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Abstract: Cyclohexane analogues of the antifungal icofungipen [(1R,2S)-2-amino-4-methylenecy
clopentanecarboxylic acid] were selectively synthesized from unsaturated bicyclic β-lactams
by transformation of the ring olefinic bond through three different regio- and stereocontrolled
hydroxylation techniques, followed by hydroxy group oxidation and oxo-methylene
interconversion with a phosphorane. Starting from an enantiomerically pure bicyclic β-lactam
obtained by enzymatic resolution of the racemic compound, an enantiodivergent procedure led to
the preparation of both dextro- and levorotatory cyclohexane analogues of icofungipen.
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1. Introduction

As a consequence of their high biological potential, cyclic β-amino acids are of importance
in medicinal chemistry. These compounds are both elements of bioactive products and building
blocks in peptide research. Several small molecular entities, such as the cyclopentane derivative
cispentacin (1) and oxetane derivative oxetin (2), possess strong antifungal and antibacterial
activities [1–13]. An exomethylene function plays an essential role in the structures of some
cyclic β-amino acids. The β-amino acid (1R,2S)-2-amino-4-methylenecyclopentanecarboxylic acid
(icofungipen, PLD-118, 3) and several analogues (4–6) exhibit strong antifungal properties
(Figure 1). The (´)-(1R,2S)-2-Amino-4-methylenecyclopentane carboxylic acid was analyzed by
Bayer. This compound, previously known as BAY 10-8888, was licensed to Glaxo-SmithKline
Research Centre Zagreb Ltd. (formerly PLIVA) and renamed PLD-118; its generic name is
icofungipen. Icofungipen is a cyclic β-amino acid, which differs in chemistry, biology, and mechanism
of action from other antifungal compound classes. Its mechanism of action is based on the inhibition
of isoleucyl-tRNA synthetase, intracellular inhibitory concentrations at the target site being achieved
by active accumulation in susceptible fungi [14–18].

The most efficient multigram-scale asymmetric synthetic route to icofungipen involves the
asymmetric desymmetrization of the meso-anhydride of a cyclopentane exo-methylenedicarboxylic
acid. In the key step, highly enantioselective, quinine-mediated alcoholysis of the meso-anhydride,
followed by Curtius rearrangement and Pd-catalyzed removal of the protecting groups affords
icofungipen (absolute configurations 1R,2S) with ee = 99.5% [14–18].

Molecules 2015, 20, 21094–21102; doi:10.3390/molecules201219749 www.mdpi.com/journal/molecules



Molecules 2015, 20, 21094–21102
Molecules 2015, 20, page–page 

2 

CO2H

NH2

icofungipen (3)

CO2H

NH2

CO2H

NH2
4 5

CO2H

NH2

6

CO2H

NH2

O
CO2H

NH2

oxetin (2)cispentacin (1)

 
Figure 1. Some biologically interesting cyclic β-amino acids. 

2. Results and Discussion 

A convenient and simple novel regio- and stereocontrolled synthetic procedure for the access to 
cyclohexane analogues of icofungipen is described, with an exomethylene group in different positions. 
Cyclohexene β-amino acids were subjected to regio- and stereoselective hydroxylation, oxidation and 
oxo-methylene interconversion as illustrated in the retrosynthetic scheme (Scheme 1). 
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Scheme 1. Retrosynthetic route to exomethylene cyclohexane β-amino esters. 

The first synthetic approach was based on selective hydroxylation via iodolactonization. 
Racemic cyclohexene cis-β-amino acid (±)-7 underwent regio- and stereoselective iodolactonization and 
deiodination by elimination to afford lactone (±)-8. Subsequent lactone opening in (±)-8 with NaOEt 
at 0 °C for 1 h, followed by C-C double bond saturation, yielded 5-hydroxylated β-amino ester (±)-9. 
When the lactone opening with NaOEt was performed at 20 °C for 12 h, isomerization occurred with 
the participation of the active hydrogen at C-1, leading, after C=C reduction, to the thermodynamically 
more stable trans diastereoisomer (±)-10 (Scheme 2) [19]. 

