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Cancer is the second leading cause of death. In 2015, it was 

responsible for 8.8 million deaths worldwide. Generally, about 1 

in 6 deaths is due to cancer. Hepatocellular carcinoma (HCC, 

liver cancer) is the most common type of primary liver cancer 

and accounts for 90% of all liver cancers (~788,000 deaths are 

associated with HCC
1
). Many therapeutic options including 

small-molecule drugs are available to date. However, they have a 

number of disadvantages such as low selectivity and high toxicity 

rate with a wide range of adverse side effects. Targeted drug 

delivery (TDD) can be reasonably regarded as a promising route 

for the modification of medicinal agents, which allows scientists 

to improve the pharmacological profile of anticancer drugs, 
especially highly cytotoxic molecules. Using this approach, 

therapeutics can be selectively localized (or targeted) in the 

desired tissue, organ or cell, to improve their therapeutic index 

and efficiency by increasing its active concentration and reducing 

the total amount within the organism
2
. 

Asialglycoprotein receptor (ASGP-R, C-type lectin family) is 

one of the most attractive targets for the TDD of medications in 

liver cells
3
. This is due to several key reasons: 1) an outstanding 

receptor selectivity toward galactose derivatives, 2) elevated 
expression level in hepatocytes and predominant localization on 

the surface, 3) a relatively high exposition (over 500K receptors 

per hepatocyte), and 4) receptor internalization into the cells via 

clathrin-mediated endocytosis (turnover approx. 15-20 min with 

or without ligands)
4,5

. Several comprehensive reviews describing 

the architecture and functions of ASGP-R as well as ligand 
properties and selectivity have recently been described3,6–9. The 

receptor recognizes hydroxyl groups in 3
rd

 and 4
th
 positions of 

galactose. The outer part of the receptor consists of three 

subunits: 2×H1 (46 kDa) and H2 (50 kDa), each of them is able 
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Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into 

hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of

ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular 

carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic 

approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-

aminogalactopyranose and anticancer drug – paclitaxel (PTX). Several molecules have 

demonstrated high affinity towards ASGP-R and good stability under physiological conditions, 

significant in vitro anticancer activity comparable to PTX, as well as good internalization via

ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be 

regarded as a promising therapeutic option against HCC. 

2017 Elsevier Ltd. All rights reserved.
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Fig. 1. GalNAc core-heads used in this study. 

to selectively bind galactose. The core structure of the subunits 

includes a 40-amino-acid N-terminal cytoplasmic domain, a ∼20-
amino-acid single-pass transmembrane domain, an ∼80-amino-

acid extracellular stalk region, and an ∼140-amino-acid 

functional calcium-dependent carbohydrate recognition domain 

(CRD, C-type Ca
2+

-dependent superfamily) anchored via 

intervening neck region. The monosaccharide ligands, e.g. D-

mannose, D-glucose, D-galactose and their derivatives, interact 
with CRDs by direct calcium coordination. The trimeric 

ensemble of the ASGP-R extracellular subunits is the most 

abundant configuration observed among mammalian species and 

demonstrates the highest binding affinity to endogenous ligand - 

asialoorosomucoid (ASOR), whereas single CRD exhibits low 

binding affinity. Therefore, it is not surprising that in contrast to 
monovalent ligands, bivalent and especially trivalent analogues 

show dramatically enhanced binding potency toward ASGP-R
10

. 

However, several bivalent ligands with a comparatively high 

target affinity have been reported as well
11–14

. The variation in the 

number and structure of the galactose fragments may increase the 

binding affinity and in vitro activity, which has been the subject 
of many studies. However, in accordance with the results by 

Prakash et al.,
15

 the number of galactose moieties did not have a 

significant effect on activity in vivo. 

There are many examples of ASGP-R-targeted conjugates 

(including functionalized nanoparticles) equipped by siRNA or 

different small-molecule drugs targeted against several liver-
related disorders

16
. For example, PK2 by Pfizer was evaluated in 

Phase 1/2 clinical trial in patients with primary or metastatic liver 

cancer
17

. Doxorubicin (Dox) was attached via a lysosomally 

degradable tetrapeptide sequence to N-(2-

hydroxypropyl)methacrylamide copolymers bearing the GalNAc 

core-head. As a result, it was clearly demonstrated that the liver-
specific Dox delivery was effective, and a dose schedule was 

recommended for Phase 2 studies with subjects suffering from 

primary hepatocellular tumors. However, no additional 

information has been published for this trial. Alnylam 

Pharmaceuticals is the leading company within the title field
18

. 

