13A ^a	$4-OCF_3$	Н	0.52	68
13B ^b	$4-OCF_3$	Н	0.36	60
14	Н	3,5-di-Cl	0.98	91
15	$2 - OCF_3$	3,5-di-Cl	1.15	73
16	3-OCF ₃	3,5-di-Cl	0.44	87
17	$3-OCF_3$	$2-CF_3$	0.44	78
18	$4-OCF_3$	3,5-di-Cl	0.87	93
19	$4-OCH_3$	3,5-di-Cl	1.21	70
20	4-SO ₂ CH ₃	4-OCF ₃	>3	nd ^c

^a 13A, enantiomer A of 13.

^b 13B, enantiomer B of 13.

^c nd, not determined.

Scheme 1. Reagents and conditions: (a) Me(MeO)NH \cdot HCl, *i*-PrMgCl, THF, 93%; (b) R₁-Ph(CH₂)₂MgBr, ether; (c) KCN, CH₃OH, reflux; (d) concd HCl, dioxane, 80 °C, 5 h, quant.; (e) R₂-PhCH₂NH₂, HOBT, BOP, *i*-Pr₂NEt; (f) NaBH₄, CH₃OH, 95%.

The compounds listed in Tables 1 and 2 were screened at 1 μ M in the functional Na_V1.7 assay. IC₅₀ determinations were obtained on compounds exhibiting >50% inhibition at 1 μ M. In parallel, compounds were examined for activity on the cardiac potassium channel hERG using a ³⁵S-labeled MK-0499 binding assay (MK-0499 binding)¹⁴, since blockade of hERG can lead to delayed cardiac repolarization and cause a potentially lethal arrhythmia termed torsades de pointes.¹⁵

Extensive SAR studies were carried out to assess optimal substitution patterns of the phenyl groups of 4 in order to maximize $Na_V 1.7$ potency, while limiting

OH						
Compound	R	Na _V 1.7 IC ₅₀ (μM)	MK-0499 binding (% inhibition at 10 μM)			
14		0.98	91			
22		>3	79			
24	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.11	59			
28	,,OCI	>3	40			
29		>3	90			
30	WWN NH OCF3	0.33	84			
31	ocF3	0.82	65			
32	9, .0	>3	70			
33	M H OCF3	0.63	90			

Table 2. Potencies in the $Na_V 1.7$ functional assay and the hERG binding assay

hERG activity (Table 1). Block of $Na_V 1.7$ occurred with different substituents at various positions in the aromatic rings, but most compounds also had substantial hERG binding activity.

In general, potency of the unsubstituted lead 10 was increased by substitution at various positions on the phenyl rings with an OCF₃ group, as illustrated by analogs 11–13, which all exhibited improved Na_V1.7 activity compared to that of 10. The 3,5-di-Cl analog (14) also resulted in an increase in potency over 10, suggesting that these substituents may contribute to hydrophobic interaction surfaces. However, simultaneous substitutions on both phenyl rings generally led to a loss of activity as compared to substitutions with a single OCF₃ group (for example, compare 16 and 12), pointing to potential steric effects. In contrast to $-CF_3$ and $-OCF_3$ substituents, 4-methoxy 19 or sulfone 20 substitutions were not well tolerated.

Of the compounds in Table 1, 13 displayed the greatest selectivity for block of $Na_V 1.7$ over binding to hERG.

To characterize the individual enantiomers of 13, the racemic parent was resolved by chiral HPLC¹⁶ to yield 13A and 13B, as the faster and slower eluting enantiomers, respectively. Enantiomer B (13B) displayed slightly better properties with respect to Na_v1.7 and hERG activity.

To examine the other benzylic amide moiety, a series of compounds containing modifications on the amide chain of 14 were synthesized (Schemes 2-4) and tested (Table 2). The 3,5-di-Cl compound 22, a reverse amide analog of 14, was practically inactive. However, the OCF₃analog of 22 (compound 30) exhibited a 3-fold increase in activity as compared to 14. In fact, compound 30 is one of the most potent Na_V1.7 blockers prepared in the alcohol series, but inhibited MK-0499 binding to hERG by 45% and 84% at 1 μ M and 10 μ M, respectively. The interesting effect of the OCF_3 group is not confined to the reverse amide analog **30**, but is also found in the corresponding sulfonamide analogs. While 3,5-di-Cl sulfonamide analog 29 was devoid of activity, the OCF_3 analog 33 exhibited similar activity to 14. The SAR also shows that replacement of the amide with an ether linkage was well tolerated (24 and 31), while the isomeric ether analogs (28 and 32) showed a greatly diminished activity.

