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An environmentally benign attribute for the expeditious synthesis of quinoxaline derivatives
Sangeeta Bhargava*, Pooja Soni and Deepti Rathore
*Department of Chemistry, University of Rajasthaaipur, 302004, India.
*E-mail:drsbhargaval@gmail.com.
ABSTRACT

A simple, efficient, and environmentally friendlgnic liquid mediated protocol for the synthesisqoiinoxaline
derivatives using carbonyl substrate and phenyiengdes has been described. A range of ionic lguicre
synthesized, characterizeih IR, *H and**C NMR and used as a solvent as well as catalysifove protocol. The
catalytic activities of ILs were evaluated and thationship between the catalytic activity anddégi was
discussed. It was also found that among the all [Bmim]CRSO; was the most effective, eco-friendly and less
expensive solvent and catalyst for the above dtigu&his method is of significant value due to gw-friendly
nature of ionic liquid and non usage of separatalyst to drive the reaction forward. The protopobves to be
efficient and environmentally benign in terms obddo excellent yields, low reaction times, simpierk-up, ease

of recovery, and reusability of ionic liquid foixdimes.

KEYWORDS: lonic liquids, Quinoxalines, Reusable media, Rblesaatalyst
1. INTRODUCTION

Owing to the growing emphasis on the desire to ldgvmore sustainable routes for the preparatioa ofyriad of
materials, green chemistry and sustainability &epming increasingly important in organic synth¢s]s Solvents
constitute around 80% of the total volume of chedisicised in a procefd. Separation, purification and recycling
of solvents is a very important criteria that dihg@ffects the eco-efficiency of a process andstiia industrial
viability [3]. However majority of solvents used almemical laboratories and industries are orgah@ricals with
hazardous and toxic properties and form part ofléihnge waste by-products causing environmental ridazgt].
Although most of their toxic potential is known atitere are safety measures for their use, prolomgedhigh
concentration exposures can adversely affect @spy, hematological and thyroid functioning [S]hus careful
selection of solvents is important not only forrie&sing the reaction rates and lowering the read8mperatures
but also for the sustainable development of therenment. One such approach to enhance the ecoatiitipy of
a reaction is to conduct it in green solvents iadtef classical organic solvents and devise mdieiafit recycling
protocols [6]. In the last decade, many promisingdia have appeared as inoffensive solvents, suckager,
supercritical fluids, and perfluorinated solven?. [However, the use of these solvents is stillitish by many
problems: some substrates or reagents have a plodiliy or stability in water; sophisticated eguient is usually

required when perfluorinated or supercritical sotgeare employed.

This has initiated tremendous interest in the dserac liquids for practical implementation as gresolvents [8-9].
lonic liquids have certainly appeared to be acthésleeve of green chemistry, as they offer tloenige of being
simultaneously environmentally benign while hosting array of materials for unique chemistry [10-1Phey
possess several unconventional and distinctivegpties such as negligible vapor pressure, widddigange, low
flammability, high conductivity, excellent thermgthbility etc [13-14].



Quinoxalines are an important class of heterocyfbemd in many pharmacologically and biologicallgtiae
molecules (Fig.1). It has wide applications such aadiviral, antibacterial, antiinflamatory, anticardsant,
anticancer, anti HIV and as kinase inhibitor [19-Moreover, they are widely used in the field efriconductors,
dyes, suitable ligands in coordination chemistryelectroluminescent material and in chemically colidble
switches [18-20].
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Fig. 1. Representatives of quinoxaline containing compounds.

Consequently a number of synthetic strategies Hasen devised for the synthesis of various substtut
quinoxalines. Commonly a highly efficient methodngwises the reaction of aryl 1,2-diamines with oanp
compounds. Usually this condensation reaction igemhout under reflux condition in ethanol or acetcid [21].
However in recent years several new feasible metihade been developed including the usg-oficlodextrins,
iodine, MnC}, heteropolyacids, montmorillonite, Zn[(L)-PROLINE]polyaniline sulphate salts, DABCO,
fluorinated alcohols and alumina supported hetdyopometallates [22-26]. While, some deliberatelyusd
improvisation have been documented [27-29] foifupént of reaction condition, but somewhere doWwa line it
still require the adaptability due to the use gfensive and/or toxic catalysts, incompatibilitywitertain functional

groups, critical product isolation procedures, exgiee reagents and limited substrate applicability.

