Synthesis, spectroscopic and structural characterization of orthopalladated complexes with 4-phenylbenzoylmethylene triphenyl phosphorane ylide

K. Karami · O. Büyükgüngör · H. Dalvand

Received: 14 March 2010/Accepted: 11 May 2010/Published online: 29 May 2010 © Springer Science+Business Media B.V. 2010

Abstract The orthometalated complex $[Pd(\mu-Cl)(C_6H_5-C_6H_4C(0)CHPPh_2C_6H_4-\kappa^2-C,C)]_2$ (1) was prepared by refluxing in MeOH/CH_2Cl_2 equimolecular amounts of Pd(OAc)_2 and (Ph)_3PCHCOC_6H_4-Ph-4 (=PhBPPY) followed by addition of excess NaCl. Complex 1 reacts with 4-picoline to give the mononuclear derivative [Pd(PhC_6H_4-COCHPPh_2C_6H_4)(4-picoline)] (2) whose crystal structure has been determined by X-ray diffraction. The precursor complex (1) could not be isolated in a pure form, but it can be used as a starting material for the synthesis of derivatives of mononuclear cyclo-palladated complexes. Orthometallation and ylide C-coordination in complexes 3–5 were characterized by elemental analysis as well as various spectroscopic techniques.

Introduction

The activation of C–H bonds in organic compounds promoted by transition metals is an important research topic nowadays [1]. Synthesis of cyclopalladated complexes has attracted considerable attention by a number of research groups, due to its implication, in the fundamental steps of several catalytic cycles, in the functionalization of simple substrates through orthometallation and in other relevant chemical processes [2–12]. It is usual to find two or more C–H bonds in the same compound that can be activated to

K. Karami (⊠) · H. Dalvand Department of Chemistry, Isfahan University of Technology, Isfahan 84156, I.R. Iran e-mail: karami@cc.iut.ac.ir

O. Büyükgüngör

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey metallation. A method for the synthesis of orthopalladated adducts of the phosphorus ylide $Ph_3P=CHCO_2Me$ has been reported [13, 14]. It is possible to obtain orthopalladated complexes derived from CH activation at Ph rings belonging to PPh₃ moieties. In this work, we describe the synthesis and characterization of Pd(II) complexes (1–5) of new phosphorus ylides (Scheme 1). The X-ray crystal structure of complex 2 shows both the orthopalladation and ylide C-coordination in this complex and confirms the *endo* metalation of the phosphorus ylide.

Experimental

Pd (OAc)₂, 2-Bromo-4'-Phenylacetophenone, and triphenyl phosphine were purchased from Merck. The ylides were synthesized by the reaction of triphenylphosphine with a chloroform solution of 2-bromo compounds and dehydrogenated with NaOH [15]. All solvents were reagent grade and used without further purification. Solution-state ¹H and ³¹P NMR spectra at 300 K were obtained in CDCl₃ using a 500 MHz Bruker spectrometer operating at 500.13 MHz for 1H and 161.97 MHz for ³¹P and referenced to H₃PO₄ (85%) for ³¹P{1H}NMR spectra. IR spectra were recorded on an FTIR JASCO 680 spectrophotometer, using KBr disks. Melting points were measured on a Gallenhamp 9B 3707 F apparatus. Elemental analysis for C, H and N was performed using a Perkin-Elmer 2400 series analyzer.

Synthesis of PhC₆H₄COC=HPPh₃ (PhBPPY)

To a dichloromethane solution (15 mL) of 2-bromo 4'phenyl acetophenone (1.38 g, 5 mmol) was added PPh₃ (1.31 g, 5 mmol) and the resulting mixture was stirred for 5 h. The suspension was filtered and the precipitate washed

L= 4-Picoline(2), 3-Picoline(3), Me₃Py(4), PPh₃ (5)

Scheme 1

with diethyl ether and air-dried. Further treatment with aqueous NaOH (0.5 M) led to elimination of HBr, giving free PhBPPY.

M.p. 230–231 °C; Yield: 1.87 g, 82%; IR (KBr, cm⁻¹): v(CO) 1,507; ¹H NMR (500 MHz, CDCl₃, ppm): $\delta = 4.52$ (d, 1H, CHP, ²J_{PH} = 24 Hz), 7.38 (t 1H, H_p, C₆H₅) 7.48 (t, 2H, H_m, C₆H₅), 7.47 (t 2H, H_m, C₆H₄) 7.53 (m, 6H, H_m, PPh₃), 7.6 (m, 2H, H_o, C₆H₅, ³J_{HH} = 6 Hz), 7.65 (t, 3H, H_p, PPh₃, ³J_{HH} = 6 Hz), 7.84 (m, 6H, H_o, PPh₃), 8.08 (d, 2H, H_o, C₆H₄), ³¹P{¹H} NMR (CDCl₃): $\delta = 17.2$ (s, 1P, CHP).