Several clinical trials have been proceeded, for instance against 
TTR-related amyloidosis

19–24
, haemophilia A/B

25,26
, 

hypercholesterolemia
27

,
 
HBV

28
,
 
primary hyperoxaluria type I

29
, 

etc. Recently, the company has initiated Phase 2 clinical trial 

(ORION
30

) and Phase 1 study
27

 with Inclisiran (ALN-PCSSC) 

against elevated low density lipoprotein cholesterol (LDL-C) and 

subjects diagnosed with atherosclerotic cardiovascular disease 
(ASCVD) or ASCVD-risk equivalents (e.g., diabetes and familial 

hypercholesterolemia). ALN-GO1 has been entered in Phase 1/2 

clinical investigation in healthy adult subjects and patients with 

primary hyperoxaluria Type 1 (PH1)
29

. Amgen has developed 

AMG-529, an ASGP-R antagonist, which is currently ongoing 

Phase I clinical evaluation for the treatment of cardiovascular 
diseases

31
. However, there are no ASGP-R-targeted drug 

conjugates in clinics containing Dox or PTX attached to the 

GalNAc warhead through a simple linker. This is the first report 

describing a direct conjugation of PTX with the ASGP-R-specific 

ligand via a relatively short and spacer of an appropriate length. 

The [3+2] azide-alkyne cycloaddition is a convenient and 
simple method for laboratory synthesis which does not affect 

other functional groups of reactants. In addition, the resulting 

triazole cycle can serve as a bioisosteric replacement for peptide 

bond. Therefore, we introduced azido group in the galactose 

moiety and alkyne fragment in PTX for their subsequent 

conjugation. This arrangement was based on the fact that 
galactose fragment linked via position 4 by triazole fragment has 

lower affinity as compared with position 1
32

. 

As a promising galactose moiety, we have selected ligand 3 

(Fig. 1), previously described by Mamidyala
32

, Sanhueza
33

 and 
co-authors, that has demonstrated high binding affinity towards 

the receptor. In addition, warheads 1 and 2 were proposed as 

alternative cores in order to assess the effect of allyl group and 

attachment point on binding. 

Initially, the selected core-heads have been synthesized by 

analogy to the approaches described previously34–36. Thus, 

GalNAc building block 1, containing the azide attachment point 

at C1 position, was prepared in full accordance with the synthetic 
route published by Salunke and co-workers

34
, while sugars 2 and 

3 were synthesized following a slightly modified procedure 
(Scheme 1). 

  
Scheme 1. Synthesis of building blocks 2 and 3. (i) Ac2O/Py, rt, 2h; (ii) 

TMSOTf/DCE, 50°C, 12h; (iii) TMSOTf, AlOH (4.5 eq.)/DCE, rt, 48h; (iv) 

1M MeONa/MeOH, rt, 3h; (v) TsCl/Py, 0°C, 1h, then stirring at rt, 12h; (vi) 

NaN3/DMF, 50°C, 6h; (vii) 2-azidoethanol, TMSOTf/DCE, rt, 48h; (viii) 1M 

MeONa/MeOH, rt, 3h. 

 

Thus, the initial cyclic D-galactosamine 4 was treated with 

Ac2O in pyridine to furnish fully acetylated derivative 5 in good 

yield (89%). The obtained intermediate was then readily 
converted into the oxazoline derivative 6 upon the treatment with 

TMSOTf at 50°C (yield 92%). The subsequent ring opening in 

the presence of allyl alcohol or 2-azidoethanol proceeded 

smoothly and yielded compound 7 or 10, respectively. Alkaline 

alkoholysis of the synthesized intermediates using MeONa 

provided O-deacetylated compound 2 equipped by the extended 
azide attachment point at position C1 or intermediate 8. The latter 

was then easily converted into compound 9 upon the treatment 

with TsCl in Py (yield 63%). The desired product 3, containing 

the attachment point at position C6, was obtained from 

compound 9 through the reaction with NaN3 in DMF. 

PTX can be modified at positions C2’, C7 and C1. The 
functionalization of C1-OH reduces the activity, but not 

significantly, while the modification of C7-OH does not 

influence the binding potency. The introduction of substituents at 

position C2’-OH, e.g. fluorine or alkyl, is unfavorable, while 

esterification results in loss of microtubule disassembly activity 

in vitro, but not cytotoxicity
37

. It has been reported that PTX 
esters are instable under the conditions of cellular endocytosis 

and susceptible to esterase-mediated hydrolysis
38

. Acylation of 

C2’-OH proceeds readily and rapidly as compared to acylation of 

C7-OH and especially C1-OH. 



