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1. Introduction 

The tetrahydroquinoline derivatives have attracted 

considerable attention because of their important biological 

activities and occurrence in natural products.
1
 Those containing 

fused cyclopentene ring have been found to exhibit a variety of 

pharmacological activities like agonism at BKCa receptor (1),
2
 

GPR30 estrogen receptor (2)
3,4

  and allosteric modulation at the 

7 nicotinic acetylcholine receptors (nAChRs)
5-7

 as well as anti-

tubercular activity against M. tuberculosis (Figure 1).
8
 One such 

representative tetrahydroquinoline derivative is TQS (3; 4-(1-

naphthyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide), a potent type II positive allosteric modulator 

(PAM) of 7 nAChRs.
7,9,5,10

 Such type II PAMs have been 

preclinically shown to be useful in improving memory, cognition 

and in treating neuropathic pain. Therefore, synthesis of new 

tetrahydroquinolines still holds great interest.
11,1

 A variety of 

synthetic methods have been developed for  

constructing such tetrahydroquinolines and among them the 

three-component Povarov reaction has been most empowering 

and versatile.
12,11,1,13

 This reaction which is also known as aza-

Diels Alder reaction can be carried out in a one-pot fashion using 

an aniline, an aldehyde and an electron-rich dienophile in the 

presence of various Brønsted as well as Lewis acids. 
11,14

  

Although the original Povarov reaction was carried out with 

cyclopentadiene as a dienophile, most of the later optimization 

and scope expansion of this reaction was focused on shelf-stable 

dienophiles such as pyran, furan etc.
14,11

 Synthesis of 

cyclopentene ring-fused tetrahydroquinolines has been relatively 

low yielding
7,6,14,11

 due to thermal instability of cyclopentadiene 

leading to its spontaneous dimerization at room temperature and 

gradual polymerization even at low temperature.
15

 Various 

Brønsted and Lewis acids have been utilized to accelerate and 

improve reaction times, but have led to only limited success.
16-

21,2,22,23
 Microwave-assisted organic synthesis has become an 

important tool in organic synthesis for rate enhancement, 

improving reaction yields, and reducing thermal degradation 

byproducts.
24

 To the best of our knowledge use of microwave 
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Figure 1. Representative biologically-active cyclopentene ring-fused 

tetrahydroquinolines. 

 

Scheme 1. Microwave acclerated synthesis of TQS. 
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acceleration for the Povarov reaction has been limited to 

thermally-stable N-vinylpyrrolidin-2-one
25

, pyran
26

, furan
26

, 2-

methoxyacrylate
27

 and acrylamides
27

 dienophiles.    In view of 

this, we report here a microwave-assisted synthesis of 

cyclopentene ring-fused tetrahydroquinolines using InCl3 as a 

Lewis acid, which provides excellent results in terms of yield, 

reaction time and diasteroselectivity.  

2. Chemistry and Discussion: 

As significant pharmacological work has been done around 

the 7 nAChR allosteric modulator TQS (3), we selected it’s 

synthesis as a model reaction. To date, it has been synthesized in 

a maximum of 22% yield with a reaction time of 24 hrs at room 

temperature and using 20 mol% InCl3 as the catalyst.
6
   

Table 1: Influence of reaction temperature and time 

With an objective of improving this reaction yield and reducing 

reaction time, we carried out optimization under microwave 

irradiation by evaluating four different aspects of this reaction: a. 

reaction temperature; b. reaction time (Table 1); c. catalyst 

loading and d. cyclopentadiene loading (Table 2). We preferred 

InCl3 as a Lewis acid for our optimization because compared to 

the conventional Lewis acids, it has some advantages including 

its compatibility with both organic and aqueous media, 

recyclability, operational simplicity and a strong tolerance to 

oxygen- and nitrogen- containing substrates and functional 

groups.
28,29

 Additionally, it is a preferred catalyst in 

multicomponent reactions providing better regio- and diastero- 

selectivities.
28

 

We began our optimization by executing the TQS synthesis 

(Scheme 1) under microwave irradiation at 100C and utilizing 

20 mol% of InCl3 and 3 equivalents of cyclopentadiene in 

acetonitrile as a solvent. The reaction was complete within 15 

minutes, giving TQS in 60% yield (Table 1). The reaction was 

very clean and no chromatographic purification was required as 

the product was obtained in greater 

Table 2: Effect of catalyst and cyclopentadiene loading 
Entry InCl3 (mol%) Cyclopentadiene (equiv.) Yield (%) 

1 10 3 41 

2 15 3 50 

3 20 3 60 

4 25 3 60 

5 20 1 43 

6 20 2 45 

than 99% purity (by HPLC and 
1
H-NMR). TQS has three chiral 

centers with the cyclopentene and 1- naphthyl rings oriented cis- 

to each other. We observed that these reaction conditions favored 

the formation of the cis-diastereomer. The relative orientation of 

cyclopentene ring and 1-naphthyl ring was cis as determined 

from the coupling constants and NOE measurements (Figure 2).  