¹³C NMR (CDCl₃) δ C: 51.3 (d, ¹J_{PC} = 111.2 Hz, CH); 125.4 (C₆H₅ (i)); 126.2 (d, ¹J_{PC} = 93.24 Hz, PPh₃ (i)); 126.8 (C₆H₅ (m)); 127.81 (COPh (m)); 128.4 (C₆H₅ (p)); 128.88 (PPh₃ (p)); 129.34 (d, ³JPC = 12.41 Hz, PPh₃ (m)); 128.4 (C₆H₅ (o)); 131.80 (d, ⁴J_{PC} = 2.81 Hz, COPh (o)); 133.40 (d, ₂J_{PC} = 10.25 Hz, PPh₃ (o)); 135.86 (COPh (p)); 140.63 (d, ²JPC = 14.69 Hz, COPh (i)); 185.3 (d, ²J_{PC} = 3.3 Hz, CO).

Synthesis of $[Pd(\mu-Cl)(C_6H_5C_6H_4C(O)CHPPh_2 C_6H_4-\kappa^2-C,C)]_2$ (1)

Pd(OAc)₂ (0.0673 g, 0.3 mmol) was added to a solution of PhBPPY (0.1365 g, 0.3 mmol) in CH₂Cl₂ (15 mL) and the resulting mixture was refluxed overnight. The solvent was then evaporated and the yellow solid residue was dissolved in MeOH (10 mL) and anhydrous NaCl (0.0342 g, 0.6 mmol) was added, where upon a pale yellow solid precipitated immediately. The mixture was stirred for 12 h at room temperature and the resulting suspension was filtered. The yellow solid was washed with H₂O (5 mL) and Et₂O (15 mL) and air-dried to produce complex **1**. M.p. 298 °C (dec); yield (0.234 g, 40%); Anal Found. for $C_{64}H_{48}O_2Cl_2P_2Pd_2$ C, 63.1; H, 3.8; Calcd C, 64.3; H, 4.0; IR (KBr, cm⁻¹): ν (CO) 1,623; ¹H NMR (500 MHz, ppm, CDCl₃)): δ = 4.90 (s, CHP, minor): 4.97 (s, CHP, major), 7.12–8.12 (m, 4C₆H₅ + C₆H₄CO, both isomers), ³¹P{¹H} NMR (CDCl₃, ppm): 18.41 (s br both isomers).

Synthesis of $[Pd(Cl)(C_6H_5C_6H_4C(O)CHPPh_2C_6H_4-\kappa^2-C,C)(4-Picoline)]$ (2)

To a suspension of complex **1** (0.1194 g, 01 mmol) in dichloromethane (15 cm³) at room temperature, 4-picoline (0.02 mL, 02 mmol) was added. The suspension gave a clear solution immediately. After 12-h stirring, the resulting solution was filtered over a Celite pad. The solvent was completely removed by evaporation under vacuum and CH_2Cl_2 (2 mL) plus *n*-hexane (15 mL) or Et_2O (7 mL) was added to give mononuclear complex 2 as a pale green precipitate, which was filtered off and air-dried.