 
Scheme 2. Synthesis of 5-hydroxylated β-amino ester diastereoisomers (±)-9 and (±)-10 [19]. 

By a modification of an earlier-described method, [3] oxidation of (±)-9 and (±)-10 with pyridinium 
chlorochromate (PCC) in CH2Cl2 at 20 °C afforded the corresponding oxo ester stereoisomers  
(±)-11 and (±)-12 [19]. Icofungipen analogues (±)-13 and (±)-14 were next synthesized from (±)-11 and 
(±)-12 via Wittig reactions by oxo-methylene exchange with the phosphorane generated from 
methyltriphenylphosponium bromide/t-BuOK at 0 °C (Scheme 3). 
  

Figure 1. Some biologically interesting cyclic β-amino acids.

2. Results and Discussion

A convenient and simple novel regio- and stereocontrolled synthetic procedure for the access
to cyclohexane analogues of icofungipen is described, with an exomethylene group in different
positions. Cyclohexene β-amino acids were subjected to regio- and stereoselective hydroxylation,
oxidation and oxo-methylene interconversion as illustrated in the retrosynthetic scheme (Scheme 1).
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Scheme 1. Retrosynthetic route to exomethylene cyclohexane β-amino esters.

The first synthetic approach was based on selective hydroxylation via iodolactonization.
Racemic cyclohexene cis-β-amino acid (˘)-7 underwent regio- and stereoselective iodolactonization
and deiodination by elimination to afford lactone (˘)-8. Subsequent lactone opening in (˘)-8 with
NaOEt at 0 ˝C for 1 h, followed by C-C double bond saturation, yielded 5-hydroxylated β-amino
ester (˘)-9. When the lactone opening with NaOEt was performed at 20 ˝C for 12 h, isomerization
occurred with the participation of the active hydrogen at C-1, leading, after C=C reduction, to the
thermodynamically more stable trans diastereoisomer (˘)-10 (Scheme 2) [19].
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Scheme 2. Synthesis of 5-hydroxylated β-amino ester diastereoisomers (˘)-9 and (˘)-10 [19].

By a modification of an earlier-described method, [3] oxidation of (˘)-9 and (˘)-10 with
pyridinium chlorochromate (PCC) in CH2Cl2 at 20 ˝C afforded the corresponding oxo ester
stereoisomers (˘)-11 and (˘)-12 [19]. Icofungipen analogues (˘)-13 and (˘)-14 were next synthesized
from (˘)-11 and (˘)-12 via Wittig reactions by oxo-methylene exchange with the phosphorane
generated from methyltriphenylphosponium bromide/t-BuOK at 0 ˝C (Scheme 3).
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Scheme 3. Synthesis of racemic exomethylene cyclohexane β-amino esters (±)-13 and (±)-14. 

The next synthetic approach to novel cyclohexane icofungipen analogues consisted in 
hydroxylation of the olefinic bond of the cyclohexene cis-β-amino ester (±)-15 via cis-diastereoselective 
epoxidation with MCPBA and regioselective reductive oxirane opening with NaBH4, [20–21] with the 
hydride attack at C-5, resulting in the 4-hydroxylated β-amino ester diastereoisomers (±)-17 and, at 
higher temperature, through isomerization at the active methyne (±)-18 (Scheme 4) [22]. It may be 
noted that (±)-18 was synthesized earlier in an alternative way from (±)-15 [22]. 
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Scheme 4. Synthesis of 4-hydroxylated β-amino ester diastereoisomers (±)-17 and (±)-18 [22]. 

Hydroxylated esters (±)-17 and (±)-18 were readily oxidized with PCC to oxo esters (±)-19 and 
(±)-20 [22]. Compounds (±)-21 and (±)-22, with the methylene function at position 4, isomers of (±)-13 
and (±)-14, were readily prepared from (±)-19 and (±)-20 in Wittig reactions with the phosphorane 
generated in situ from methyltriphenylphosponium bromide/t-BuOK (Scheme 5). 
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Scheme 5. Synthesis of racemic exomethylene cyclohexane β-amino esters (±)-21 and (±)-22. 

