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N-{2-(Arylseleno/telluro)ethyl}morpholine (L1/L2) synthesized by reacting PhSe−/ArTe− (generated insitu)
with (2-chloroethyl)morpholine hydrochloride, reacts with RhCl3·3H2O resulting in complexes [RhCl2(L1/
L2)4][ClO4] (1/2). 1H, 13C{1H} and 77Se{1H}/125Te{1H} NMR spectra of L1, L2, 1 and 2 were found
characteristic. The single crystal structure of 2 has been solved. The L2 binds with Rh in 2 as a monodentate
ligand. The geometry around Rh is distorted octahedral. The Rh–Te distances are in the range 2.6509(9)–

2.6688(8) Å
´
. Both the complexes efficiently catalyze transfer hydrogenation reaction of acetophenone (TON/

TOF up to 9.9×104/9.9×103 h−1) and benzophenone (TON up to 9.8×104 and TOF up to 9.8×103 h−1).
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Rhodium(III) complexwith any acyclic seleno- or telluro-ether ligand
characterized structurally by single X-ray diffraction, was not known up
to the end of last century. The [(η5-C5Me5)Rh(Te(CH2CH2CH2TePh)2]
[PF6]2·MeOH was first such complex reported in year 2001 [1]. The
[RhCl2{o-C6H4(CH2SeMe)2}]+, [(η5-C5Me5Rh{MeS(CH2)3Te(CH2)3 SMe}]
[PF6]2, and mer-[RhCl3{Te(CH2SiMe3)2}3] are other such rhodium(III)
complexes with acyclic seleno- and telluro-ether ligands reported during
the last decade [2–4], but none of themhas a hybrid-organoselenium and
tellurium ligand. The structurally characterized rhodium(III) complexes
with cyclotelluroether ligands also, have been reported [5–7]. The
applications in catalytic organic reactions (including transfer hydrogena-
tion reaction of ketones) of any Rh(III)-seleno- and telluro-ether complex
are not in our knowledge. Several Rh(III)/Rh(I) complexes with nitrogen,
phosphorus and oxygen ligands have been reported for such catalytic
reactions [8–25]. It was therefore thought worthwhile to explore the Rh
(III) complexes of N-{2-(arylseleno/telluro)ethyl}morpholine (L1/L2) for
their structural aspects and catalytic transfer hydrogenation reactions of
ketones. The results of these investigations are the subject of present
paper. These are the first examples of Rh(III) complexes in which
potentially hybrid seleno- and telluro-ether ligands are present as well as
of those which have been explored for catalytic transfer hydrogenation.

The ligands L1 and L2 were synthesized by reacting PhSe−/ArTe−

(generated insitu by reaction of NaBH4 with diphenyldiselenide/
diarylditelluride in ethanol) with (2-chloroethyl)morpholine hydro-
chloride (Scheme 1) [26]. The ligand L1 was synthesized for the first
time, whereas the modified work-up procedure (based on CHCl3–H2O
in place of diethyl ether–water) for synthesis of L2 gave better yield
than reported earlier [27,28]. The complexes 1 and 2were synthesized
by the reactions of RhCl3·3H2Owith L1 and L2 respectively, in ethanol
at room temperature (Scheme 1) [29]. Both the ligands were found
soluble in common organic solvents. The complexes also showed good
solubility in common organic solvents except hexane and diethyl
ether in which they were found sparingly soluble. The solutions of
both the complexes in DMSO showed the sign of decomposition after
30–36 h.

1H, 13C{1H} and 77Se{1H}/125Te{1H} NMR [26,29] and IR spectra
(see in online supplementary material) of both the ligands and their
complexes were found characteristic. The molar conductance values
of both the complexes indicate their 1:1 electrolytic nature [29]. The
signal in 77Se{1H} NMR spectrum of L1 (279.5 ppm) shifts to a high
frequency by ∼109 ppm on complex formation. This implies the
coordination of Rh through Se of L1. Similarly the signal in the 125Te
{1H} NMR spectrum of L2 (431.5 ppm) was found to shift to a high
frequency by ∼221 ppm on complex formation, implying the
coordination of Rh through Te of L2 [29]. Small splitting in the signals
in 77Se{1H} and 125Te{1H} NMR spectra on complex formation appears
due to coupling with 103Rh [36,37]. In 1H NMR spectra of 1 and 2
signals of H1 appear shifted to higher frequency by 0.57 and 0.64 ppm
respectively relative to those of free ligands, corroborating with the
coordination of L1/L2 through Se/Te donor sites as inferred from 77Se
{1H} and 125Te{1H} NMR spectral data. The insignificant shift in signals
of morpholine protons on complexation, implies that nitrogen atoms
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Scheme 1. Synthesis of L1/L2 and Rh-complexes.