Yield: 0.1008 g, 73%; Anal. Found for C₃₂H₂₆NOBrClPPd.H₂O: C, 53.4; H, 3.4; N, 1.8; Calcd. C, 53.9; H, 3.4; N, 2.0. IR (KBr, cm^{-1}); v(CO) 1,619; ¹H NMR (500 MHz, CDCl₃, ppm): $\delta = 2.13$ (s, 3H, Me major isomers), 2.39 (s, 3H, Me minor isomer), 5.16 (br s, 1H, CHP, major isomer), 5.23 (d, 1H, CHP minor isomers, ${}^{3}J_{PH} = 4$ Hz), 6.6 (d, 1H, H_6 , C_6H_4 , ${}^{3}J_{HH} = 7.6$ Hz major isomer), 6.65 (d, 2H, H_5 , H_4 , C_6H_4 , ${}^3J_{HH} = 5.8$ Hz minor isomers), 7.06 (d, 2H, H_5 , H_4 , C_6H_4 , ${}^{3}J_{HH} = 6$ Hz major isomers), 7.10 (m, 1H, H_6 , C₆H₄, major isomer), 7.20 (m, 2H, H₃, C₆H₄, both isomers), 7.50 (m, 12H, Hm, $PPh_2 + Hm$, C_6H_5 both isomers), 7.60 (m, 8H, H_m , $C_6H_4CO + Hm$, 4-MePy both isomers), 7.69 (m, 12H, H_0 , $PPh_2 + H_0$, C_6H_5 both isomers), 7.74 (m, 2H, H_p, C₆H₅ both isomers), 7.90 (t, 4H, H_p , PPh₂, ${}^3J_{HH} = 6$ Hz, both isomer), 8.26 (m, 2H, H_o, 4-MePy minor isomers), 8.37 (m, 4H, H_o, C₆H₄CO both isomers), 8.41 (m, 2H, Ho, 4-MePy major isomers), 8.62 (d, 2H, H_o, C₆H₄CO major isomers), ³¹P{¹H} NMR (CDCl₃): $\delta = 15.96$ (s, 1P, CHP, minor isomer), 20.32 (s, 1P, CHP, major isomer). ¹³C{¹H} NMR: $\delta = 21.16, 21.51$ (C, Me both isomer), C_{aromatic} for both isomer { $\delta = 125.48$, 125.92, 126.84, 127.04, 127.5, 127.6, 127.7, 128.56, 128.65, 128.95, 129.05, 129.2, 129.4, 129.7, 129.8, 129.9, 130.25, 130.47, 133.11 (d, $j_{PC} = 9.56$ Hz), 133.32, 133.58 (d, $j_{PC} = 9.43$ Hz), 136.5, 136.6,136.72}199.2 (CO, both isomers), 201.8 (CO both isomers).

Synthesis $[Pd(Cl)(C_6H_5C_6H_4C(O)CHPPh_2 C_6H_4-\kappa^2-C,C)(3-Picoline)]$ (3)

To a suspension of complex 1 (0.1194 g, 01 mmol) in dichloromethane (15 cm³) at room temperature, 3-picoline (0.02 mL. 02 mmol) was added. The resulting suspension gave a clear solution immediately. After 12-h stirring, the

resulting solution was filtered over a Celite pad. The solvent was completely removed by evaporation under vacuum and CH_2Cl_2 (2 mL) plus *n*-hexane (15 mL) or Et₂O (7 mL) was added to give mononuclear complex 3 as a pale green precipitate, which was filtered off and air-dried.

M.p. 202–204 °C (dec), yield (0.0988 g, 72%), Anal. Found for $C_{38}H_{31}NOCIPPd$: C, 65.08; H, 4.21; N, 1.91 Calcd C, 66.10; H, 4.52; N, 2.03, IR (cm⁻¹), v (C=O): 1624.73.

Complex 3 was characterized (NMR) as a mixture of two isomers in 1.5/1 M ratio; ¹H NMR (500 MHz, CDCl₃, ppm): $\delta = 1.9$ (s, Me major isomers), 2.29 (s, Me minor isomer), 5.19 (brs, 1H, CHP, major isomer), 5.24 (s, 1H, CHP minor isomers, ${}^{3}J_{PH} = 4$ Hz), 6.55 (d, H₆, C₆H₄, ${}^{3}J_{HH} = 7.6 \text{ Hz}$ minor isomer), 6.65 (dd, H₆, C₆H₄, ${}^{3}J_{HH} = 6$ Hz major isomers), 6.99–7.11 (m, 3H, H₅, H₄, H₃, C₆H₄, minor isomer), 7.11–7.13 (m, m, 3H, H₅, H₄, H₃, C₆H₄, major isomer), 7.14 (m, H₂, 3MePy, both isomers), 7.58-761 (m, 7H, Hm, $PPh_2 + Hm + Hp$, C_6H_5 , both isomers), 7.65–7.72 (m, 10H, H_{o,p}, PPh₂, Hm, C₆H₄CO + H_o, C_6H_5 both isomers), 7.86 (m, $H_o, C_6H_4CO + H_p, C_6H_5$ major isomers), 8.39 (m, H_0 , $C_6H_4CO + H_p$, C_6H_5 minor isomers), 8.42 (m, H_4 , H_5 , MePy both isomers + H_6 , MePy minor isomer), 8.25 (d, H₆, 3-MePy, ${}^{3}J_{H-H} = 8.5$ Hz major isomers); ${}^{31}P{}^{1}H$ NMR (CDCl₃): $\delta = 15.95$ (s, 1P, CHP, minor isomer), 20.43 (s, 1P, CHP, major isomer).