Therefore the necessecity of designing a syntipetitocol which abides the principles of green ctstrpiremains
an attractive goal. To circumvent the above drakbeaand develop a simple, efficient and green rdatethe
synthesis of quinoxaline, herein, we describe datdlytic-solvent system role of ionic liquid agr@en solvent as
well as catalyst for the synthesis of quinoxalirezivhtives via reaction of 1,2-diamine with diffatecarbonyl
substrates at room temperature. As shown in Sclemarious aromatic aldehydes, cyclic ketones, rbeyelic
ketones and phenacyl bromides were used as stantiterials. ILs were employed as solvents and ysttaht room
temperature. The catalytic activities of ILs werkaleated and the relationship between the catabgiovity and
acidity was discussed. It was also found that Braim]CF;SO; was the most effective catalyst and solvent f@ th

protocol. Additionally, this IL is more eco-friendand less expensive as compared to other ILs.
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Scheme 1: Synthesisof quinoxaline derivatives
2. EXPERIMENTAL
2.1 Chemicalsand Apparatus.

All the chemicals used were of research grade f@ased from Sigma Aldrich and Acros) and used wittiotiher
purification. The melting points of all compoundene determined on a Toshniwal apparatus in caypikend
uncorrected. IR spectra were recorded on a Shimkd@izIR- 8400S spectrophotometéd and**C NMR spectra
were obtained using CDgas solvent on a JEOL JNM LA-300 spectrometer (86 for *H NMR and 75 MHz
for *C NMR). The'H NMR data were reported as follows in ppsn) from the internal standard (TMS, 0.0 ppm),
chemical shift (multiplicity, coupling constant iz, integration), and th&C NMR data in ppm§ ) from the

internal standard (TMS, 0.0 ppm). Mass spectra wbtained using Waters Xevo&instrument.

2.2 General procedurefor the preparation of theimidazolium based ionic liquids:

To a stirred solution of 1-methylimidazole (8.911§0.0 mmol) in acetonitrile (70 mL) was added borpmide (
110.0 mmol) dropwise at©. The reaction mixture was stirred for 24-48 IB@C. Removal of the solvent under
reduced pressure afforded crude 1-butyl-3- methgkaolium bromide. Completion of all the reactionss
confirmed by*H and**C NMR. The crude product was used without furthaifization for the next step, the anion
metathesis.

2.3 General procedurefor anion metathesis:

To a solution of the crude 1-butyl-3-methylimiddamatbromide, obtained from the above reactions cetene (70

mL) was added hexafluorophosphoric acid (10.900§.@ mmol). The reaction mixture was stirred fort2dt room



temperature. The resulting mixture was filteredajration of the solvent under reduced pressuidst the
corresponding 1-Butyl-3-methylimidazolium hexaflaphosphate. Same procedure was used except thatrtri
methane sulphonic acid (15.08 g, 100.0 mmol) wasd ugstead of hexafluorophosphoric acid. The ragylt
mixture was filtered. Evaporation of the solvendenreduced pressure afforded the correspondindaizolium
trifluromethane sulphonate.1-Butyl-3-methylimidémah tetrafluoroborate was also prepared using thmes
procedure as above except that tetrafluoro boricid §15.08 g, 100.0 mmol) was used in place of
hexafluorophosphoric acid. Progress of the reacti@s measured by TLC. Completion of the reactiors wa
confirmed by'H NMR.

2.4 General procedurefor the synthesis of Quinoxalines:

A mixture of aromatic diamine derivatives (2 mmahd a 1,2- dicarbonyl compound (2 mmol) in ionguld (2
mL) was stirred at room temperature for the appad@rtime. The progress of the reaction was moaitdory TLC
(n-Hexane: EtOAc, 7:3), after completion of the reattithe reaction mixture was diluted with water axttacted
using diethyl ether (30ml). The combined organietawas dried over anhydrous sodium sulphate aaparated
under reduced pressure to afford the corresporlioduct. The residual ionic liquid was dried unstacuum and
reused. The same procedure was repeated for thioreaf aromatic anilines with isatin and acenapluinone
and phenaacyl bromide. All the products obtainetevebaracetrised by IRHNMR, **CNMR and Mass studies.