Other regio- and stereoisomers were synthesized by regio- and stereoselective iodolactonization 
and deiodination of β-aminocyclohex-3-enecarboxylic acid (±)-23, followed by selective lactone opening 
with NaOEt and hydrogenation of the amino lactone intermediate (±)-24 to furnish analogously to  
(±)-8 (Scheme 2) the 3-hydroxylated β-amino ester stereoisomers (±)-25 and (±)-26 (Scheme 6) [23]. 

Scheme 3. Synthesis of racemic exomethylene cyclohexane β-amino esters (˘)-13 and (˘)-14.

The next synthetic approach to novel cyclohexane icofungipen analogues consisted
in hydroxylation of the olefinic bond of the cyclohexene cis-β-amino ester (˘)-15 via
cis-diastereoselective epoxidation with MCPBA and regioselective reductive oxirane opening with
NaBH4, [20,21] with the hydride attack at C-5, resulting in the 4-hydroxylated β-amino ester
diastereoisomers (˘)-17 and, at higher temperature, through isomerization at the active methyne
(˘)-18 (Scheme 4) [22]. It may be noted that (˘)-18 was synthesized earlier in an alternative way from
(˘)-15 [22].
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Hydroxylated esters (˘)-17 and (˘)-18 were readily oxidized with PCC to oxo esters (˘)-19
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opening with NaOEt and hydrogenation of the amino lactone intermediate (˘)-24 to furnish
analogously to (˘)-8 (Scheme 2) the 3-hydroxylated β-amino ester stereoisomers (˘)-25 and (˘)-26
(Scheme 6) [23].Molecules 2015, 20, page–page 
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The isomerization of cis-(±)-27 at C-2 during the Wittig reaction with methyltriphenylphosponium 
bromide/t-BuOK in THF to give (±)-29 through trans amino ester (±)-28 is depicted in Scheme 8. 
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Scheme 6. Synthesis of 3-hydroxylated β-amino ester stereoisomers (˘)-25 and (˘)-26 [6].

A modification of an earlier-described method [23] was next used: oxidation of hydroxylated
amino esters (˘)-25 and (˘)-26 with PCC in CH2Cl2 at room temperature led to the corresponding
cis and trans keto esters (˘)-27 and (˘)-28 [23]. Although cis-keto aminocarboxylate (˘)-27
afforded the Wittig product on treatment with methyltriphenylphosphonium bromide/t-BuOK
in tetrahydrofurane due to the presence of the active hydrogen isomerization occurred at C-2
under alkaline conditions and gave the thermodynamically more stable (˘)-29 (only the relative
stereochemistry is shown), in which the amino and carboxylate functions are in a trans relationship;
trans amino ester (˘)-28 reacted with the phosphonium salt in the presence of t-BuOK to yield (˘)-29
stereoisomer with the ester and carbamate in the trans arrangement (Scheme 7).
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The above experiments (27Ñ29 and 28Ñ29) with the racemates led us to suppose that both
enantiomers of 29 could be obtained by starting from an enantiomerically pure bicyclic lactam.
For this purpose, therefore, enantiomerically pure β-lactam (+)-30 (ee = 99%) was prepared by
CAL-B-catalyzed ring-opening of racemic lactam (˘)-30 (Scheme 9) [24].Molecules 2015, 20, page–page 
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On treatment with NaOEt at 0 °C, optically pure lactone (−)-24 gave the all-cis 3-hydroxylated  
β-amino ester (−)-34, [23] whereas at room temperature for 14 h isomerization at C-1 led to (−)-35 [23]. 
On catalytic hydrogenation, these compounds afforded hydroxylated cyclohexane β-amino esters  
(+)-25 and (−)-26, [6] respectively, in enantiomerically pure form (Scheme 11) [23]. 
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(ee = 90.6%), while under similar conditions (−)-28 yielded its opposite enantiomer (−)-29 (ee = 86.6%). 
The chiral centers at C-1 or C-2 in (+)-27 may theoretically both be affected (both active hydrogens) 
but this was not observed. Only C-2 underwent isomerization, leading to the thermodynamically 
more stable derivative (+)-29 with the carbamate and ester groups in a trans relative relationship. 
(Scheme 12). 
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On reaction with phosphorane generated in situ from methyltriphenyphosphonium
bromide/t-BuOK, (+)-27 participated in isomerization at C-2 to give the thermodynamically
more stable (+)-29 (ee = 90.6%), while under similar conditions (´)-28 yielded its opposite enantiomer
(´)-29 (ee = 86.6%). The chiral centers at C-1 or C-2 in (+)-27 may theoretically both be affected
(both active hydrogens) but this was not observed. Only C-2 underwent isomerization, leading to
the thermodynamically more stable derivative (+)-29 with the carbamate and ester groups in a trans
relative relationship. (Scheme 12).Molecules 2015, 20, page–page 
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Scheme 12. Synthesis of amino ester enantiomers (+)-29 and (−)-29. 

