

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 4099-4102

Tetrahedron Letters

N-Silylation of amines and amino acid esters under neutral conditions employing TMS-Cl in the presence of zinc dust

Vommina V. Suresh Babu,* Ganga-Ramu Vasanthakumar and Subramanyam J. Tantry

Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore 560001, India

> Received 2 January 2005; revised 1 April 2005; accepted 4 April 2005 Available online 22 April 2005

Abstract—An expedient synthetic approach to *N*-silylamines has been developed. The protocol, using TMS-Cl/zinc dust instead of BSA, is useful for the conversion of amines or amino acid esters to the corresponding silyl derivatives, followed by acylation with an acyl chloride or Fmoc-amino acid chloride to give the corresponding amide or peptide. This procedure, affording products in good to excellent yields, is also efficient for the coupling of sterically hindered amino acids like α, α -dialkylamino acids and *N*Me-amino acids. Further, the use of an equimolar quantity of organic base, such as Et₃N/pyridine, is circumvented. © 2005 Published by Elsevier Ltd.

1. Introduction

The synthesis of N-silylamines is an important process in organic and biological chemistry.¹⁻⁴ It has been found that the nucleophilicity of nitrogen can be increased by silvlation.⁵ Usually, the *N*-trimethylsilyl-amines or -lactam derivatives have been synthesized by employing trimethylchlorosilane (TMS-Cl) in the presence of an equimolar quantity of an organic base such as Et₃N or pyridine.⁶ The base abstracts the HCl liberated and thereby the silvlation goes to completion. Other reagents used for N-silvlation include trimethylsilvlalkylamines, hexamethyldisilazane, or a mixture of trimethylsilylamines and TMS-Cl.⁷ However, the methods available for silvlation of amines are not completely satisfactory.⁸ The use of an equimolar quantity of a base results in side reactions including racemization in peptide synthesis.9 β -Elimination of a Boc group was also observed in the synthesis of microlin lipopeptides when silvlation of a lactam nitrogen was carried out in the presence of a base.¹⁰ Whenever the situation requires the use of an organic base to be avoided, N,O-bis(trimethylsilyl)acetamide (BSA) has been preferred.¹¹ One such example recently was illustrated by the use of BSA for silvlation of amino acid esters and the demonstration of the use of the resulting *N*-trimethylsilyl amino acid esters for the incorporation of sterically hindered amino acids into peptide sequences¹² by Carpino and Bayermann's groups. However, the acetamide that resulted from the reaction was difficult to remove from the reaction medium and BSA is an expensive reagent. A prior demonstration of the use of co-coupling agents such as potassium salts of 1-hydroxybenzotriazole (KOBt) and 7-aza-1-hydroxybenzotriazole (KOAt), zinc dust, etc., with acid chlorides led us to explore *N*-silylation using TMS-Cl and zinc dust under non-Schotten Baumann conditions.^{13–15}

2. Results and discussion

Initially, *N*-silylation of aniline was carried out using TMS-Cl and zinc dust to afford TMS-aniline as shown in Scheme 1. This was then allowed to react with benzoyl chloride at room temperature to furnish *N*-phenyl- benzamide. The overall conversion took 10 min

Scheme 1. Synthesis of amides employing *N*-silylated amines and acid chlorides.

Keywords: *N*-Silylation; TMS-Cl/zinc dust; Acylation; Acid chlorides; Peptides.

^{*} Corresponding author. Tel.: +91 80 2224 5566; fax: +91 80 2229 2848; e-mail: hariccb@rediffmail.com

^{0040-4039/\$ -} see front matter @ 2005 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2005.04.007

Table 1. Physical constants of amides

Compound	Yield	Melting point (°C)	
	(%)	Observed	Reported ¹⁷
N-Phenylbenzamide	94	162-163	162
N-(4-Nitrophenyl)benzamide	90	197–98	199
N-(3-Nitrophenyl)benzamide	88	156-57	157
N-(2-Nitrophenyl)benzamide	85	96–97	98
N-Benzylbenzamide	95	104-106	104-105
N-(4-Methoxyphenyl)benzamide	92	152-53	153-154
N-(3-Methoxyphenyl)benzamide	87	103-104	
N-(2-Methoxyphenyl)benzamide	89	60–61	60

to complete. This encouraged us to extend the procedure to other substituted anilines and benzylamine. In these cases we observed that the silylation proceeded smoothly and the resulting *N*-silylated derivatives were acylated using benzoyl chloride to afford the corresponding amides in good to excellent yields (Table 1). All the amides prepared were characterized by ¹H NMR and mass spectroscopy.