Fig. 1. ORTEP diagram of [RhCl2(L2)4][ClO4] (2)·C2H5OH·2H2O with 50% probability ellipso

(Å´ ): Rh(1)–Te(1) 2.6509(9), Rh(1)–Te(2) 2.6549(8), Rh(1)–Te(3) 2.6546(9), Rh(1)–Te(4) 2.66
(2) 178.26(7), Cl(1)–Rh(1)–Te(1) 91.27(5), Cl(1)–Rh(1)–Te(2) 86.63(5), Cl(1)–Rh(1)–Te(3) 92
(5), Cl(2)–Rh(1)–Te(3) 88.25(5), Cl(2)–Rh(1)–Te(4) 91.53(5), Te(1)–Rh(1)–Te(2) 92.49(3), Te
(2)–Rh(1)–Te(4) 176.79(3), Te(3)–Rh(1)–Te(4) 89.54(2).
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of L1/L2 do not coordinate with Rh(III). In 13C{1H} NMR spectra of
both 1 and 2 the signals of C1 and ArC-Se/Te appear shifted to higher
frequency (∼2.1/1.5 and 2.4/2.9 ppm respectively) relative to those of
free ligands, corroborating with the 1H NMR spectra [29].

Single crystal structure of complex 2 (Fig. 1) [30] supports the
monodentate behaviour of L1/L2 as indicated by NMR spectral data.
The Rh–Te bond distances (2.6509(9)–2.6688(8) Å

´
) in 2 [31] are not

identical and somewhat longer than those of [(η5-C5Me5)Rh(Te

(CH2CH2CH2TePh)2][PF6]2.MeOH, 2.6015(7)–2.6177(7) Å
´

[1], [(η5-

C5Me5Rh{MeS(CH2)3TeCH2)3SMe}][PF6]2, 2.6106(7) Å
´

[3] and mer-

[RhCl3{Te(CH2SiMe3)2}3] 2.5733(7)–2.6439(7) Å
´
[4]. Such elongation

and non-equivalence of Rh–Te bonds due to steric effects of L1 and L2
have made geometry of rhodium distorted octahedral as indicated by

bond angles [31]. The Rh–Cl bond distances 2.3531(18)–2.3645(17) Å
´

of 2 are consistent with values 2.353(2)–2.362(2) Å
´
reported for trans

Rh–Cl bonds of complex mer-[RhCl3{Te(CH2SiMe3)2}3] [4].
Transfer hydrogenation reactions of ketones (Scheme 2) catalyzed

with 1 and 2 were explored at 80 °C using acetophenone and
benzophenone as substrates and 0.001 mol% of 1/2 [32]. The products
were identified by 1H NMR spectroscopy (in CDCl3) and GC after
ids; hydrogen atoms, C2H5OH, H2O and ClO4 anion are omitted for clarity. Bond length

88(8), Rh(1)–Cl(1) 2.3531(18), Rh(1)–Cl(2) 2.3645(17); bond angle (o): Cl(1)–Rh(1)–Cl
.03(5), Cl(1)–Rh(1)–Te(4) 90.18(5), Cl(2)–Rh(1)–Te(1) 88.53(5), Cl(2)–Rh(1)–Te(2) 91.66
(1)–Rh(1)–Te(3) 175.85(3), Te(1)–Rh(1)–Te(4) 87.94(2), Te(2)–Rh(1)–Te(3) 90.20(2), Te
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Fig. 2. Time profile of catalytic transfer hydrogenation of ketones using 1 and 2 at 80 °C.

Scheme 2. Transfer hydrogenation reaction.
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recovering catalyst and doing requiredwork-up. The final conversions
(reported in Table 1) were arrived by taking average of two runs of
each catalytic reaction. The high efficiency was exhibited in the
reduction of ketones to their corresponding alcohols by 2-propanol,
which is reported to be an efficient hydrogen donor in transfer
hydrogenation reactions [16,17,25] in the presence of KOH which is
also reported to be best inorganic base for such reactions [17].

The rate of catalytic reaction initially was fast up to 6 h and at that
time the % conversion was 90 in case of acetophenone with catalyst 1
and 92 with 2. In case of benzophenone % conversion was 87 with
catalyst 1 and 90 with 2 (Fig. 2 and Table S1 in online supplementary
material). In 10 h the conversion reaches to 98–99% (Table 1) with 2.
In comparison to catalyst 1 containing Se, the performance of 2 is
somewhat better particularly in the case of benzophenone. The
catalytic reactions proceed probably via the hydride complex
intermediate (Noyori's concerted mechanism) [33,34]. The 1 and 2
for hydrogenation reaction of ketones are better in comparison to
those reported earlier [13,15–18,23–25], because they are required in
less quantity and reaction time is relatively short. The cyclic
voltammetric (CV) experiments performed at 298 K in CH3CN
(0.01 M NBu4ClO4 as supporting electrolyte) for 1 and 2 at a scan
rate of 100 mV s−1 (anodic sweep) reveal their reversible oxidation
(Figs. S1 and S2 in online supplementary material). The values of E1/2,
+1.025 and 1.065 V (vs. Ag/AgCl) (see Table S2 in online supple-
mentary material), which are non-extreme indicate that 1 and 2 are
expected to be reasonably efficient catalysts for redox process [35].
The TGA of 2 in N2 atmosphere at heating rate 10 °C min−1 shows
continuous weight loss (fast up to 250 °C followed by slow one up to
700 °C and fast up to 900 °C). The residue has composition Rh2Te5, a
known phase [38,39]. The investigations on the complexes reported
here and related ones are in progress, with an idea to understand their
properties tunable for catalytic transfer hydrogenation of ketones and
also extend their applications further.
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