3. Experimental Section 

3.1. General Procedure for the Methylenation of Oxo Esters 

To a solution of methyltriphenylphosphonium bromide (2 mmol) in THF (15 mL), t-BuOK  
(1 equiv.) was added and the solution was stirred for 15 min at 20 °C. The β-aminooxocarboxylate  
(1 equiv.) was then added and the mixture was further stirred at this temperature. After 6 h, water 
(15 mL) was added, and the mixture was extracted with CH2Cl2 (2 × 15 mL). The organic layer was 
dried (Na2SO4) and concentrated, and the crude product was purified by column chromatography on 
silica gel (n-hexane/EtOAc 9:1). 

Ethyl (1R*,2S*)-2-(tert-butoxycarbonylamino)-5-methylenecyclohexanecarboxylate [(±)-13]. A colorless oil, 
yield: 66%. Rf = 0.65 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.22 (t, 3H, CH3, J = 7.00 Hz), 
1.41 (s, 9H, t-Bu), 1.71–1.80 (m, 1H, CH2), 1.83–1.90 (m, 1H, CH2), 2.09–21 (m, 1H, CH2), 2.23–2.30 (m, 
1H, CH2), 2.32–2.38 (m, 1H, CH2), 2.57–2.63 (m, 1H, CH2), 2.82–2.88 (m, 1H, H-1), 3.96–4.02 (m, 1H, H-2), 
4.07–4.20 (m, 2H, OCH2), 4.63–4.70 (m, 2H, CH2), 5.38 (brs, 1H, N-H). 13C-NMR (DMSO, 100 MHz):  
δ = 14.9, 29.1, 30.1, 32.3, 32.8, 46.8, 47.9, 60.6, 78.6, 109.4, 147.1, 158.0, 173.0. Anal. Calcd for C15H25NO4: 
C 63.58, H 8.89, N 4.94; found: C 63.20, H 8.61, N 4.68. 

Ethyl (1S*,2S*)-2-(tert-butoxycarbonylamino)-5-methylenecyclohexanecarboxylate [(±)-14]. A white solid, 
mp 102–103 °C; yield: 70%. Rf = 0.6 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.21 (t, 3H, 
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(m, 1H, H-2), 4.11–4.20 (m, 2H, OCH2), 4.42 (brs, 1H, N-H), 4.70–4.73 (m, 2H, CH2). 13C-NMR (DMSO, 
100 MHz): δ = 14.9, 29.1, 33.3, 33.6, 36.7, 50.3, 50.9, 60.7, 78.3, 110.2, 146.0, 156.0, 173.7. Anal. Calcd for 
C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.22, H 9.11, N 4.69. 