The data in Tables 1 and 2 show that many of the compounds containing a hydroxypropyl tether have similar potency on $Na_V 1.7$ as **2**. Apparently, the amide moieties are not critical determinants of potency, and can be replaced with no appreciable loss of activity. However,

Scheme 2. Reagents and conditions: (a) NaBH₄, CH₃OH (97%); (b) TIPSOTf, 2,6-lutidine, CH₂Cl₂ (90%); (c) H₂, Raney Ni, NH₃ (50 atm), CH₃OH, 50 °C, 3 h (95%); (d) 3,5-Cl₂C₆H₃COOH, HOBT, BOP, *i*-Pr₂NEt, CH₂Cl₂; (e) *n*-Bu₄NF, THF.

Scheme 3. Reagents and conditions: (a) HCl (g), CH₃OH (92%); (b) NaBH₄, CH₃OH; (c) TIPSOTf, 2,6-lutidine, CH₂Cl₂; (d) LiAlH₄, ether (87%); (e) NaH, 3,5-Cl₂C₆H₅CH₂Br, DMF; (f) *n*-Bu₄NF, THF.

Scheme 4. Reagents and conditions: (a) LiAlH₄, ether (87%); (b) TIPSCl, imidazole, CH₂Cl₂ (95%) and separation of *cis* and *trans* isomers (approximately 1:1); (c) NaH, CH₂=CHCH₂Br, DMF (70%); (d) 4-Methylmorpholine *N*-oxide, OsO₄, CH₂Cl₂; (e) Pb(OAc)₄, pyridine, CH₃OH; (f) 3,5-Cl₂C₆H₃MgBr, ether; (g) H₂, Pd/C, CH₃OH (92%); (h) n-Bu₄NF, THF; (i) Jones reagent, acetone (80%); (j) Me(MeO)NHHCl, HOBT, BOP, *i*-Pr₂NEt, CH₂Cl₂; (k) PhCH₂CH₂MgCl, THF; (l) NaBH₄, CH₃OH.

 Table 3. Pharmacokinetic properties and anti-allodynic efficacy

	2	13	13B
HLM stability ^a			
% remaining after 1 h	4	13	49
Pharmacokinetics (1 mg/kg it	,)		
Oral bioavailability (%)	44	40	65
Clp (mL/min/kg)	14.0	9.0	9.0
$T_{0.5}$ (h)	1.0	1.6	1.6
$C_{\max}^{b}(\mu M)$	1.0	1.9	2.3
AUC^{b} (μ M/h)	1.8	5.3	9.0
Anti-allodynic efficacy (3 mg	(kg po)		
Maximal reversal (%)	43	25	31

^a Human liver microsomal preparation.

 ${}^{b}C_{max}$ and ${}^{b}AUC$ determined after oral dosing with 2 mg/kg for 2 or 3 mg/kg for 13 and 13B.

 $Na_V 1.7$ activity is strongly influenced by the nature of the substituents on both phenyl rings. The alcohols in Tables 1 and 2 are a structurally simplified design and lack one of the metabolic liabilities of compound 2. Compounds 13 and 13B were chosen to examine the effect of the hydroxypropyl substitution on the rat pharmacokinetic profile (Table 3).

Compounds 13 displayed a slightly greater stability than compound 2 in human liver microsome incubation studies and stability was greatly improved for 13B. Oral bioavailability of 13 was comparable to that of 2, whereas the single enantiomer 13B displayed improved bioavailability, C_{max}, and AUC. Compounds 13 and 13B showed reduced clearance rates and increased half-lives compared to 2, suggesting that removal of the N-Me amide did indeed eliminate a site for metabolism. Compounds 2, 13, and 13B were evaluated for anti-allodynic efficacy in a rat model of chronic pain. In the CFA model (intradermal injection of complete Freund's adjuvant)¹⁷, 13 and 13B significantly reversed CFA-induced allodynia but failed to show an improvement in efficacy over 2, possibly owing to their somewhat lower in vitro potency against Na_v1.7, although other factors such as local tissue concentration or protein binding cannot be ruled out.

In summary, replacement of the *N*-Me amide group of the diamide 2 with an alcohol moiety has afforded a number of potent amide–alcohol hybrids with in vitro activity comparable to that of diamide 2 and with an improved pharmacokinetic profile. Two benchmark amide–alcohols are efficacious in a rat model of chronic pain, and additional experiments will determine the therapeutic potential of these compounds for the treatment of chronic pain.