¹³C{¹H} NMR: δ = 21.16, 21.51 (C, Me both isomer), C_{aromatic} for both isomer { δ = 125.48, 125.92, 126.84, 127.04, 127.5, 127.6, 127.7, 128.56, 128.65, 128.95, 129.05, 129.2, 129.4, 129.7, 129.8, 129.9, 130.25, 130.47, 133.11 (d, ³j_{PC} = 9.56 Hz), 133.32, 133.58 (d, ³j_{PC} = 9.43 Hz), 136.5, 136.6, 136.72}, 198.3 (CO, both isomers), 200.3 (CO both isomers).

Synthesis of $[Pd(Cl)(C_6H_5C_6H_4C(O)CHPPh_2C_6H_4-\kappa^2-C,C)(Me_3py)]$ (4)

Complex 4 was prepared in a similar manner to complex 3.

Yield (0.0965 g, 67 %); Anal Found for $C_{44}H_{34}ClFO-P_2PdCl: C, 65.4; H, 4.0 Calcd C, 65.9; H, 4.3; IR (KBr, cm⁻¹): v C=O): 1,621 ¹H NMR (500 MHz, CDCl₃, ppm); <math>\delta = 2.10$ (s, 3H, Me), 2.27 (s, 3H, Me), 2.96 (s, 3H, Me), 5.27 (d, 1H, CHP, ³J_{PH} = Hz), 6.57 (d, 1H, H₆, C₆H₄), 6.94 (s, 2H, H₅, H₄, C₆H₄), 7.18 (m, 1H, H₃, C₆H₄), 7.40 (t, 1H, Me3Py, ³J_{HH} = Hz), 7.46 (m, 4H, Hm, PPh₂), 7.52 (t, 2H, H_p, PPh₂), 7.60 (m, 1H, Me3Py), 7.69 (m, 7H, H_o, PPh₂ + H_m, H_p, C₆H₅), 8.59 (d, 2H, H_o, C₆H₄CO), 8.27 (m, 2H, H_o, C₆H₅), 8.59 (d, 2H, H_o, C₆H₄CO), ³¹P{¹H} NMR (CDCl₃): δ 18.92 (s, 1P, CHP).

¹³C{¹H}NMR: δ = 21.14, 26.58, 27.185 (s, 3C, Me), 35 (d, CHP, ¹j_{PC} = 59.45 Hz), 124.93 (s, Ci, C₆H₅), 124.39(d, C₁, ¹j_{PC} = 13.20 Hz), 129.625 (d, C₆, ²j_{PC} = 11.95 Hz), 130.49 (d, C_i PPh₂, ¹j_{PC} = 15.22 Hz), 133.78 (d, C₅,

 ${}^{3}j_{PC} = 9.05$ Hz), 134.96 (d, Co, PPh₂, ${}^{2}j_{PC} = 10.06$ Hz), 137.93 (d,C₃, ${}^{3}j_{PC} = 9.18$ Hz), 137.93 (d, C₂, ${}^{2}j_{PC} =$ 12.83 Hz), 158.47 (d, Co, PPh₂, ${}^{2}j_{PC} = 10.31$ Hz). Other C_{aromatic} { $\delta = 123.63$, 124.1, 126.7, 126.9, 126, 127.23, 127.67, 128.1, 129.1, 130.23, 132.68, 134.48, 139.1, 140.01, 141.03}, 196.2 (CO).

Synthesis of $[Pd(Cl)(C_6H_5C_6H_4C(O)CHPPh_2C_6H_4-\kappa^2-C,C)(PPh_3)]$ (5)

To a suspension of complex 1 (0.1194 g, 0.1 mmol) in CH_2Cl_2 (15 mL) was added PPh₃ (0.0524 g, 0.2 mmol). The initial yellow suspension gradually dissolved, and after 8-h stirring at room temperature, the resulting solution was filtered over a Celite pad. The clear solution was evaporated to dryness and treatment of the residue with Et₂O (30 mL) gave 5 as a yellow solid.