Ethyl (1R*,2S*)-2-(tert-butoxycarbonylamino)-4-methylenecyclohexanecarboxylate [(±)-21]. A white solid, 
mp 56–58 °C; yield: 63%. Rf = 0.6 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.16 (t, 3H, 
CH3, J = 7.10 Hz), 1.43 (s, 9H, t-Bu), 1.79–1.86 (m, 1H, CH2), 1.88–2.03 (m, 1H, CH2), 2.11–2.19 (m, 1H, 
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(1 equiv.) was added and the solution was stirred for 15 min at 20 ˝C. The β-aminooxocarboxylate
(1 equiv.) was then added and the mixture was further stirred at this temperature. After 6 h, water
(15 mL) was added, and the mixture was extracted with CH2Cl2 (2 ˆ 15 mL). The organic layer was
dried (Na2SO4) and concentrated, and the crude product was purified by column chromatography
on silica gel (n-hexane/EtOAc 9:1).

Ethyl (1R*,2S*)-2-(tert-butoxycarbonylamino)-5-methylenecyclohexanecarboxylate [(˘)-13]. A colorless oil,
yield: 66%. Rf = 0.65 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.22 (t, 3H, CH3,
J = 7.00 Hz), 1.41 (s, 9H, t-Bu), 1.71–1.80 (m, 1H, CH2), 1.83–1.90 (m, 1H, CH2), 2.09–21 (m, 1H,
CH2), 2.23–2.30 (m, 1H, CH2), 2.32–2.38 (m, 1H, CH2), 2.57–2.63 (m, 1H, CH2), 2.82–2.88 (m, 1H,
H-1), 3.96–4.02 (m, 1H, H-2), 4.07–4.20 (m, 2H, OCH2), 4.63–4.70 (m, 2H, CH2), 5.38 (brs, 1H, N-H).
13C-NMR (DMSO, 100 MHz): δ = 14.9, 29.1, 30.1, 32.3, 32.8, 46.8, 47.9, 60.6, 78.6, 109.4, 147.1, 158.0,
173.0. Anal. Calcd for C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.20, H 8.61, N 4.68.

Ethyl (1S*,2S*)-2-(tert-butoxycarbonylamino)-5-methylenecyclohexanecarboxylate [(˘)-14]. A white solid,
mp 102–103 ˝C; yield: 70%. Rf = 0.6 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.21
(t, 3H, CH3, J = 7.00 Hz), 1.41 (s, 9H, t-Bu), 2.06–2.19 (m, 1H, CH2), 2.24–2.43 (m, 5H, CH2, H-1),
3.79–3.86 (m, 1H, H-2), 4.11–4.20 (m, 2H, OCH2), 4.42 (brs, 1H, N-H), 4.70–4.73 (m, 2H, CH2).
13C-NMR (DMSO, 100 MHz): δ = 14.9, 29.1, 33.3, 33.6, 36.7, 50.3, 50.9, 60.7, 78.3, 110.2, 146.0, 156.0,
173.7. Anal. Calcd for C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.22, H 9.11, N 4.69.

Ethyl (1R*,2S*)-2-(tert-butoxycarbonylamino)-4-methylenecyclohexanecarboxylate [(˘)-21]. A white solid,
mp 56–58 ˝C; yield: 63%. Rf = 0.6 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.16 (t, 3H,
CH3, J = 7.10 Hz), 1.43 (s, 9H, t-Bu), 1.79–1.86 (m, 1H, CH2), 1.88–2.03 (m, 1H, CH2), 2.11–2.19 (m, 1H,
CH2), 1.23–1.33 (m, 1H, CH2), 2.38–2.45 (m, 2H, CH2), 2.77–2.82 (m, 1H, H-1), 4.09–4.23 (m, 3H,
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OCH2, H-2), 4.78–4.80 (m, 1H, =CH), 4. 83–4.86 (m, 1H, =CH), 5.06 (brs, 1H, N-H). 13C-NMR (CDCl3,
100 MHz): δ = 14.6, 26.4, 28.8, 32.5, 39.8, 45.4, 49.7, 60.9, 79.6, 111.4, 144.5, 155.4, 173.7. Anal. Calcd for
C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.23, H 8.60, N 4.68.