2.5 Spectral data of [Bmim]CF3SO;ionic liquid

1-Butyl-3-methylimidazolium trifluor omethanesulphonate:

IR (cm): 1175, 1468, 1581, 1630, 2884, 2935, 2970, 33280, 3647 H NMR (CDCl, 300 MHz): 0.803 (t, 3H,
CHs, J = 7.2Hz), 1.15-1.23(m, 2H, GH 1.65-1.75 (m, 2H, C§), 3.80 (s, 3H, Chk), 4.02-4.07 (m, 2H,C}H), 7.32
(dd, 2H, ArH, J=1.2Hz), 8.816 (s, 1H, ArHYC NMR (CDCk,75 MHz): 12.9, 19.0, 31.7, 36.0, 49.5, 114.1, 318.
122.9, 126.0, 136.1.

2.6 Spectral data of representative quinoxalines:

2,3-Diphenylquinoxaline (3a): Mp 123-125 °CH NMR(300 MHz, CDC}) &: 7.32-7.39 (m, 6H, ArH), 7.52-7.54
(m, 4H, ArH), 7.71-8.26 (m, 4H, ArH)}3C NMR (CDC}, 75 MHz)$8: 127.1, 127.5, 128.1, 128.8, 129.4, 138.4,
142.6, 154.4. MS (ESI) m/z: 283.19 [M+H]

9-M ethyl-6H-indolo[2,3-b]quinoxaline, (4c) Mp 295-297 °C*H NMR (DMSO-ds, 300 MHz)3: 1.03 (s, 3H, Ch),
7.40-7.48 (m, 2H, ArH), 7.64-7.80 (m, 2H, ArH), 8:8.08 (m, 2H, ArH), 8.21-8.25 (m, 1H, ArH), 11.24, 1H,
NH). *C NMR (DMSO4s,75 MHz) &: 20.8 110.7 , 116.2, 118.7, 122.8, 124.6, 12628, 7, 128.9, 129.2, 131.3,
137.3, 139.7, 141.8, 146.4. MS (ESI) m/z: 234 [M%H]

9-M ethyl-acenaphtho[1,2-b]quinoxaline (5b) Mp 208-210 °C;*H NMR (CDCk, 300 MHz)3: 2.87 (s, 3H, CH),
7.18-8.37 (m. 9H, ArHJ>C NMR (CDCk,75MHz) 6:17.5, 121.7, 127.4, 128.5, 128.8, 129.2, 129.35,2830.0,
132.1, 132.4, 138.0, 141.3. MS (ESI) m/z: 269.3% .



5-M ethyl-2-p-tolyl-quinoxaline (6g) Mp 109-111 °C*HNMR (CDCl; 300 MHz)&: 2.38 (s, 3H, Ch), 2.81 (s, 3H,
CH,), 7.18-9.25 (m, 8H, ArH)**CNMR (CDCh,75MHz)&: 21.45, 29.71, 127.2, 127.3, 127.5, 129.6, 12E89,2,
130.4,133.7 137.2, 140.5, 141.5, 141.8, 151.2. B)m/z: 235.19 [M+H].

3. RESULTSAND DISCUSSION
3.1 Synthesis and characterization of ionic liquids

In order to exploit the potential of ionic liquidisr the synthesis of quinoxaline derivatives, wstficarried out the
one-pot synthesis of three different ionic liquifisig. 2), [Bmim]BFR, [Bmim]CFRSGO; [Bmim]PR using 1-
methylimidazole and various alkyl halides as ttaetstg materials [30]. FR-IR spectra in the 280M®2m* show
the CH stretching region of the pure ILs. For pure [Bmi@f:SO,, the bands at around 3140-¢rand 3180 cnt
are attributed to theg(C2—H) andv(C4,5-H) of the imidazolium ring respectively, whithe bands in the range of
3000-2800 cnt are originated from the butyl chain attached ® ithidazolium ring. As these ILs ([Bmim]BF
[Bmim]CF5S0;, [Bmim]PFRy) all share the common [BmifhEation where the CHresides structurally, the large
differences in the IR spectra are unusual andguwimg. The'H NMR spectrum, closely resembled to that of
imidazolium ring structure of ILs. For pure [BmingRS0O;, the peak ab 8.81 can be assigned as the C(2)-H
proton The chemical shift of the C(4,5)-H protofisimidazolium ring appears &t7.32. The characteristic signals
with appropriate chemical shift and coupling constéor the twelve protons show the presence of latkain
attached to the imidazolium ring. In these ILs, tingch smaller shifts for C(2,4,5)-H are noticeabtmfirming that
the hydrogen bonding is much weaker. In additiothts, the chemical shifts do not show much diffieebetween
C(2)-H and C(4,5)-H, suggesting a less specificdyeh bonding.
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Fig. 2. Structure of synthesized | onic Liquids
3.2 Optimization of reaction conditions