M.p.146 °C; yield (0.1014 g, 59%); Anal found for $C_{44}H_{34}CIFOP_2PdCI. C, 65.4; H, 4.0, Calcd C, 65.9; H, 4.3; IR (KBr, cm⁻¹): v C=O): 1,619 ¹H NMR (500 MHz, CDCl₃, ppm); <math>\delta = 5.5$ (s, 1H, CHP), 6.5 (m, 2H, C₆H₄), 6.90 (m, 1H, C₆H₄), 7.19 (m, 6H, Hm, PPh₃), 7.32 (m, 6H, Hm, PPh₂ + Hm, C₆H₅), 7.44 (m, 6H, Hp, C₆H₅ + PPh₂ + PPh₃), 7.6 (m, 6H, H_o, PPh₃), 7.66 (m, 2H, Hm, C₆H₄CO), 7.88 (m, 2H, H_o, C₆H₅), 8.02 (m, 2H, H_o, PPh₂), 8.29 (m, 2H, H_o, PPh₂), 8.31 (d, 2H, H_o, C₆H₄CO, ³J_{HH} = 7.1). ³¹P{¹H} NMR (CDCl₃): δ 15.09 (s, 1P, CHP), 31.86 (s, 1P, Pd-PPh₃).

¹³C{¹H}NMR: δ = 40.47 (dd, CHP, ¹j_{PC} = 63.13 Hz, ²j_{PC} = 21 Hz), 123.72 (d, C₁, ¹j_{PC} = 13.20 Hz), C aromatic{ δ = 126.71, 127.46, 128.12 (d, C_o PPh₂ or C_o PPh₃, ²j_{PC} = 10.19 Hz), 129.08 (d, C_m PPh₂, ³j_{PC} = 6.03 Hz), 129.68 (d, C_i, PPh₂, ²j_{PC} = 11.82 Hz), 130.02, 130.53, 130.66, 131.72, 132.84, 134.64, 138.06, 139.2, 140.8, 144.2}, δ = 133.31 (d, C₃, ³j_{PC} = 9.31 Hz), δ = 135.16 (d, C_i PPh₃, ²j_{PC} = 11.82 Hz), δ = 197.5 (CO).

X-ray crystal structure determination

A suitable single crystal was chosen for the crystallographic study and mounted on the goniometer of a STOE IPDS II diffractometer. All diffraction measurements were taken at room temperature (296 K) using graphite monochromated MoKa radiation (k = 0.71073 Å). The data collection was performed using the X-scan technique and using the STOE X-AREA software package [16]. The crystal structures were solved by direct methods and refined by full-matrix least-squares on F^2 by SHELXL97 [17] and using the ORTEP-3 crystallographic software package [18]. All non-hydrogen atoms were refined anisotropically using reflections I > 2r (I). Hydrogen atoms were inserted at calculated positions using a riding mode with fixed thermal parameters.

Results and discussion

The IR spectrum of PhBPPY shows a strong absorption at $1,507 \text{ cm}^{-1}$, due to the carbonyl stretch, while the ${}^{31}\text{H}$ NMR spectrum shows a doublet at 4.30 ppm assigned to methinic protons. The absorption due to the carbonyl stretch appears at lower energies than expected (about 1.720 cm^{-1}), due to the conjugation of the C=O bond with the P=C bond. The localization of the density charge in the P-C-C-O bond system is responsible for the stability of these compounds and can also be inferred from the ${}^{31}P{}^{1}H$ NMR spectra [13, 14, 19]. These spectra show a single peak at about 17.2 ppm, a position shifted to low field with respect to that observed in other non-stabilized systems (about 0-6 ppm) and showing the lower shielding of the P atom in the stabilized compounds due to delocalization. The IR spectra of complexes 1-5 show a sharp, very strong absorption in the 1,618–1,625 cm $^{-1}$ range (see Table 1), corresponding to the carbonyl absorption. This absorption is shifted to higher energies with respect to that in the free ylide $(1,507 \text{ cm}^{-1})$ [1]. The observation of this positive shift for v_{CO} in the complexes indicates that the ylide is C-coordinated to Pd(II). In the ¹H NMR spectrum of 1, the signals due to the methinic proton were broad