Ethyl (1S*,2S*)-2-(tert-butoxycarbonylamino)-4-methylenecyclohexanecarboxylate [(˘)-22]. A white solid,
mp 99–101 ˝C; yield: 66%. Rf = 0.55 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.21
(t, 3H, CH3, J = 7.10 Hz), 1.41 (s, 9H, t-Bu), 1.78–1.88 (m, 1H, CH2), 1.89–1.98 (m, 1H, CH2), 2.00–2.10
(m, 2H, CH2), 2.29–2.38 (m, 1H, CH2), 2.56–2.61 (m, 1H, CH2), 2.62–2.69 (m, 1H, H-1), 3.83–3.96
(m, 1H, H-2), 4.17–4.24 (m, 2H, OCH2), 4.60 (brs, 1H, N-H), 5.79–5.82 (m, 2H, =CH), 13C-NMR
(DMSO, 100 MHz): δ = 14.6, 27.8, 28.8, 32.8, 40.5, 48.2, 61.0, 78.0, 110.9, 144.9, 152.0, 173.8. Anal. Calcd
for C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.78, H 8.66, N 5.23.

Ethyl (1S*,2R*)-2-(tert-butoxycarbonylamino)-3-methylenecyclohexanecarboxylate [(˘)-29]. A white solid,
mp 75–77 ˝C; yield: 63%. Rf = 0.65 (n-hexane/EtOAc 4:1); 1H-NMR (CDCl3, 400 MHz): δ = 1.22
(t, 3H, CH3, J = 7.10 Hz), 1.22–1.30 (m, 1H, CH2) 1.40 (s, 9H, t-Bu), 1.75–1.84 (m, 2H, CH2), 1.95–2.02
(m, 1H, CH2), 2.07–2.19 (m, 1H, CH2), 2.21–2.28 (m, 1H, CH2), 2.39–2.43 (m, 1H, H-1), 4.11–4.20
(m, 2H, OCH2), 4.24–4.35 (m, 1H, H-2), 4.39 (brs, 1H, N-H), 4.79–4.83 (m, 2H, CH2). 13C-NMR (DMSO,
100 MHz): δ = 14.9, 26.6, 29.1, 29.7, 34.8, 50.7, 55.0, 60.6, 78.3, 107.7, 147.9, 155.7, 173.9. Anal. Calcd for
C15H25NO4: C 63.58, H 8.89, N 4.94; found: C 63.80, H 8.60, N 5.22.

3.2. Characterization of the Enantiomerically Pure Substances

The ee values for (+)-27 and (´)-28 were determined on a HPLC (ChiralPak IA, Chiral
Technologies Europe, Illkirch-Graffenstaden, France) 5 µ column (0.4 cm ˆ 1 cm): for (+)-27 (ee 99%),
mobile phase: n-hexane/2-propanol (80/20); flow rate 0.5 mL/min; detection at 205 nm; retention
time (min): 11.14 (for antipode: 10.68); for (´)-28 (ee 99%), mobile phase: n-hexane/2-propanol
(70/30); flow rate 0.5 mL/min; detection at 205 nm; retention time (min): 11.8 (for antipode: 25.1).

The ee values for (´)-29 and (+)-29 were determined on a HPLC (ChiralPak IA) 5 µ column
(0.4 cm ˆ 1 cm), for (´)-29 (ee 90%): mobile phase: n-hexane/2-propanol (70/30); flow rate
0.5 mL/min; detection at 205 nm; retention time (min): 9.25; for (+)-29 (ee 86%): mobile phase:
n-hexane/2-propanol (70/30); flow rate 0.5 mL/min; detection at 205 nm; retention time (min): 10.36.

All 1H-NMR spectra recorded for the enantiomeric substances were the same as for the
corresponding racemic counterparts.

(1S,2R)-2-Aminocyclohex-3-enecarboxylic acid hydrochloride [(´)-32] [20,21]. A white solid;
mp 203–206 ˝C; yield: 76%. rαs25

D = ´89.5 (c 0.335, EtOH).