Furthermore, the protocol for N-silvlation of amino acid esters was explored, which were to be used for peptide coupling employing Fmoc-amino acid chlorides. The amino acid methyl ester hydrochloride salt was initially deprotonated by stirring in dry CHCl₃ for 10 min in the presence of an equimolar quantity of zinc dust.¹⁶ The resulting free amino acid ester was converted to its N-silvlated derivative by treatment with TMS-Cl mediated by zinc dust (Scheme 2). The silvlation was found to be complete within 5 min as was confirmed by ¹H NMR. The reaction mixture was filtered under an N₂ atmosphere, to give the resulting N-silylated amino acid esters. Fmoc-amino acid chloride in CHCl3 was added and stirring continued at room temperature. The acylation, as monitored by TLC and IR, was complete in about 5-10 min. This was confirmed by the absence of the characteristic stretching frequency for an acid chloride at around 1780 cm^{-1} .

Since the addition of base is avoided, neither oxazol-5-(4H)-one formation nor the premature deblocking of the Fmoc group was observed during coupling. The coupling, as monitored by ¹H NMR, was free from racemization. Furthermore, the coupling of hindered amino acids, such as α, α -dialkylamino acids and *N*Me-amino acids, was also accomplished. The resulting peptide esters were isolated and characterized as white solids in good yields (Table 2). A comparison of the yields obtained using different methods employing amino acid chlorides and amino acid ester derivatives are given in Figure 1.

In conclusion, an expedient approach for *N*-silylation of both amines and amino acid esters by using TMS-Cl and zinc dust instead of BSA has been demonstrated. The resulting silylated derivatives were acylated using acid chlorides under non-Schotten Baumann conditions.

3. Experimental

3.1. Synthesis of amides employing *N*-silylated amines and acid chlorides

To an amine (1 mmol) in dry CHCl₃ (5 mL), zinc dust (0.070 g, 1 mmol) and TMS-Cl (0.1086 g, 1 mmol) were added and mixture was stirred for 5 min. The reaction mixture was filtered under an N₂ atmosphere, benzoyl chloride (1 mmol) added the filtrate and the stirring continued. After completion of the reaction (as monitored by TLC), the mixture was diluted by adding CHCl₃ (20 mL) and washed with 5% HCl, 5% NaHCO₃ and water and then dried over anhydrous Na₂SO₄. Evaporation of the resulting residue from CHCl₃/*n*-hexane (3:7) gave the amide as a solid.

entry : **c**, *L*-isomer ; entry : **d**, *D*-isomer

Scheme 2. Synthesis of peptides employing N-silylated amino acid esters and Fmoc-amino acid chlorides.