Table 1 Crystal data and structure refinement for complex 5

Formula	2 (C38 H31Cl N O P Pd)Cl
Formula weight	1416.37
Crystal system	Triclinic
Space group	P - 1
a	10.3826(14)
b	12.7884(18)
c (Å)	13.8852(17)
Alpha	110.363(10)
Beta	101.145(10)
Gamma (°)	95.724(11)
$V(\text{\AA}^3)$	1667.6(4)
Ζ	1
D(calc) (g/cm ³)	1.41
Mu(MoKa) (mm)	0.755
F(000)	721
Crystal size (mm)	$0.05\times0.20\times0.46$
Temperature (K)	296
Radiation (Å)	ΜοΚα 0.71073
Theta min-max (°)	1.6, 26.5
Dataset	-13: 13; -16: 16; -17: 17
Tot., Uniq. Data, R(int)	16,240, 6,909, 0.109
Observed data $[I > 2.0 \text{ sigma}(I)]$	3480
Nref, Npar	6,909, 398
R, wR_2, S	0.0640, 0.1016, 0.90
Min. and Max. Resd. Dens. [e/Å ³]	-0.68, 0.55

(minor) or broad doublet (major). The presence of two chiral carbon centers (forming diastereoisomers) in **1** was confirmed using the ¹H NMR spectra as two sets of signals with unequal populations for the CH and PCH groups.

In the ${}^{1}H$ NMR spectra of complexes 1–5, the signals due to the methinic protons are doublets or broad. Similar behavior was observed earlier in the case of vlide complexes of palladium(II) [19]. The expected downfield shifts of ³¹P and ¹H signals for the PCH group upon complexation in the case of C-coordination were observed in their corresponding spectra. The 31 P { 1 H} NMR spectrum of **1** showed two sets of single peaks at 18.82 (major) and 19.41 ppm (minor). The presence of two lines of different intensities can be explained by the presence of two diastereoisomers (RR/SS and RS/SR). as a result of the C-bonding of the vlide and the binuclear nature of 1. The bridge-splitting reactions of 2 with neutral ligands produced exclusively the corresponding mononuclear compounds 2–5. The¹H and ³¹P{¹H} NMR signals for the PCH group of all the complexes were shifted downfield in comparison with those in free ylides, as a consequence of the inductive effects of the metal center. The ${}^{2}J_{(PH)}$ values for complexes 2–5 were smaller than those in the free ylides and phosphonium salts; this behavior has already been observed for other C-coordinated carbonyl-stabilized phosphorus vlide complexes because the hybridization changes in the ylidic carbon $(Sp^2 to Sp^3)$ in the C-coordination mode [20]. The ¹H NMR spectra of complexes 2 and 3 showed two signals for the CH group that are assigned to a fast equilibrium between the cis and trans isomers or a dynamic activity for exchange of Methyl Py and Cl groups in solution [21]. The ¹H NMR spectrum of complex **4** showed one signal for the CH group at 5.16 ppm, while the ³¹P{¹H} NMR spectrum shows only one sharp singlet at 18.92 ppm. The appearance of single signals for the PCH group in each of the ³¹P and ¹H NMR spectra indicates the presence of only one molecule for this complex, as expected for C-coordination [1, 22, 23]. The ¹H NMR spectrum of complex 5 showed one signal for the CH group at 5.5 ppm. The ³¹P{¹H} NMR spectrum of 5 showed two singlet resonances in this case (range 15.09 and 31.86 ppm), which are shifted to low field with respect to the parent ylide, in good agreement with the C-bonding of the ylides.

The ¹³C NMR spectra of the complexes 2–5 show upfield shifts of the signals due to the ylidic carbon atoms. Such shifts were observed in other complexes, due to the change in hybridization of the ylidic carbon atom on coordination [20]. Similar upfield shifts of 2–3 ppm with reference to the parent ylide were also observed for other complexes [20, 23]. The ¹³C shifts of the CO group in the complexes are between 196 and 202 ppm, which is higher field than the 185.3 ppm noted for the same carbon in the parent ylide, indicating much lower shielding of the carbon atom of the CO group in the complexes. For complex 5, the

ylidic protons appear as doublets of doublets at $\delta = 40.47$ ppm, meaning that each carbon is coupled with two different P nuclei (PPh₃ and C=P). The coupling constants (${}^{1}j_{PC} = 63.13$ Hz, ${}^{2}j_{PC} = 21$ Hz) suggest that the PPh₃ is located *trans* to the ylidic carbon [23], in good agreement with the expected *trans* effect between the PPh₃ and the arylic carbon [24].

X-ray crystallography study

The X-ray crystal structure of complex **2** is shown in Fig. 1. Crystallographic data and parameters concerning data collection and structure solution and refinement are summarized in Table 1 and some selected bond lengths (Å) and angles (°) for complex **2** are collected in Table 2.

