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Figure 1. 5-Alkenyloxazoles of interest in this study (1) and recorded examples
thereof (2–3).
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Ongoing research on the synthesis of oxazole-containing natu-
ral products1 revealed a need for an expeditious route to 2-alkyl-
(E)-5-alkenyl-4-oxazole-carboxylic esters, 1 (Fig. 1). Surprisingly,
the CAS database records only two compounds of this general type,
2 and 3, both of which are described in a patent that reports anti-
viral activity for such structures.2 The scant precedent for struc-
tures 1 reflects a more general lack of information regarding the
synthesis of 5-alkenyl-oxazoles. Such heterocycles have been
primarily obtained by Pd-mediated coupling reactions of 5-haloox-
azoles.3 A recent method for the assembly of 4-alkyl-5-acyloxaz-
oles provides a route to corresponding 5-alkenyl-oxazoles by
carbonyl reduction and dehydration of the intermediate alcohol.4

However, the products thus obtained lack a 4-COOR substituent.
A noteworthy alternative involves the de novo construction of
the heterocyclic framework through cycloisomerization–elimina-
tion of N-propargyl amides 4 (Fig. 2),5 but again, the ensuing 5-
alkenyl-oxazoles lack the desired 4-COOR group. A variant of that
method leads to 2-alkyl-4-carbalkoxy-5-vinyl oxazoles 6 by
cyclization of N-acyl-2-(3-methoxy-1-propynyl) glycinates (4,
Z = COOR3).6 Unfortunately, products 6 are accompanied by vari-
able quantities of 5-(2-methoxyethyl)-oxazoles 7, to the detriment
of overall efficiency. It should be noted that contrary to the case of
the 5-isomers, the chemistry of 2- and 4-alkenyl-oxazoles is fairly
well developed.7

Our interest in compounds 1, the paucity of methods for their
assembly, and their biological relevance1,8 induced us to research
a new synthetic route. In principle, the requisite oxazoles could
be prepared through olefination chemistry, and an option in that
respect would be a Wittig reaction of an oxazole-based phosphor-
ane or phosphonate. However, a search of the CAS database
retrieved no record of phospho-oxazole substructures 8 or 9
(Fig. 3). Motif 10 is documented in only seven compounds,9 none
of which are serviceable in the present case. By contrast, more than
100 examples each of 2- and 4-phosphorylmethyl oxazoles 11 and
ll rights reserved.
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12 are known, and many Wittig reactions with such agents have
been described.10

Alternatively, the chemistry of Ref. 6 provides facile access to 5-
(trimethylsilyl)methyloxazoles such as 19 and 20 (Scheme 1). We
surmised that these could undergo Peterson olefination11 with
aldehydes, thereby affording the desired 1. On the other hand, Pet-
erson reactions with hetero-aromatic donors are quite rare. More-
over, they appear to have been documented only in the pyridine
series.12 Because no examples of like reactions in the oxazole do-
main appear to exist, a feasibility study was carried out but using
19 and 20.

The deprotonation of the foregoing oxazoles occurred regiose-
lectively at the CH2TMS group upon treatment with LDA or LHMDS
(THF, �78 �C, 20–30 min, Scheme 2), as apparent from the virtually
(ref 6)
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Figure 2. 5-Alkenyloxazoles via isomerization–elimination of propargylamides.
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Table 1
5-Alkenyloxazoles obtained by the new procedure

N

O
R1

COOEt 1

R2

Entry Base R1 R2 Yield%a (E:Z) Yield%b (E:Z)

1a LDA Ph Et 50 (9:1) 79 (9:1)
1b LDA Ph Ph–CH2–CH2 57 (4:1) 71 (7:3)
1c LDA Ph 4-MeO–C6H4 35 (7:3) 74 (7:3)
1d LDA Ph 2-Me–C6H4 40 (1:1) 53 (1:1)
1e LDA Ph 4-Cl–C6H4 60 (7:3) 74 (6:1)
1f LDA Ph 4-NC–C6H4 57 (4:1)
1g LDA Ph 3-Me–C6H4 78 (9:1)
1h LDA Ph 2-Furyl 50 (4:1)
1i LHMDS Ph Ph 45 (4:1) 83 (3:1)
1j LHMDS Me Ph–CH2–CH2 26 (3:2) 46 (3:2)
1k LHMDS Me 4-Cl–C6H4 38 (E) 46 (E)
1l LHMDS Me 2-Thienyl 44 (E) 77 (E)

a Yield and E/Z isomer ratio of chromatographically purified alkenyloxazoles
obtained from a sequence that omitted the TsOH treatment (see text).