Table 2. Physical constants of N^{α} -Fmoc-protected dipeptide esters

Peptide	Yield (%)	Mp (°C)	$[\alpha]_{\rm D}^{25}$ (lit.)	¹ H NMR (400 MHz, CDCl ₃)
Fmoc-Gly-Phe-OMe ^{18a}	84	136	+16.12 (+16.0) (<i>c</i> = 1, CHCl ₃)	δ 2.11 (2H, s), 2.72 (2H, $J = 6.4$, d),
				4.25 (1H, <i>J</i> = 6.8, t), 4.50 (2H, <i>J</i> = 6.8, d), 5.00 (1H, s),
				5.51 (1H, br), 7.32–7.80 (13H, m)
Fmoc-Phe-Leu-OMe ^{18b}	90	156–57	$-21.6 (-21.6) (c = 1, CHCl_3)$	δ 0.85 (6H, J = 7.32, d), 1.50–1.62 (3H, m), 3.04 (1H, q),
				3.20 (1H, q), 3.68 (3H, s), 4.22 (2H, <i>J</i> = 6.8, d),
				4.33 (1H, $J = 6.8$, d), 4.40 (2H, $J = 6.6$, d), 4.68 (1H,
				J = 6.6, d), 6.41 (1H, br s), 6.90 (1H, br s),
5 PL PL 014 180				and 7.12–7.70 (13H, m)
Fmoc-L-Phg-Phe-OMe ¹⁰⁰	93	191–92	+22.6 (+22.6) (c = 0.5, DMF)	δ 2.92 (2H, $J = 6.6$, t), 3.16 (1H, $J = 6.6$, t), 3.64 (3H, s),
				4.25 (1H, J = 6.8, t), 4.52 (2H, J = 6.8, d), 5.22 (1H, J = 6.8, d), 5.2 (1H, J = 6.8, d), 5.2 (1H, J = 6.8, d),
				J = 6.6, d, 6.20 (1H, br s), 6.95 (1H, br s),
Emag p Phg Pha OMa ^{18c}	02	102 02	+22.6(+22.6)(a = 0.5 DME)	and $7.30-7.90$ (18H, H) 8.2.02 (2H, $I = 6.6$ t) 2.18 (1H, $I = 6.6$ t) 2.72 (2H, s)
Finoc-D-Fing-Fine-Office	92	192-93	+22.0 (+22.0) (c = 0.3, DMT)	0.2.92 (211, $J = 0.0$, t), 5.16 (111, $J = 0.0$, t), 5.75 (511, 8), A 25 (1H $J = 6.8$ t) $A 52$ (2H $J = 6.8$ d) 5.23 (1H
				4.25 (111, $5 = 0.6$, t), 4.52 (211, $5 = 0.6$, d), 5.25 (111, $L = 6.6$, d), 6.20 (1H, hr s), 6.95 (1H, hr s), and
				7 = 0.0, 0.0, 0.20 (111, 01 3), 0.95 (111, 01 3), and $7 = 7.9$ (18H m)
Fmoc-NMeVal-Sar-OMe ^{13b}	83	80-82	+168.08 (c = 1, CHCl ₃)	$\delta 0.80$ (6H, $J = 7.4$, d), 1.32 (3H, $J = 7.4$, d), 1.50
				(2H, J = 6.6, t), 2.42 (4H, m), 3.61 (3H, s), 4.12 (1H, the second sec
				J = 6.8, d), 4.30 (2H, $J = 6.8$, t), 7.30–7.80 (8H, m)
Fmoc-Aib-Aib-OMe ¹⁵	88	70-71		δ 0.92–2.10 (12H, m), 3.80 (3H, s), 4.1 (1H, J = 6.8, d),
				4.21 (2H, <i>J</i> = 6.8, t), 6.82 (1H, br s), and
				7.22–7.80 (9H, m)
Fmoc- <i>N</i> MeAib-Aib-OMe ¹²	88	70-71	—	δ 0.92–2.11 (12H, m), 3.62 (3H, s), 3.80 (3H, s),
				4.10 (1H, $J = 6.8$, d), 4.21 (2H, $J = 6.8$, t), 6.82
12				(1H, br s), and 7.22–7.80 (9H, m)
Fmoc-Ala- <i>N</i> MeAib-OMe ¹²	88	70–71	—	δ 0.92–2.10 (9H, m), 3.65 (3H, s), 3.82 (3H, s),
				4.10 (1H, $J = 6.8$, d), 4.21 (2H, $J = 6.8$, t), 6.80
E E E OM 18d		100.04		(1H, br s), and 7.20-7.80 (9H, m)
Fmoc-Deg-Deg-OMe	82	122-24	—	0.82-2.00 (20H, m), 3.70 (3H, s), 4.21
				(1H, J = 0.8, d), 4.32 (2H, J = 0.8, l), 0.00 (1H, DF S), 7.02 (1H, br s), and 7.20, 7.80 (8H, m)
$E_{\text{mod}} = \Delta c_{1} c_{2} \Delta c_{2} c_{3} O_{\text{Me}}^{18d}$	86	164_66		1.02 (111, 01.8), and $1.20-1.00 (01, 11)\delta 0.80-2.10 (20 H m) = 3.72 (3 H s) = 4.20 (2 H J - 6.8 t)$
1 moc-Ac6c-Ac6c-Owle	00	104-00		451 (1H I = 68 d) 593 (1H s) 680 (1H s)
				and 7 $30-7.80$ (8H m)
				ana 7.50 7.60 (011, m)

Figure 1. Comparison of yields obtained using different methods employing Fmoc-Phg-Cl and H-Phe-OMe.