These crystals were grown by the diffusion of *n*-hexane into a CH₂Cl₂ solution. In complex **2**, each palladium atom has a slightly distorted square-planar environment, surrounded by the orthometalated C(7) atom, the ylide C(19), that forms a five-member cycle, one chlorine (Cl1) and one phosphorus (P1) atom. Complex **2** crystallized in the triclinic system with space group P - 1. The absolute configuration of the C(19) atom is depicted in the structure shown in Fig. 1. The summation of the bond angles around the palladium is almost 360 °C. Although the orthometallated ligand is remarkably warped, the environment around the Pd is planar. The Pd1-C7 bond distance (2.002(6) Å) is similar to those found in other ortho-palladated complexes [1, 13] and the Pd-N(1) distance falls also in the usual range found for this

Fig. 1 ORTEP view of the Xray crystal structure of complex 2

Table 2 Selected bond lengths (Å) and angles (°) for complexes 2						
Pd1–Cl1	2.359(2)	Cl1-Pd1-N1	88.19(18)			
Pd1–N1	2.136(6)	Cl1-Pd1-C7	93.6(2)			
Pd1–C7	2.002(6)	Cl1-Pd1-C19	176.76(16			
Pd1-C19	2.101(6)	N1–Pd1–C7	175.8(2)			
P1C1	1.803(5)	N1-Pd1-C19	94.8(2)			
P1-C12	1.777(6)	C7-Pd1-C19	83.5(3)			
P1-C13	1.794(8)	C1-P1-C12	110.1(3)			
P1C19	1.775(6)	C1-P1-C13	105.4(3)			
O1–C20	1.231(7)	C1-P1-C19	116.2(3)			
N1-C33	1.321(8)	C12-P1-C13	111.1(3)			
N1-C37	1.340(10)	C12-P1-C19	98.2(3)			
C19–C20	1.494(8)	C13-P1-C19	115.8(3)			
C20-C21	1.482(8)	Pd1-N1-C33	119.5(5)			
P1-C19-C20	118.1(4)	Pd1-N1-C37	122.5(5)			
O1-C20-C19	120.6(5)	Pd1-C19-P1	97.9(3)			

bond [25]. The bond length of P(1)–C(19) in the similar ylide is 1.706 Å [1, 26] which shows that the above bond has considerably elongated to 1.775 (6) Å in complex **2**. The Pd1–C19 bond distance (2.101(6) Å) in complex **2** with respect to published examples appears at the low end of the usual range [(2.090(3)–2.161(8)] [1, 13].

The angles subtended by the ligands at the Pd(II) center in complex **2** varied from 83.5(3)) to 94.8(2) and 175.8(2)to 176.76(16), indicating a distorted square-planar environment. The Cl1–Pd1–C19 (176.76(16) Å) and N1–Pd1– C7 (175.8(2)) bond angles deviated only a little from

Table 3 IR data for PhBPPY and complexes 1-5

Compound	C=O	C=C	C=N	P–C
Ligand PhBPPY	1,507	1,566	_	881
$[Pd(\mu-Cl)(PhBPPY)]_2$ (1)	1,623	1,564	-	839
[PdCl(PhBPPY)4-Picoline)] (2)	1,619	1,566	1,601	854
[PdCl(PhBPPY)3-Me Py] (3)	1,625	1,564	1,602	852
$[PdCl(PhBPPY)(Me_3Py)] (4)$	1,621		1601.6	
[PdCl(PhBPPY)PPh ₃] (5)	1,619	1,562	-	850

linearity. The Pd(1)–C(7) bond distance (2.002(6) Å) was statistically identical to those found in the other orthopalladated complexes (2.035(5) Å) [27, 28]. The distances Pd(1)-C(1) [2.002(6) Å] and Pd(1)-C(19) [2.101(6) Å] for 2 were different, probably reflecting the different Trans effects of the nitrogen and chlorine atoms. The stabilized resonance structure for the parent ylide was destroyed due to the complex formation, thus the C(19)-C(20) bond lengths (1.494(8) Å) in complex 2 were significantly longer than the corresponding distances found in the similar uncomplexed phosphoranes (1.407(8) Å [1, 23, 29] and 1.401(2) Å [29, 30]). Likewise, the C(19)-P(1) bond lengths in similar ylides were 1.7194(17) Å [1, 29] which showed that the corresponding bonds in 2 have considerably elongated to 1.775(6) or (5) Å. In complex 2, one phenyl ring of PPh₃ has undergone a CH bond activation process. The structure of 2 may be proposed as *endo* on the basis of its NMR data and the X-ray structure.