  

The general synthetic approach to the desired TDD system is 

depicted in Scheme 2. PTX was modified at the most convenient 
C2’ and C7 diversity points. It should be noted that in PTX 

structure the most reactive hydroxyl group is attached to C2’ 

atom, while –OH moiety at position С7 is much less pliable. This 

allowed us to carry out the selective modification of С2’-OH 

group keeping position C7 unsubstituted or obtain C2’, C7-

disubstituted analogues. We have synthesized six novel 
conjugates of the molecule with selective ASGP-R ligands 

described above. Thus, the initial acylation of PTX was 

performed with 5-hexynoic acid in CH2Cl2 in the presence of 

EDC and DMAP following the procedure described by 

Pilkington-Miksa and colleague
39

. As a result, monovalent (C2’ 

modification) and bivalent (C2’ and C7 attachment) precursors 
11 and 12 were obtained in good yields. Monovalent building 

block was isolated using 1 eq. of the acid, while bivalent 

analogue was synthesized in the presence of 2-fold excess (2 eq.) 

of the reactant. Purification was performed using a routine 

column chromatography in СH2Cl2:MeOH (40:1). 

During the next step, intermediates 1-3 were introduced into 

the click reaction ([3+2]-azide-alkyne cycloaddition) with 

building block 11 or 12 using CuI and Et3N (0.2 and 0.4 eq., 
respectively). The desired novel conjugates 13a-c and 14a-c were 

obtained in moderate to good yields without any complications. 

The final products were then purified using reversed-phase 

HPLC (H2O/MeCN). The structures of the synthesized 

compounds are in excellent agreement with the obtained 
1
H 

NMR and HRMS spectra (see SI). Thus, one (for monovalent 

conjugates) or two (for bivalent ligands) characteristic singlet (or 
sometimes overlapped with other signals) proton at C5 atom of 

1,4-substituted 1,2,3-triazole ring is seen in 
1
H NMR spectra at 

~7.88 ppm. 

As briefly described above, trivalent ligands possess the 

highest binding affinity for ASGP-R vs. mono- and, in general, 

bivalent analogues. To perform a comparative biological 
evaluation, we have synthesized a conjugate of PTX and 

triantennary GalNAc vector. For this purpose we equipped the 

GalNAc cluster designed by Prakash and colleagues
15

 with azido 

group following the synthetic protocol depicted in Scheme 3. 

We have prepared the desired ligand using two basic units: the 

GalNAc moiety 16 and the tris-tricarboxylic acid 17. The first 
was obtained by glycosylation of benzyl (6-

hydroxyhexyl)carbamate with oxazoline 6
15

 and subsequent 

removal of the protecting group. The second was prepared 

according with the protocol described previously
2
. The activation 

of carboxylic function of the initial compound 17 was carried out 

by pentafluorophenyl trifluoroacetate (Pfp-TFA). Compound 18 
was obtained with good yield and high purity. The activated ester 

18 (1 eq.) was treated with amine 16 (3.5 eq.) in DMF in the 

presence of HOBT and DIPEA as a base. The product was 

isolated with 54% yield and was subsequently subjected to 

alkaline alcoholysis with MeONa/MeOH to furnish the 

deacetylated product 20 (94%). The conversion was complete 
and quantitative. As a result, we have obtained the ASGP-R 

ligand containing azido group, which can be used for further 

derivatization with small-molecule drug compounds or molecular 

diagnostic tools. The final product 21 was synthesized using Cu-

catalyzed [3+2] azide-alkyne cycloaddition of intermediate 11 

with azide 20 under the standard conditions (sodium ascorbate, 
CuSO4, DMF/H2O). Conjugate 21 was isolated with good yield 

(66%) using HPLC (H2O:MeCN) and fully characterized 

(Scheme 4). 

At the final stage, we examined the cytotoxicity of the 

resulting conjugates using the culture of human HCC cells 

HepG2. It is well documented that, after the isolation of 
hepatocytes from liver, the amount of ASGP-R on surface 

decreases
40

. Accordingly, we have selected a stable, proliferating 

HepG2 cell line containing 76K receptors per cell
41

. The HepG2 

cell line has been considered as an appropriate system to evaluate 

efficiency of TDD drug conjugates with selective ASGP-R-

targeted ligands
42

. To assess the cytotoxic effect of the 

synthesized conjugates, a standard MTS test was performed. The 

obtained results are summarized in Table 1. Cytotoxicity of the 

unmodified PTX against HepG2 cells was reported by Luo and 

 

Scheme 2. Synthesis of monovalent (13a-c) and bivalent (14a-c) ASGP-

R-targeted conjugates bearing PTX 

 

Scheme 3. Synthesis of GalNAc “trident” containing azide attachment 

point 

 

Scheme 4. Synthesis of trivalent drug conjugate 21 



  

co-authors
43

 and addressed in the current work for a comparative 

assessment. 