In the 
1
H NMR spectra of compound 3, the two doublets at  5.45 

and 4.25 were attributed to protons H-4 and H-9b respectively. 

The coupling constants between protons H-3a and H-4 (J3a,4 = 

3.5Hz) in 
1
H NMR confirmed the cis- relationship of these 

protons. 

 

Entry Temperature (°C) Time (min) Yield (%) 

1 100 15 60 

2 75 15 60 

3 50 15 35 

4 75 5 49 

5 75 10 60 

6 120 5 55 

Compound R1 R2 Microwave Heating Conventional heating 

Time Yield (%) Time Yield (%) 

3
 

 

p-SO2NH2 10 min 60 48 h 22 (ref:7) 

4 

 

p-SO2NH2 15 min 66 24 h 2 (ref:7) 

5 

 

 

p-SO2NH2 15 min 90 24 h 20 (ref:7) 

6 

 

p-SO2NH2 10 min 61 48 h 19 (ref:7) 

7 

 

p-SO2NH2 15 min 67 24 h 30 (ref:6) 

8 

 

p-SO2NH2 15 min 66 12 h 13 (ref:7) 

9 

 

p-SO2NH2 15 min 67 -- -- 

Table 3: Comparison of microwave-assisted synthesis of tetrahydroquinoline under standard reaction conditions. 



  

 3 

 

Although the above experiment gave the desired product in 

good yield, in order to find optimal reaction conditions, we 

executed this reaction under conditions varying in temperature 

and time (Table 1). We got similar yields (i.e. 60%) for a shorter 

period of time (10 min) and at a lower temperature (75 C). 

Temperatures and reaction times higher or lower than this did not 

improve reaction yields. In subsequent experiments, the amounts 

of InCl3 and cyclopentadiene were varied only to confirm that 

any reduction in these quantities led to reduced yields (entries 1, 

2, 5 and 6; Table 2). Also increasing the quantities of InCl3 and 

cyclopentadiene did not improve reaction yields.  Thus, in our 

hands, 3 equivalents of cyclopentadiene with 20 mol% of InCl3 at 

75°C for 10 minutes in a Biotage Microwave Synthesizer was the 

most efficient procedure for the synthesis of TQS.
30

 We then 

extended the scope of this reaction to various substituted 

aldehydes and anilines and compared their yields with those 

reported under standard conditions (Table 3). As seen, 

microwave-assisted reaction conditions provided significantly 

improved reaction yields for almost all analogs synthesized 

compared to those obtained under standard conditions. In all 

cases, except for compound 8, we observed formation of only the  

cis-diastereomer under our reaction conditions. Compound 8 was 

obtained as a 72:28 mixture of cis: trans diastereomers.  

 

 

 

 

In summary, we have developed a microwave-assisted, rapid 

and high yielding one-pot Povarov reaction for the synthesis of 

cyclopentene ring-fused tetrahydroquinoline derivatives. In 

general, the reactions for various substrates were rapid, clean and 

in most cases no chromatographic purification was necessary, 

produced superior yields with high diastereoselectivities and 

could be scaled up to gram quantities.  
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extracted with chloroform (3×20 mL). The combined 

organic layer was washed with brine (15 mL), dried 
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residue was treated with hexane/dichloromethane to 

precipitate out compound 3 as an off white solid (290 mg; 
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Compound 9: 1H NMR (500 MHz, DMSO-d6) 7.34 (d, J 