b Yield and E/Z isomer ratio (after chromatography) for a sequence that included
the TsOH treatment prior to isolation of the product (see text).
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Scheme 2. Reagents and conditions: (a) LDA or LHMDS (see text), THF, �78 �C, 20–
30 min; (b) R2–CHO, then TiCl4 in CH2Cl2,�78 �C to rt; (c) TsOH�H2O, toluene, reflux,
40–80% overall.
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Figure 3. Oxazole-based Wittig-type reagents recorded in the CAS database.
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Scheme 1. Reagents and conditions: (a) OHC–COOEt, THF, reflux, 99%; (b) neat
SOCl2, rt, 99%; (c) Me2Al–CC–TMS, THF, 0 �C, 3 h, 45% (chrom.) for 19, 46% (chrom.)
for 20.

6164 J. Chau et al. / Tetrahedron Letters 50 (2009) 6163–6165
complete deuteration of the CH2TMS substituent upon a D2O
quench. The regioselectivity observed in the lithiation of 19 is
unquestionably due to the activating effect of the TMS group. In-
deed, the metallation of 2,4-dimethyloxazole-4-carboxylates is
infamously non-regioselective.13 The resulting organometallics 21
proved to be poor nucleophiles. In particular, they added ineffi-
ciently even to aldehydes. Past experience with similar difficul-
ties1f suggested that the use of a Lewis acid activator of the
carbonyl acceptor might circumvent the problem. Indeed, TiCl4

emerged as an effective promoter of the addition of 21 to both aro-
matic and aliphatic aldehydes. The ensuing reaction afforded a
mixture of E (dominant) and Z isomers of the desired 1, plus vari-
able quantities of adducts 22, which had failed to undergo elimina-
tion. This is not surprising in light of the retarding effect of
oxophilic metal ions on the Peterson elimination of 1,2-silanols.14

A complete conversion of 22 into 1 occurred smoothly upon treat-
ment of such crude mixtures with TsOH in refluxing toluene.15 In
some cases, such a treatment more than doubled the overall yield
of desired 1.

The base of choice for reactions of phenyl substrate 20 was
found to be LDA, while LHMDS was preferred with methyl oxazole
19. The latter base also gave improved yields in the reaction of 20
with PhCHO. It seems imprudent to venture simplistic explana-
tions for such observations. The aldehydes were best introduced
into a cold (�78 �C), preformed solution of 21 in one portion, either
in neat forms (liquids) or as concentrated THF solutions (solids),
immediately followed by the addition of TiCl4 (1 M solution in
CH2Cl2). Aqueous workup and subsequent TsOH treatment of the
crude product afforded oxazoles 1 (E/Z mixtures), which then were
chromatographically purified.16

Table 1 lists the 5-alkenyl-oxazoles obtained through the new
procedure. The first yield column in this table reports the yields
of 1 obtained from a sequence that omitted the TsOH treatment;
the second one tabulates the yields of 1 arising from a preparation
that included such a step. Available data suggest that the reaction
performs adequately with both aliphatic and aromatic aldehydes.
The latter substrates may indifferently carry substitution at the
ortho, meta, and para positions and incorporate electron-donating
or electron-withdrawing groups. Representative heteroaromatic
aldehydes, such as 2-furaldehyde and 2-thienaldehyde, participate
normally in the reaction. Unfortunately, ketones such as acetone
and cyclohexanone failed to combine with 21 even in the presence
of TiCl4. At this time, we are unable to remedy such a limitation.

On a final note, mixtures of E- and Z-isomers of 1 may be
strongly enriched in (E)-alkene (>95% by integration of 1H NMR
spectra) by refluxing in toluene in the presence of a catalytic
amount of I2 (Table 2).17,18

In summary, we have shown that readily available 5-(trimethyl-
silyl)methyl-oxazole-4-carboxylate esters are useful for the Peter-
son synthesis of (E)-5-alkenyl oxazoles. Applications of this
chemistry to problems in total synthesis will be described in due
course.
Table 2
Equilibration of (E/Z)-1 to the (E)-isomer

N

O
R1

COOEt

toluene,

refl., cat. I2

R2

(E / Z)-1
N

O
R1

COOEt

R2

(E)-1

Entry R1 R2 Initial E/Z ratio Final E/Z ratio

1d Ph 2-Me–C6H4 1:1 E only detectable
1i Ph Ph 3:1 96:4
1j Me Ph–CH2–CH2 1.5:1 96:4
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