3.2. Synthesis of peptides employing *N*-silylated amino acid esters and Fmoc-amino acid chlorides

The amino acid methyl ester hydrochloride salt (1 mmol) was deprotonated by stirring in dry CHCl₃ (5 mL) with zinc dust (0.140 g, 2 mmol) for 10 min. TMS-Cl (0.1086 g, 1 mmol) was added and stirring was continued for another 5 min. The reaction mixture was filtered under an N_2 atmosphere, the Fmoc-amino

acid chloride (1 mmol) in CHCl₃ was added to the filtrate and the stirring was continued. After completion of the reaction (as monitored by TLC), the mixture was diluted by adding CHCl₃ (20 mL) and washed with 5% HCl, 5% NaHCO₃ and water and then dried over anhydrous Na₂SO₄. Evaporation of the solvent in vacuo and recrystallization of the resulting residue from CHCl₃/*n*-hexane (3:7) gave the peptide as a solid.

Acknowledgements

These studies were supported by the Department of Biotechnology, Government of India. We thank the faculty members of the Sophisticated Instruments Facility, I. I. Sc., for NMR data.

References and notes

- 1. Bircofer, L.; Ritter, A. Chem. Ber. 1960, 93, 424-427.
- Bircofer, L.; Ritter, A.; Neuhausen, P. Liebigs Ann. Chem. 1962, 659, 190–199.
- Lukkainen, T.; VandenHeuvel, W. J.; Horning, E. C. Biochem. Biophys. Acta 1962, 62, 153–159.
- 4. Horii, Z.; Makita, M.; Tamura, Y. Chem. Ind. 1965, 1494.

- (a) Rajeswari, S.; Jones, R. J.; Cava, M. P. Tetrahedron Lett. 1987, 28, 5099–5102; (b) Podlech, J. In Methods of Organic Chemistry (Houben-Weyl): Synthesis of Peptides and Peptidomimetics; Goodman, M., Felix, A., Moroder, L., Toniolo, C., Eds.; George Thieme Verlag Stuttgart: New York, 2002; Vol. E22a, p 141.
- (a) Hils, J.; Ruehlmann, K. Chem. Ber. 1967, 100, 1638– 1645; (b) Kricheldorf, H. R. Justus Liebigs Ann. Chem. 1972, 763, 17–38.
- 7. Heberle, J.; Simchen, G. Silylating Agents, 2nd ed.; Buchs, 1995.
- 8. The silylating agents used are hexamethyldisilazane, trimethylsilyalkylamines, or a mixture of trimethylsilylamine and TMS-Cl. Silylations with hexamethyldisilazane or silyl amines require prolonged heating and continuous removal of ammonia or amine. The chlorosilane-silazane mixture, while more reactive, has the disadvantage of producing amine hydrochlorides which are often difficult to separate from the desired product.
- Carpino, L. A.; Chao, H.-G.; Beyermann, M.; Bienert, M. J. Org. Chem. 1991, 56, 2635–2642.
- Mattern, R.-H.; Gunasekera, S. P.; McConnell, O. J. Tetrahedron Lett. 1997, 38, 2197–2200.

- 11. Klebe, J. F.; Finkbeiner, H.; White, D. M. J. Am. Chem. Soc. 1966, 88, 3390–3395.
- Wenschuh, H.; Bayermann, M.; Winter, R.; Bienert, M.; Ionescu, D.; Carpino, L. A. *Tetrahedron Lett.* 1996, 37, 5483–5486.
- (a) Sivanandaiah, K. M.; Suresh Babu, V. V.; Renukeshwar, H. C. Int. J. Peptide Protein Res. 1992, 39, 201–206;
 (b) Sivanandaiah, K. M.; Suresh Babu, V. V.; Shankaramma, S. C. Int. J. Peptide Protein Res. 1994, 44, 24–30.
- Gopi, H. N.; Suresh Babu, V. V. Ind. Chem. Soc. 1998, 75, 511–513.
- Gopi, H. N.; Suresh Babu, V. V. Tetrahedron Lett. 1998, 39, 9769–9772.
- Ananda, K.; Suresh Babu, V. V. J. Peptide Res. 2001, 57, 223–226.
- 17. Rodriguez, J.-G.; Rosa, M.-V.; Ramos, S. New J. Chem. 1998, 865–868, and references cited therein.
- (a) Sivanandaiah, K. M.; Suresh Babu, V. V.; Shankaramma, S. C. *Ind. J. Chem.* **1992**, *31B*, 379–380; (b) Suresh Babu, V. V.; Ananda, K.; Vasanthakumar, G.-R. *J. Chem. Soc., Perkin Trans 1* **2000**, 4328–4331; (c) Carpino, L. A. *J. Org. Chem.* **1988**, *53*, 875–878; (d) Ananda, K.; Gopi, H. N.; Suresh Babu, V. V. Lett. Peptide Sci. **1998**, *5*, 277–283.