With the aim of optimizing the reaction conditicth® condensation reaction of 1,2-phenylene diamiigsbenzyl
was employed as a model reaction. In subsequesstigations the model reaction was carried outifferént
solvents and the results have been summarizedhleTalt can be concluded that polar solvents deitter yields
than non-polar solvents. Poor yield was observedsing toluene (non-polar) as a solvent and smaleiase was
observed when chlorinated solvents like DCM and GH&ere used. The small increase in product yield was

observed on using ethyl acetate, ethanol, watermartic acid due to the progressive increase iptharity of the



solvent. The reaction was then carried out usingoua ILs as both catalyst and solvent (Table 1. @ing
[Bmim]BF, as the solvent, moderate amount of product wasimdd. On diverging from [Bmim]RFto
[Bmim]CFsSO; the product yield changed from good to excell@nt.evaluating all these solvents [BmimESE;
came out as the solvent of choice as it affordedptitoduct in excellent yield and no hazardous lmdpcts were

obtained.

Table 1: Effect of solvent on the synthesis of quinoxaline derivatives (3a)®.

O
O O
NH; O Reaction condition N
: + _— =
“

3a

Entry Solvent Time Yield (%)*
1. Toluene 24 h 12
2. DCM 9h 14
3. CHCk 4h 16
4. Ethyl Acetate 25h 22
5. Ethanol 2h 26
6. Water 25h 32
7. Acetic Acid 2h 38
8. [Bmim]BF, 20 min 88
9. [Bmim]PF 15 min 91
10. [BmMim]CRSO; 10 min 96

“All reactions were carried out using benzil (2 mmottho-phenylenediamine (2 mmol) at room tempeeat
* |solated yield.

The above results demonstrate that the activitidbeoILs depend on both their cations and aniort the anion
counterparts of the ILs appear to affect the reactnore significantly. The efficacy of the IL togmnote the
reactions was correlated with the basicity of thm@s. It can be assumed that the nature of trenamould govern
the electrophilicity of the imidazolium cation whidn turn has a bearing on the acidity of the liLsvas observed
that with increasing basicity of the anion theraiprogressive increase in yield which is due tonarease in the
acidity of the IL [31].

In order to prove the catalytic activity of the [Rmim]CF;SO; for this reaction, controlled experiments emplgyin
catalytic amounts of the IL for the reaction weoaducted using THF as the solvent, and the reatdtpresented in

Table 2. No product was formed when the reactios earied out in the absence of the IL, while thaction



occurred as the IL was added into the solvent,thadyield of product increased with the increasemant of the
IL, demonstrating that the IL was an active catafgs the reaction. Therefore, it could be concllidieat the IL
acted as both solvent and catalyst for the reaction

Table 2: Synthesis of quinoxaline derivativesin THF with and without [Bmim]CF3SO3*

Entry [Bmim]CRSO; (mol%) Solvent Yield (%)*
1. 0 THF 0
2. 10 THF 38
3. 50 THF 68

“All reactions were carried out using benzil (2 mmottho-phenylenediamine (2 mmol) in 2ml THF at
room temperature.
* |solated yield.

The general efficiency of this protocol was thamdgd for the synthesis of a variety of quinoxadimad the results
are shown in Table 3. It can be inferred that tb&ction offers a wide substrate scope, a seriasoofiatic diamines
with both electron donating and electron withdrayvgubstituent reacted with benzil under the optdizeaction
conditions. The presence of an electron donatimumrat the phenyl ring of aromatic diamines favdutee
formation of products. In contrast electron withglirsg groups such as chloro and bromo gave slidbter yield.
To further explore the potential of this protocat wivestigated the reaction of 1,2-phenylenediamiik isatin,
acenaphthoquinone and phenacyl bromide. All theti@as proceeded smoothly with high efficiency ahavas
observed that the change in electrophilicity of sistituents on carbonyl compounds did not sigaifily affect
the yield of product. The present method shoul@jygicable to the synthesis of libraries with hijaersity. We
expect this method to find extensive applicatiothia field of combinatorial chemistry, diversityiemted synthesis,
and drug discovery. The structures of the prodwet® established by IRH, *C NMR and Mass studies.
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3a, 15 min., 95% 30, 12 min., 96% 3c, 10 min., 97% 3d, 10 min., 97%
M.P.=123-125 [38] M.P.=118-120 [3A M. P =98-101 M.P.=170-171 [33]