Table 1. Cytotoxicity of the obtained conjugates and PTX 

against HepG2 cells 

Compound CC50 (µµµµmol) Compound CC50 (µµµµmol) 

13a 0.092±0.016 14c na
*
 

13b 0.82±0.27 21 0.11±0.12 

13c 3.25±0.10 PTX 0.12±0.01 

14a 22.9±0.1 PTX
43

 0.21±0.03 

14b na
*
   

na – CC50 > 50 µmol (CC50 – cellular cytotoxicity) 

The obtained conjugates were relatively stable under pH=5.0 
and 7.4. HPLC-MS analysis did not reveal hydrolysis even after 

24h (8 time points). The compounds were tested for binding to 

ASGP-R using surface plasmon resonance (SPR), with results 

reported as dissociation constants (Kd). The synthesized 

compounds showed high affinity towards the receptor (Kd for the 

conjugates are close to 10
-9

 while for the unmodified GalNAc 
Kd~10

-3
). The main results for all the compounds evaluated 

and detailed experimental protocol are presented in SI. 

Nuclear and cytoskeletal morphology was analyzed by 

immuno-fluorescence microscopy (see SI). The untreated cells 

showed typical nuclear and cytoskeleton structures, with 

formation of the normal mitotic spindles. Microtubules organized 
as diffuse in cytoplasm (Fig. 2). After the model cells were 

treated with PTX, characteristic morphology changes were 

observed: mitoses with more than two poles; many abnormal 

nuclei (micronuclei or multinuclear), altered microtubule 

structure (thicker and denser microtubule bundles) (Fig. 3). The 

similar cellular morphological changes were observed upon the 
treatment using PTX-contained conjugates. Since esterification at 

position C2’ resulted in loss of microtubule disassembly activity 

in vitro, we tentatively speculate that the conjugates release PTX 

presumably via esterase-mediated hydrolysis
37

. 

 
Fig. 2. The untreated HepG2 cells were fixed, permeabilized, and 

immunostained with antibody against α-tubulin (Green). Nuclei 

were stained with DAPI (in red). 

The active site of the CRD was firstly mutated from a Man-

binding protein (MBP) to that of ASGP-R
44

. The mutated protein 

termed QPDWG was subsequently modified to another variant – 
QPDWGH – with higher binding affinity towards GalNAc 

compared to Gal. Thus, the crystal structure of QPDWGH 

complexed with GalNAc [PDB: 1BCH45] has been considered as 

an appropriate computational model to predict the binding to 

ASGP-R. The first crystal structure of the H1 subunit was 

determined by Meier et al.
46

. Key supramolecular interactions in 

QPDWGH crystal are described in 
47

,
48

 and in SI. 

 
Fig. 3. Morphological changes observed in HepG2 cells treated 

with the selected conjugates and PTX. Cells were fixed, 
permeabilized, and immunostained with antibody against α-

tubulin (green); nuclei were stained with DAPI (red). 

 

Recently, two novel X-Ray crystallographic structures of N-

[(1S,2R,3R,4R,5S)-2,3-dihydroxy-1-(hydroxymethyl)-6,8-

dioxabicyclo[3.2.1]octan-4-yl]acetamide (I) and α-lactose in 

complex with ASGP-R have been published32. We used this 

crystallographic data to construct our 3D computational model of 

the ASGP-R binding site. The model was developed and 

internally validated in ICM-Pro Software v.3.8-5 (MolSoft
49

). 

Then, three structures II-IV (Fig. 5) containing triazole fragment 

were docked into the site to assess their binding affinity. As a 

result, relatively good scorings were calculated for all the 
structures docked. Structures II and III were predicted with a 

similar binding affinity, in contrast to structure IV. Docking 

details is presented in SI. 

AcHN

OH OH

OH

O

O

H I  
Fig. 4. 3D in silico model of the ASGP-R Gal binding site (PDB: 

5JQ1). 
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III (orange)

IV (grey)  
Fig. 5. The most similar to the template molecule I (yellow) 
binding modes predicted for structures II-IV (superposition is 

shown). The corresponding energetic score values (Kcal/mol) are: 

-30, -32, and -26 for structures II-IV, respectively. 