= 2.0 Hz, 1H), 7.26 (dd, J = 8.5 Hz, 2.0 Hz, 1H), 6.89 (s, 

2H), 6.80 (d, J = 9.0 Hz, 1H), 5.87 – 5.81 (m, 1H), 5.70 – 

5.65 (m, 1H), 5.62 (s, 1H), 3.89 (d, J = 9.0 Hz, 1H), 3.02 

(dd, J = 8.5 Hz, 2.0 Hz, 1H), 2.33 – 2.23 (m, 1H), 2.22 – 

2,14 (m,2H), 1.88 – 1.60 (m, 4H), 1.34 – 1.10 (m , 4H), 

1.16 – 0.88 (m, 2H); m/z = 333.79 [M+H]+.  Compound 

10: 1H NMR (500 MHz, CDCl3)  d J = 8.0 Hz, 1H), 

7.90 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 

7.74 (d, J = 7.5 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.57 – 

7.44 (m, 3H), 7.27 (d, J = 7.5 Hz, 1H), 6.78 (t, J = 7.5 Hz, 

1H), 5.99 (s, 1H), 5.84 – 5.79 (m, 1H), 5.65 – 5.59 (m, 

1H), 5.52 (d, J = 3.0 Hz, 1H), 4.90 (s, 2H), 4.28 (d, J = 9.0 

Hz, 1H), 3.33 (dq, J = 9.0 Hz, 2.0 Hz, 1H), 2.56 (ddd, J = 

14.5 Hz, 9.0 Hz, 2.0 Hz, 1H), 1.66 (ddd, J = 15.5 Hz, 9.0 

Hz, 1.5 Hz, 1H); m/z = 377.84 [M+H]+. Compound 12: 1H 

NMR (500 MHz, DMSO-d6)  7.69 (brs, 1H), 7.66 (dd as 

t, J = 1.5 Hz, 1H), 7.42 (d, J = 1.5 Hz, 1H), 7.32 (dd, J = 

8.5 Hz, 2.0 Hz, 1H), 6.95 (s, 2H), 6.77 (d, J = 8.5 Hz, 1H), 

6.59 (d, J = 1.5 Hz, 1H), 6.20 (s, 1H), 5.88 – 5.82 (m,1H), 

5.67 – 5.63 (m, 1H), 4.51 (d, J = 2.0 Hz, 1H), 4.04 (d, J = 

9.0 Hz, 1H), 2.99 (dq, J = 8.5 Hz, 3.5 Hz, 1H), 2.38 (ddd, J 

= 16.5 Hz, 9.5 Hz, 2.5 Hz, 1H), 1.98 (dd, J = 16 Hz, 9 Hz, 

1H); m/z = 317.64 [M+H]+ . Compound 13: 1H NMR (500 

MHz, CDCl3)  8.12 (d, J = 8.5 Hz, 1H), 7.90 (dd, J = 7.0 

Hz, 2.0 Hz, 1H), 7.82 (d, J = 7.0 Hz, 1H), 7.80 (d, J = 9.0 

Hz, 1H), 7.57 – 7.46 (m, 3H), 6.72 (s, 1H), 6.64 (d, J = 1.5 

Hz, 2H), 5.86 – 5.79 (m, 1H), 5.68 – 5.60 (m, 1H), 5.35 (d, 

J = 3.0 Hz, 1H), 4.25 – 4.18 (m, 1H), 3.78 (s, 3H), 3.54 (s, 

1H), 3.30 (dq, J = 9.0 Hz, 2.5 Hz, 1H), 2.66 (qdd, J = 17.0 

Hz, 9.0 Hz, 2.5 Hz, 1H), 1.64 (tdd, J = 16.5 Hz, 9.0 Hz, 2.0 

Hz, 1H); m/z = 328.36 [M+H]+. Compound 14: 1H NMR 

(500 MHz, CDCl3)  8.10 (d, J = 8.0 Hz, 1H), 7.90 (dd, J = 

8.0 Hz, 2.0 Hz, 1H) 7.81 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 

6.5 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.23 (dd, J = 2.5 Hz, 1.0 

Hz, 1H), 7.10 (dd, J = 8.5 Hz, 2.5 Hz, 1H), 5.82 – 5.79 (m, 

1H), 5.68 – 5.62 (m, 1H), 5.40 (d, J = 3.0 Hz, 1H), 4.20 (d, 

J = 9.0 Hz, 1H), 3.75 (s, 1H), 3.30 (dq, J = 8.5 Hz, 3.0 Hz, 

1H), 2.62 (qdd, J = 17.0 Hz, 9.5 Hz, 2.5 Hz, 1H), 1.64 

(qdd, J = 16.0 Hz, 8.5 Hz, 1.5 Hz, 1H); m/z = 377.16 

[M+H]+. Compound 15: 1H NMR (500 MHz, DMSO-d6) 

7.51 (d, J = 1.5 Hz, 1H), 7.32 (dd, J = 8.5 Hz, 2.0 Hz, 

1H), 6.91 (s, 2H), 6.61 (d, J = 8.5 Hz, 1H), 6.31 (d, J = 1.5 

Hz, 1H), 5.82 - 5.76 (m, 1H), 5.74 - 5.68 (m, 1H), 3.82 (s, 

1H), 3.12 - 3.02 (m, 1H), 2.70 - 2.54 (m, 3H), 2.09 (dd, J = 

9.0 Hz, 2.0 Hz, 1H); m/z = 250.99 [M+H]+. Compound 16: 
1H NMR (500 MHz, DMSO-d6)  12.21 (s, 1H), 7.66 (s, 

1H), 7.65 (d, J = 10.0 Hz, 1H), 7.52 (dt, J = 8.0 Hz, 2.0 

Hz, 2H), 6.75 (d, J = 8.5 Hz, 2.0 Hz, 1H), 6.39 (s, 1H), 

5.98 - 5.90 (m, 1H), 5.64 - 5.56 (m, 1H), 4.89 (d, J = 2.5 

Hz, 1H), 4.08 (d, J = 8.5 Hz, 1H), 3.06 (ddq, J = 8.5 Hz, 

3.5 Hz, 1.5 Hz, 1H), 2.36 (ddd, J = 15.5 Hz, 10.0 Hz, 2.0 

Hz, 1H), 1.61 (dd, J = 15.0 Hz, 9.0 Hz, 1H); m/z = 361.23 

[M+H]+.   

  

  