mO or
=
Br N N

3e, 20 min., 920 3f, 18 min., 93%

3g, 22 min., 90%
M.P.=115-117[34] M.P.=118-119 [34} M.P.=186-188 [32}
N
N Ny @ I@ Ny
z Nl Nig N z
N
NN H NN
4a. 10 min.. 95% 4b’10 min.’ 95% 4C, 11 min., 94% 4d, 14 min., 92%
M.P.=294-296[35]" M.P.=247-249 M.P.=295-297[35]" ~ M.p.=>300 [361
Br
N
Ejﬁ¢ Eiﬁg ili;
Z Z~N
N N NT N Br NT N
4e, 10 min., 97% 4f, 10 min., 96% 4g, 10 min., 96%
M.P.=286-289 [37 M.P.=287-289 [37] M.P.=180-182
Oy Oy Qe
L) e L)
5a,15 min., 95% 5b,10 min., 96% 5¢,10 min., 96%
M.P.=240-242 [38] M.P.=208-210 [38] M.P.= >300 [39)
" (O~
~N =
LI CI T2
gt el Ot
5d, 15 min., 93% 5e, 20 min., 91%

M.P.= 224-226 [38] M.P.= 238-240
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6a, 10 min., 96% 6b, 15 min., 95% 6¢, 15 min., 96% 6d, 10 min, 97%
M.P.= 77-79 [40} M.P.= 92-94 [401B M.P.= 98-101 [40] M.P.= 129-131[40J?
Cl r
CrY CLJ Y e
N/ N/ N/ N/
6e, 15 min., 96% 6f, 20 min., 95% 6g, 10 min., 97% 6h, 10 min., 97%
M.P.= 98-101 [4C} M.P.=138-140 [40] M.p.=109-111 M.P.= 79-80 [41}

Br N
AN
|O®
N

6i, 10 min., 97%
M.P.= 133-135 [48

*Reported ref.
Table 3. Diversity of quinoxaline derivatives.

A plausible mechanism for the [Bmim]eFO; catalyzed formation of quinoxaline is proposeddapicted in
Scheme 2 and 3. The Lewis acidic site presentriitiliquid interacts with both the carbonyl oxygesfsl,2-diketo
compounds respectively, as given in Scheme 2, wihicfeases the electrophilic character of carbeaybon. Due
to these interactions, initial addition of orthogplylenes with 1,2-diketo compounds give an amiredigl. The
resultant amino-1,2-diol undergoes dehydrationite guinoxaline3a-g, 4a-g, 5a-e as the end product. Similarly,
Lewis acidic sites of ionic liquid were coordinatiedthe oxygen of carbonyl group of phenacyl bragréehd induce
electrophilic activation of carbonyl carbon, whisanefits the nucleophilic attack of one of the amifrom ortho-
phenylene on active carbonyl group. Subsequertily, rtucleophilic attack of another amine group frortho-
phenylene on carbonyl carbon and followed by watanination and a following oxidation to yield thiesired

product of quinoxaline derivativa-i (Scheme 3).
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Scheme 2. Plausible mechanism for the synthesis fused quinoxaline derivatives.

O = Lewisacid sites of ionic liquid
j- 2H,0
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N H NH -H,0 NH
N ] ® ]\ -2 Ph
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N Ph H

Scheme 3. Plausible mechanism for the synthesis of 2- substituted quinoxaline derivatives.

3.3 Recyclability of ILs

To examine the recyclability of ionic liquids, onrapletion of the reaction the mixture was filtetedseparate the
product. After washing the IL with the appropria@vent (diethyl ether),it was subjected to diatibn at 80°C
under reduced pressure for one hour to removedivers and leaving behind the IL in complete recgvdhe

recovered IL was further used for a series of feaatycles (at least six times) without consideealolss in yield
and purity of the product (Fig. 3).