Conclusions

In this work, the synthesis and characterization of orthopalladated complexes of phosphorus ylides have been investigated. The X-ray crystal structure of complex **5** confirmed the C-coordination of the ylides. The results obtained in the investigation into the C–H bond activation process, induced by Pd(II) salts, in the ylide ligand, showed that the cyclopalladation has occurred at one phenyl ring of the PPh₃ (*endo*) with an additional chiral carbon center. Based on the physicochemical and spectroscopic data, we propose that ylide PhBPPY exhibits monodentate C-coordination to the metal center (Table 3).

Supplementary data

CCDC 749675 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/deposit or deposit@ccdc. cam.ac.uk.

Acknowledgments The authors acknowledge the Department of Chemistry Isfahan University of Technology and the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F. 279 of the University Research Fund).

References

- 1. Aguilar D, Aragues MA, Bielsa R, Serrano E, Navarro R, Urriolabeitia EP (2007) Organometallics 26:3541
- 2. Ryabov AD (1985). Synthesis 233
- 3. Dupont J, Pfeffer M, Spencer J (2001) Eur J Inorg Chem 4:1917
- 4. Rietling V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731
- Goldberg KI, Goldman AS (eds) (2004) Organometallic C–H Bond Activation; Activation and Functionalization of C–H Bonds, ACS Symposium Series 885. American Chemical Society, Washington, DC
- Beletskaya IP, Cheprakov AV (2004) J Organomet Chem 689: 4055
- 7. Zapf A, Beller M (2005) Chem Commun 431
- 8. Dick AR, Sanford MS (2006) Tetrahedron 62:2439
- 9. Hull KL, Lanni EL, Sanford MS (2006) J Am Chem Soc 128:14047
- 10. Deprez NR, Sanford MS (2007) Inorg Chem 46:1924
- 11. Bercaw JE, Labinger JA (2007) Proc Nat Acad Sci USA 104:6899
- 12. Daugulis O, Chiong HA (2007) Org Lett 9:1449
- Vicente J, Chicote MT, Lagunas MC, Jones PG, Bembenek E (1994) Organometallics 13:1243
- Vicente J, Chicote MT, Fernandez-Baeza J (1989) J Organomet Chem 364:407
- Vicente J, Chicote MT, Cayuelas JA, Fernandez-Baeza J, Jones PG, Sheldrick GM, Espinet P (1985). J Chem Soc Dalton Trans 1163
- 16. Stoe and Cie (2002) X-AREA, Version 1.18: program for the acquisition and analysis of data, Stoe and Cie. Darmatadt, Germany
- 17. Sheldrick GM (1997) SHELX97 program for crystal structure solution and refinement. University of Göttingen, Germany
- Stoe and Cie (2002) X-RED32 (Version 1.04): crystallographic package, Stoe & Cie. Darmatadt, Germany
- Aguilar D, Aragues MA, Bielsa R, Serrano E, Soler T, Navarro R, Urriolabeitia EP (2008) J Organomet Chem 693:417–424
- Kalyanasundari M, Panchanatheswaran K, Robinson WT, Wen H (1995) J Organomet Chem 491:103
- 21. Navarro R, Urriolabeitia EP (1999). Dalton Trans 4111-4122
- Falvello LR, Ferna'ndez LR, Falvello S, Navarro R, Urriolabeitia EP (1997) Inorg Chem 36:1136–1142
- 23. Karami K (2009) Inorg Chim Acta 362:2093
- 24. Sabounchei SJ, Dadrass A, Jafarzadeh M, Khavasi HR (2007) Acta Crystallogr Sect E 63:3160
- 25. Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) J Chem Soc Dalton Trans S1
- Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2 685:S1–S19
- 27. Shao M, Jin X, Tang Y, Huang Q, Huang Y (1982) Tetrahedron Lett 23:5343
- Vicente J, Chicote MT, Lagunas MC, Jones PG, Bembenek E (1994) Organometallics 13:1243
- Falvello LR, Ferna'ndez S, Navarro R, Rueda A, Urriolabeitia EP (1998) Organometallics 17:5887
- Kalyanasundari M, Panchanatheswaran K, Parthasarathi V, Robinson WT, Wen H (1994) Acta Crystallogr 50:1738