 



  

It is not surprising that chemotherapy with anticancer drugs, 

e.g. PTX, Dox or Cisplatin, is accompanied with a relatively low 
specificity, non-selective biodistribution and a plethora of severe 

side-effects that significantly restrict the applicability of these 

drugs. One of the most promising ways to improve the efficiency 

and safety of HCC chemotherapy is the TDD of drug molecules 

selectively into hepatocytes through the ASGP-R-mediated 

endocytosis. Thus, GalNAc-containing carriers of different types 
and architectures have achieved notable successes in recent years, 

especially in development of drug-ligand conjugates, ligand-

anchored nanocarriers, and nucleic acid therapeutics (gene 

delivery systems). Moreover, ASGP-R-mediated targeting is 

currently used for diagnostics. This includes imaging with 

positron emission tomography & magnetic resonance imaging, 
intracellular uptake by nuclear and magnetic resonance imaging, 

identification of circulating tumor cells in HCC patients, etc. It 

can also be used for assessing disorders in pre-operative
50–52

 and 

post-operative liver functions
53,54

. Based on the data on the 

activity of ASGP-R ligands in vivo
16

, we suggest more simple 

and convenient route to bivalent conjugates in order to avoid 
laborious synthetic pathways to trivalent ligands. We have 

synthesized a small series of conjugates containing PTX as an 

anticancer drug and mono- (13a-c), bi- (14a-c) and trivalent (20) 

GalNAc-equipped ASGP-R ligands using click reaction. As 

mentioned above, according to the available data
37

, the most 

convenient points suitable for modification in the structure of 
PTX are position C2' and position C7.  There are many examples 

of the conjugation of PTX through these atoms (see the 

references above). Ester group has been considered as one of the 

most felicitous esterase-cleavable trigger to release the drug 

inside the target cells
38

. It should also be noted that, as a rule, an 

increase in the number of anchoring moieties in the structure of 
drug-conjugates corresponds to higher binding affinity

33
. The 

performed biological evaluation with ASGP-R-expressing 

HepG2 cell line has revealed monovalent conjugates 13a and 13b 

as the most effective cytotoxic agents within the novel series. 

Thus, compound 13a showed cytotoxic potency (CC50=0.092 

µmol) comparative to a “virgin” PTX (CC50=0.12 µmol) and tri-
valent conjugate 21 (CC50=0.11 µmol), while compound 13b was 

slightly less active. Computational study described above 

predicted that the core-heads of compounds 13a,b and 14a,b 

possessed superior binding affinity vs. the core-head of 

compound 14c. However, the comparison of CC50 values, 

measured in the performed cell-based assay, with the calculated 
in silico scorings is valuable rather for a rough estimation. For 

more exact prognosis a protein-based binding assay is urgently 

needed, and we are working on it. It is well known that drug-

conjugates containing selective ligands targeted on receptors 

abundantly expressed in different types of cancer cells usually 

demonstrate lower systemic toxicity and side-effects in contrast 
to parent drug molecule. This benefit can be achieved only in the 

case of an effective endocytosis, a sufficient drug release 

capacity, and an appropriate pharmacokinetic profile of such 

conjugates. Anyway, the presence of GalNAc-containing 

fragments in the structure of a hybrid drug molecule increases the 

chances to deliver a drug specifically into the HCC nest. Indeed, 
in many cases, a promising activity observed in vitro is not 

displayed in vivo and vice versa. However, it should be expected 

that during the subsequent in vivo trials bivalent conjugate 14a 

will show lower off-target toxicity, appropriate selectivity and 

high anticancer potency as compared to PTX and trivalent 

analogue 20. 

Summarizing, we have synthesized a series of novel mono- 

and bivalent small-molecule conjugates of the selective ASGP-R 

ligands with PTX. We have validated a convenient and versatile 

synthetic route including an optimized amide synthesis followed 

by click reaction to obtain the desired molecules with good 
yields. All the synthesized compounds were then evaluated on 

their cytotoxic activity against HepG2 cells. As a result, two 

monovalent conjugates 13a and 13b showed high efficiency 

comparable with PTX and trivalent derivative. Moreover, 

conjugates 13a-c have higher lipophilicity, lower molecular 

weight and flexibility than bivalent analogues and are more 
appropriate for a passive transport. Molecular docking study has 

predicted the sugar moieties of the compounds (series a,b) as the 

most attractive core-heads for good ASGP-R binding. During 

SPR study, the conjugates demonstrated high affinity towards the 

target receptor. The synthesized hybrid molecules were quite 

stable and caused the similar to PTX morphological changes in 
HepG2 cells. The compounds with the best anticancer activity are 

now planned to advance further in in vivo trials. 
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