(1S,2R)-2-(tert-Butoxycarbonyl)cyclohex-3-enecarboxylic acid [(´)-23]. A white solid; mp 115–118 ˝C;
yield: 88%. rαs25

D = ´26.6 (c 0.315, EtOH), (for the opposite enantiomer see reference [23]).

tert-Butyl (1S,4S,5S,8S)-4-iodo-7-oxo-6-oxabicyclo[3.2.1]octan-8-ylcarbamate [(´)-33]. A white solid;
mp 50–53 ˝C; yield: 74%. rαs25

D = ´54.4 (c 1.9, EtOH) (for the opposite enantiomer, see reference [23]).

tert-Butyl (1S,5R,8S)-7-oxo-6-oxabicyclo[3.2.1]oct-3-en-8-ylcarbamate [(´)-24]. A white solid;
mp 157–159 ˝C; yield: 69%. rαs25

D = ´107.6 (c 0.35, EtOH) (for the opposite enantiomer, see
reference [23]).

Ethyl (1S,5R,6S)-6-(tert-butoxycarbonyl)-5-hydroxycyclohex-3-enecarboxylate [(´)-34]. A colorless oil;
yield: 92%. rαs25

D = ´21.6 (c 0.375, EtOH) (for the opposite enantiomer, see reference [23]).

Ethyl (1R,5R,6S)-6-(tert-butoxycarbonyl)-5-hydroxycyclohex-3-enecarboxylate [(´)-35]. A colorless oil;
yield: 56%. rαs25

D = ´79.6 (c 0.48, EtOH) (for the opposite enantiomer, see reference [23]).
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Ethyl (1S,2S,3R)-2-(tert-butoxycarbonyl)-3-hydroxycyclohexanecarboxylate [(+)-25]. A white solid;
mp 76–79 ˝C; yield: 87%. rαs25

D = +24.6 (c 0.62, EtOH).

Ethyl (1R,2S,3R)-2-(tert-butoxycarbonyl)-3-hydroxycyclohexanecarboxylate [(´)-26]. A white solid;
mp 92–94 ˝C; Yield: 47%. rαs25

D =´38.4 (c 0.61, EtOH), (for the opposite enantiomer see reference [23]).

Ethyl (1S,2S)-2-(tert-butoxycarbonyl)-3-oxocyclohexanecarboxylate [(+)-27]. A colorless oil; yield: 70%.
rαs25

D = +54.3 (c 0.415, EtOH), (for the racemic compound, see reference [23]).

Ethyl (1R,2S)-2-(tert-butoxycarbonyl)-3-oxocyclohexanecarboxylate [(´)-28]. A white solid; mp 85–88 ˝C;
yield: 76%. rαs25

D = ´12.7 (c 0.53, EtOH) (for the racemic compound see reference [23]).

Ethyl (1S,2R)-2-(tert-butoxycarbonyl)-3-methylenecyclohexanecarboxylate [(+)-29]. A colorless oil; yield:
39%. rαs25

D = +25.8 (c 0.38, EtOH); ee = 90.6%.

Ethyl (1R,2S)-2-(tert-butoxycarbonyl)-3-methylenecyclohexanecarboxylate [(´)-29]. A colorless oil; yield:
42%. rαs25

D = ´14.1 (c 0.33, EtOH); ee = 86.7%.

4. Conclusions

Cyclohexane β-amino esters with an extracyclic methylene at position 3, 4 or 5 have been
regio- and stereoselectively synthetized from 2-aminocyclohexenecarboxylic acid regioisomers by
transformation of the ring olefinic bond via three different regio- and stereocontrolled hydroxylation
procedures, followed by deoxygenation through oxo-methylene interconversion via Wittig reactions.
An enantiodivergent route starting from a bicyclic β-lactam enantiomer permitted the synthesis of
both enantiomers of a cyclohexane icofungipen analogue.
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