Yie ks

Rz

Fig. 3. Recyclability of IL for the synthesis of quinoxaline
4. CONCLUSION

In conclusion, a series of efficient and sustaieabhic liquids as green solvents were preparedesnployed for
the synthesis of quinoxaline derivatives via thedmnsation of carbonyl compounds with aromatic diasin
relatively high yields at room temperature. Higklgis, greenness, recyclability of the ionic liquidish no loss in
its activity, operational simplicity and wide sulzde scope are the important features of this nestopol.

Furthermore, the present procedure is readily ablent parallel synthesis and generation of contbinel
substituted quinoxaline libraries.
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1. General

Chemicals and Appar atus:

All the chemicals used were of research grade [ased from Sigma Aldrich and Acros) and used withorher purification. The
melting points of all compounds were determineddroshniwal apparatus in capillary and uncorredfRdspectra were recorded on
a Shimadzu FT IR- 8400S spectrophotométdrand**C NMR spectra were obtained using CP&s solvent on a JEOL JNM LA-
300 spectrometer (300 MHz ff NMR and 75 MHz for*C NMR). The'H NMR data were reported as follows in ppar) from the
internal standard (TMS, 0.0 ppm), chemical shifuliplicity, coupling constant in Hz, integratiorgnd the"*C NMR data in ppmg

) from the internal standard (TMS, 0.0 ppm). Mgsscéra were obtained using Waters XewS @Gistrument.

General procedurefor the preparation of theimidazolium based ionic liquids:

To a stirred solution of 1-methylimidazole (8.9114)0.0 mmol) in acetonitrile (70 mL) was added biypmide ( 110.0 mmol)
dropwise at BC. The reaction mixture was stirred for 24-48 B@C. Removal of the solvent under reduced presstioedefd crude
1-butyl-3- methylimidazolium bromide. Completion @if the reactions was confirmed by and**C NMR. The crude product was

used without further purification for the next stépe anion metathesis.

General procedurefor anion metathess:

To a solution of the crude 1-butyl-3-methylimidamaotbromide, obtained from the above reactions,cet@ne (70 mL) was added
hexafluorophosphoric acid (10.90 g, 100.0 mmol)e Thaction mixture was stirred for 24 h at roomgemature. The resulting
mixture was filtered. Evaporation of the solventdenreduced pressure afforded the correspondingty-B-methylimidazolium
hexafluorophosphate. Same procedure was used ekegptifluoro methane sulphonic acid (15.08 ¢).00mmol) was used instead
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of hexafluorophosphoric acid. The resulting mixtwas filtered. Evaporation of the solvent underumstl pressure afforded the
corresponding imidazolium trifluromethane sulphenkiButyl-3-methylimidazolium tetrafluoroborate wakso prepared using the
same procedure as above except that tetrafluoio bewid (15.08 g, 100.0 mmol) was used in placéefafluorophosphoric acid.

Progress of the reaction was measured by TLC. Gatinplof the reaction was confirmed By NMR.

General procedurefor the synthesis of Quinoxalines:

A mixture of aromatic diamine derivatives (2 mmalf)d a 1,2- dicarbonyl compound (2 mmol) in ionguld (2 mL) was stirred at
room temperature for the appropriate time. The g@eg) of the reaction was monitored by TL&Hexane: EtOAc, 7:3), after
completion of the reaction, the reaction mixturesvaduted with water and extracted using diethyleet(3x10ml). The combined
organic layer was dried over anhydrous sodium séphand evaporated under reduced pressure to @fffercorresponding product.
The residual ionic liquid was dried under vacuurd egused. The same procedure was repeated foedlogan of aromatic anilines
with isatin and acenaphthoquinone and phenaacyhid All the products obtained were characetrlsetR, '"HNMR, **CNMR and
Mass studies.
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An environmentally benign attribute for the expeditious synthesis of quinoxaline
and itsderivatives
Sangeeta Bhargava*, Pooja Soni and Deepti Rathore
*Department of Chemistry, University of Rajasthan, Jaipur, 302004, India.
*E-mail :drsbhargaval @gmail.com.
Resear ch Highlights
» [Bmim]BF,, [Bmim]CF;SOs, [Bmim]PFg are synthesized via simple procedure

» [Bmim]CF3S0O3 isamost effective solvent and catalyst for the synthesis of
quinoxalines

» Reusability of ionic liquid for six times
» No need of an additional catalyst

» Broad substrate applicability



