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Abstract: The first stereospecific synthesis of the title compounds 

is described. 

During the past two decades much attention has been given to 

synthetic 
1 

and biological 
2 

studies of the carbocyclic analogues of nucleo- 

sides. (-)-Aristeromycin and (-)-neplanocin A are natural representatives 

of these compounds. Yet, only a few enantiomerically pure synthetic carbo- 

cyclic nucleoside analogues have been obtained through chemoenzymatic 
3 

approaches , 4 
multistep synthesis , and by 

5 
chromatographic or enzymatic 

6 

resolution of racemic intermediates, nucleosides or nucleotides. The key 

synthetic precursor,13 of the - carbocyclic analogues of 2'-deoxyribo- 

nucleosides has also not yet been prepared in a non-racemic form. A recent 

paper7 on the asymmetric synthesis of a close analogue of 13 prompted us to - 

disclose a part of our synthetic efforts in progress in this field. We 

report herewith on the first stereospecific synthesis of the (+)- 

-(lR,2S,4R)-4-amino-2-hydroxy-l-cyclopentanemethanol, 13 and the (+)- - 

carbocyclic thymidine,l4. - 

&jQ+Q+$=j 

Hd’ Hd’ 

1 13 14 

Unsaturated bicyclic lactone 1 has been selected as a commercially 

available enantiomerically pure starting material known from the 

prostaglandin chemistry8. 
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Apparently three sets of chemistry had to be elaborated in order to obtain 

13 from 1_ : first, introduction of a hydroxy and a hydroxymethyl group to 
- 

the C=C double bond with high regio- and stereoselectivity; then conversion 

of a secondary OH group into an amino group with inversion of configur- 

ation, and last but not least, elimination of the acetic acid moiety from 

the molecule. 

Scheme 1 

b c zR=H 4 

jR=PhCH, 

I I 

R'O 
RO &R_Rg3 

Rd' Rd' Rd' 
j.2 R=PhCH, 

'tllJR=H 
11 

i [I 
jX=H 
loX=OH 

a:i,(CH$),, H2S04,AcOH,60°C,1 day,ii,Amberlite IR-120(H+),70°C, 15 h ,558 
(overall) ; &:PhCH2Br,NaH,DMF,bO%; ~:LDA,MoOPH,THF,-~~~C(~ h) ,rt(8 h),58%; 
d:i,chrom.(Si02 column,CH2C12:acetonel4:1 then hexane:EtOAc l:l),ii,LiAlHq, 
Et20,reflux,91%; e:2,2-dimethoxypropane,p-TsOH,PhH,rt,80%: g:(PhO)2P(O)N3, 
DEAD,TPP,THF,rt,lO min,86%; q:80% aq AcOH,rt,7 h ,898; h:NaIOq,H20-dioxane 
(1:2),rt,lO min,92%; L:H2Cr04-acetone,OoC,lO min,93%; j:IBDA,I2,hv,CClq,re- 
flux,15 min,54%; &:n-Bu3SnH,PhH,reflux,l.5 h,19%; 1:80% aq NH2NH2.H20,10% 
Pd_C,MeOH,reflux,45 min,80%; m:i,MeOCH=C(Me)C(O)NCO,DMF, Et20,PhH,-15°C,3 
h,60%, ii,258 aq NH40H,reflux,2 h,95% 

Acid catalysed addition of formaldehyde9 (Prins reaction) to 1 

afforded, after deacetylation, dihydroxy lactone 2 which was protected as 

dibenzyl ether 2 (Scheme 1). Hydroxylation of 2 with MoOPH 10 yielded 

diastereomeric a-hydroxy lactones 2 (exo:endo=5:l,by weight). LiAlH4 

reduction of the chromatographically separated exo isomer led to the 

formation of trio1 5 _* Dioxolanation of the vicinal glycol moiety (5, 

allowed smooth conversion of the unblocked secondary OH group into an azido 

one [?, (PhO)2P(O)N3,Ph3P,(NCO2Et)2] with complete inversion of config- 

urationll securely verified by NMR spectroscopy. After removal of the 

isopropylidene group from 1 (aq. AcOH), the vicinal diol 8 was cleaved _ 

(NaI04) to aldehyde 2 which was then oxidized (Jones) to carboxylic acid 

10. Decarboxylation of 10 into diastereomeric iodo asides - - 11. [isomer 

ratio=3:1(TLC)] was accomplished by iodobenzene diacetate (IBDA), 12 
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12 
reagents . Aziao iodide 11 was then reduced to the - cyclopentylamine 

derivative 12 with n-Bu3SnH. Debenzylation of 11 to aminocyclopentane diol - 

derivative 13 [aD 26 +34O(c l.O,DMF)] was performed with catalytic transfer 

hydrogenation (aq. NH2NH2.H20,Pd-C)13. Synthesis of the heterocycle 

(thymine) in 14 was completed according to published procedures14. 

1, aq NaOH, MeOH, rt, 40 min, ii, aq NaHS04, iii, CH2N2-Et20, iv, 
zrTsOH CH2C12,rt,40 min,75% (overall) 

DHP, 

night)?3%; 
; ~:LDA,MoOPH,THF,-~~~C(~ h),rt(over- 

c:LiAlHq,Et20,rt,3 h,69%; fi: NaIO4,H20-acetone (1:2),rt, 15 min, 
83 8; e: PDC,DMF,rt,l9 h, 76%; 2: IBDA,I2,hv,CCl4,reflux,l5 min,67%; 
n-Bu3SnH,Et20,reflux,lO h, 99%; h:MeOH,p-TsOH,rt,40 min,74%;i:(Ph0)2P(O)Nt? 
DEAD,TPP,THF,rt,lO min,71%; 1: n-Bu3SnH,PhH,reflux,l.5 h,43% 

In an alternative strategy (Scheme 2) we introduced the azido group 

when degradation of the acetic acid side chain had been completed. The 

dibenzyl lactone dial 2 was converted to protected trihydroxy ester 15 - 

followed by hydroxylation [ti,(MoOPH,isomer ratio=1.8:1(GC)] and subsequent 

LiAlH4 reduction to aiol derivative 17 _. Cleavage (NaI04) followed by 

oxidation (Jones) of 18 led to carboxylic acid 19 -* Diastereomeric iodo - 

compounds 20 [isomer ratio=2:1(TLC)] formed by decarboxylation (IBDA,I2,hV) - 

were converted to fully protected trio1 $_ (n-Bu3SnH). Cyclopentanol 

derivative 22 obtained on deblocking (MeOH/p-TsOH) of 21 was transformed - 

into cyclopentylazide derivative 23 [(PhO)2P(O)N3 and Mitsunobu's reagent] - 

which in turn furnished intermediate 12 with n-Bu3SnH. - 

(+)-Carba-thymidj.ne 14 - 

CD and lH, l3 

[ai5+9' (c l.O,MeOH)] was characterized by 

C NMR spectroscopy, MS spectrometry and elemental 
15 

analysis . 

All these data are consistent with and. corroborate the expected structure 

14 -. 
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