Acknowledgments

The authors thank Dr. Joseph L. Duffy for critically reading the manuscript. We further thank Erin McGowan, Xiaohua Li, Feng Ye, Pengcheng P. Shao, William A. Schmalhofer, and Vivien A. Warren for their outstanding technical contributions to this work.

References and notes

- Waxman, S. G.; Cummins, T. R.; Dib-Hajj, S.; Fjell, J.; Black, J. A. *Muscle Nerve* 1999, 22, 1177.
- England, J. D.; Happel, L. T.; Kline, D. G.; Gamboni, F.; Thouron, C. L.; Liu, Z. P.; Levinson, S. R. *Neurology* 1996, 47, 272.
- Liu, X.; Zhou, J. L.; Chung, K.; Chung, J. M. Brain Res. 2001, 900, 119.
- (a) Anger, T.; Madge, D. J.; Mullar, M.; Riddall, D. J. Med. Chem. 2001, 44, 115; (b) Mao, J.; Chen, L. L. Pain 2000, 87, 7.
- Priest, B. T.; Garcia, M. L.; Middleton, R. E.; Brochu, R. M.; Clark, S.; Dai, G.; Dick, I. E.; Felix, J. P.; Liu, C. J.; Reiseter, B. S.; Schmalhofer, W. A.; Shao, P. P.; Tang, Y. S.; Chou, M. Z.; Kohler, M. G.; Smith, M. M.; Warren, V. A.; Williams, B. S.; Cohen, C. J.; Martin, W. J.; Meinke, P. T.; Parsons, W. H.; Wafford, K. A.; Kaczorowski, G. J. *Biochemistry* 2004, 43, 9866.
- Djouhri, L.; Newton, R.; Levinson, S. R.; Berry, C. M.; Carruthers, B.; Lawson, S. N. J. Physiol. 2003, 546, 565.
- Shao, P. P.; Ok, D.; Fisher, M. H.; Garcia, M. L.; Kaczorowski, G. J.; Li, C.; Lyons, K. A.; Martin, W. J.; Meinke, P. T.; Priest, B. T.; Smith, M. M.; Wyvratt, M. J.; Ye, F.; Parsons, W. H. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1901.
- 8. Kim, S. H.; Chung, J. M. Pain 1992, 50, 355.
- 9. Compound **3** was prepared according to a method for the synthesis of **2** described in Ref. 7.
- Felix, J. P.; Williams, B. S.; Priest, B. T.; Brochu, R. M.; Dick, I. E.; Warren, V. A.; Yan, L.; Slaughter, R. S.; Kaczorowski, G. J.; Smith, M. M.; Garcia, M. L. Assay Drug Dev. Technol. 2004, 2, 260.
- Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.; Grabowski, E. J. J. *Tetrahedron Lett.* 1995, 31, 5461.
- 12. The stereochemistry of the cyclopentane has been unequivocally confirmed to be *trans* by an independent synthesis of **34**, which was prepared in a 4-step procedure from commercially available *trans*-DL-1,2-cyclopentane dicarboxylic acid.

Synthesis of **34**: (a) CDI, $C_6H_5CH_2NH_2$, THF; (b) Me(MeO)NH · HCl, HOBT, BOP, *i*-Pr₂NEt; (c) PhCH₂CH₂MgBr, ether; (d) NaBH₄, CH₃OH.

- 13. Spectral (¹H NMR, LC–MS) data on all intermediates and final compounds were consistent with the proposed structures.
- Wang, J.; Della-Penna, K.; Wang, H.; Karczewski, J.; Conolly, T. M.; Koblan, K. S.; Bennett, P. B.; Salata, J. J. *Am. J. Physiol. Heart Circ. Physiol.* 2003, 284, H256.
- 15. Tamargo, J. Jpn. J. Pharmacol. 2000, 83, 1.
- 16. Column used: ChiralCel OD 4.6×250 mm, $10 \,\mu\text{m}$. UV detection at 300 nm. Elution (.75 ml/min) with heptane: isopropyl alcohol (90:10) afforded successively the enantiomers **13A** (7.5 min) and **13B** (8.9 min).
- Gould, H. J., 3rd; Gould, T. N.; Paul, D.; England, J. D.; Liu, Z. P.; Reeb, S. C.; Levinson, S. R. *Brain Res.* 1999, 824, 296.