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Abstract: A wide array of natural resveratrol dimers was prepared
by the regioselective oxidative coupling reaction of 3,5-di-(tert-
butyl)resveratrol using several types of metal oxidants (Ag2O,
Ag2CO3, MnO2, and FeCl3·6H2O) in different solvent systems (ben-
zene–acetone and dichloromethane). Subsequent debutylation of
these coupling products resulted in racemic pallidol and ampelosin
F.
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Resveratrol (1) and its oligomers are a class of plant
polyphenols that have attracted intense interest over the
past thirty years on account of their intricate structures
and diverse biological activities.1 Currently, the synthesis
of resveratrol dimers, such as 2–6 (Figure 1) and their an-
alogues has been a popular research topic. However, only
a few syntheses have so far been reported because of the
complex molecular architectures of dimeric resveratrol.
Thus, their total synthesis remains a great challenge for
chemists.

Resveratrol dimers are formed in nature by oxidative
dimerization of resveratrol. At least three important me-
somers, M5, M8, and M10, have been identified as being
derived from 1 through enzymatic catalysis (Scheme 1).2

The diversity of coupling modes leads to the structural
complexity of the oligomers, which increases the difficul-
ty of their regiocontrolled synthesis. Within the limited
studies on the biosynthesis of oligostilbenes, Snyder’s
group developed an elegant and versatile route for the
synthesis of several dimeric resveratrols such as quadra-
gularin A (4), pallidol (5), and ampelosin F (6) by con-
structing the ring system from brominated stilbenes.3

Sarpong and co-workers reported on the synthesis of po-
tential precursors that may be used to assemble the carbon
framework of several resveratrol-derived dimeric prod-
ucts by palladium-catalyzed cascade reaction.4 Nearly all
in vitro biosynthetic efforts have been devoted to the di-
rect oxidative coupling reaction of resveratrol (1) and its
analogues, owing to its advantage of quick access to the
skeleton of a wide range of oligomers from structurally
simple precursors. However, with natural resveratrol as
the coupling precursor, the 8–5 coupling product d-vini-

ferin (3) has always been predominant in the dimeric mix-
ture and e-viniferin (2) has been rarely isolated by either
enzymatic oxidation (horseradish, laccases, soybean, and

Figure 1 Resveratrol (1) and selected natural resveratrol dimers
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fungi peroxidase)5,6 or the use of a variety of conventional
inorganic oxidants [K3Fe(CN)6, Ag(I), Cu(I)), Cu(II),
Mn(II), and FeCl3).

7 The application of the oxidative cou-
pling reaction for the synthesis of diverse oligostilbenes is
thus largely restricted by the lack of selectivity on the cou-
pling sites. Based on the aforementioned facts, our previ-
ous work reported the successful synthesis of racemic 4
by introducing bulky butyl groups in 1 to impede the un-
desired 8–5 coupling mode in the oxidative coupling reac-
tion promoted by horseradish peroxidase.8 In order to
intensively investigate this strategy, a study was conduct-
ed on the dimerization of 3,5-di-(tert-butyl) resveratrol (7,
Scheme 1) by means of FeCl3 and other one-electron oxi-
dants in different solvents to obtain structurally diverse
resveratrol dimers.

Scheme 1 Three important mesomers of 1 and 7

Compound 7 was subjected to oxidative dimerization by
means of several metallic oxidants under different condi-
tions. The major isolated products are described in
Table 1 and Scheme 2. When 7 was treated with an
equimolar amount of Ag2O in a mixture of benzene and
acetone at a ratio of 2:1 (v/v) under argon atmosphere at
room temperature for 6 hours, the dimeric intermediate 89

was isolated as a major product with a 22% yield, and
12% unchanged 7 was recovered. When CH2Cl2 was used
as the solvent instead of benzene and acetone, the same
product 8 was obtained, with a largely improved yield of
48%, and 28.5% of unreacted 7 was recovered. Similar re-
action results and solvent effects were observed when 7
was treated with Ag2CO3 and MnO2 in benzene–acetone
and CH2Cl2. However, the solvent effects of CH2Cl2 on
Ag2CO3 and MnO2 were more obvious than on Ag2O be-
cause most of the starting material was recovered un-
changed in the former reactions. Nevertheless, the
predominant formation of the 8–8 coupling product 8 fur-
ther confirmed the hindrance effect of bulky tert-butyl
groups at the C-3 and C-5 positions of resveratrol (1),
which was consistent with our previous report.8

When compound 7 was treated with an equimolar amount
of FeCl3·6H2O at room temperature, the reaction outcome
differed for the various solvent systems. When the reac-
tion was carried out in benzene–acetone, a pallidol-like
intermediate 910 was obtained as the 8–8 coupling product
in a 55% yield. The use of CH2Cl2 resulted in an am-
pelosin F derived compound 1011 as the 8–10 coupling
product with a 45% yield. Product 9 was not found under
these reaction conditions (Scheme 2). This result was
slightly different from the work of Velu’s group,12 which
reported the oxidative dimerization of stilbene derivatives
catalyzed by FeCl3·6H2O in CH2Cl2, giving rise to a mix-
ture of pallidol (5) and ampelosin F (6) analogues in low
yields. Thus, the variance of the coupling products under
the same oxidative conditions may be largely attributed to
the substituent effects on the stilbene rings.

With three dimeric intermediates 8, 9, and 10, the synthe-
sis of the related natural resveratrol dimers by their debu-
tylation reaction could be conducted. First, as we reported
previously,8 dimer 8 could easily be converted to (±)-4 via
a prototropic rearrangement followed by a debutylation
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Table 1 Coupling Dimerization of 7 with Oxidizing Reagents

Entry Oxidants Solvents Temp (°C) Time (h) Product Conversion (%) Recovered 7 (%)

1 Ag2O benzene–acetone (2:1) 25 6 8 22 12

2 Ag2O CH2Cl2 25 24 8 48 28.5

3 Ag2CO3 benzene–acetone (2:1) 25 6 8 19 12.5

4 Ag2CO3 CH2Cl2 25 24 8 59 64.4

5 MnO2 benzene–acetone (2:1) 25 6 8 16 24

6 MnO2 CH2Cl2 25 24 8 54 76

7 FeCl3⋅6H2O benzene–acetone (2:1) 25 24 9 55 45

8 FeCl3⋅6H2O CH2Cl2 25 3 10 45 25
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reaction with AlCl3/MeNO2 in toluene. Next, dimeric
product 9 was subjected to a direct debutylation reaction
promoted by AlCl3/MeNO2,

13 smoothly producing racem-
ic 5 in good yield.14 Finally, compound 10 was subjected
to the same debutylation reaction to produce the desired
natural product (±)-6 (Scheme 2).15 All the spectra data of
(±)-5 and (±)-6 are in good agreement with literature val-
ues,16 which confirms the configuration of 9 and 10, since
the stereochemistry of H-7, H-8, H-7¢, H-8¢ in 9 and 10
should be retained during the transformation processes.

In summary, highly regioselective oxidative coupling re-
actions catalyzed by several metallic oxidants using 3,5-
di-(tert-butyl) resveratrol (7) as a potentially useful pre-
cursor were studied. The reaction produced the corre-
sponding coupling products 8, 9, and 10 in higher yields
as compared to previously reported biosynthetic
routes.7c,8,12 Three resveratrol dimers, (±)-4, (±)-5, and
(±)-6, could be synthesized by the subsequent debutyla-
tion of the coupling dimers with good yields. Further de-
tailed investigation of the stereoselective synthesis of a
wide array of resveratrol oligomers through this method-
ology is currently ongoing in our laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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