

Transannular Diels-Alder Studies on the Asymmetric Synthesis of (+)-Maritimol

András Toró, Charles-André Lemelin, Patrice Préville, Guillaume Bélanger and Pierre Deslongchamps^{*}

Laboratoire de Synthèse Organique, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke (Québec) Canada, J1H 5N4.

Received 9 November 1998; accepted 9 February 1999

Abstract

Assembly of 13-membered TCC macrocyclic trienes are described and their transannular Diels-Alder reaction are investigated as a model study for the asymmetric synthesis of the ABC-ring system of (+)-maritimol. Albeit the original expectations that the *pro-3(S)*- and 4(R)-functionalities induce perfect absolute and relative control in the strategic step has not been fully met, a position at *pro-12(R)* complying with these requirements is recognized. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: asymmetric synthesis, Diels-Alder reactions, macrocycles, transannular reactions.

1. Introduction

One of the most powerful tools that emerged recently in polycyclic chemistry is the Transannular Diels-Alder (TADA) strategy.¹ Fundamental synthetic and computational studies show that high relative stereocontrol of the forming TADA tricyclic product can be predicted and achieved by controlling the double bonds geometry.² Moreover, the conformation of the TADA transition state can be successfully influenced by appropriately placed chiral substituents on the macrocycle leading to absolute stereocontrol. It follows that the perfect accord of these two parameters in the TADA substrate can introduce a new level of stereocontrol by inducing four new chiral centers in the strategic step. Since in the past decade, the degree and diversity of control in double bond formation and acyclic chiral induction improved dramatically, the tools for

Pierre Deslongchamps: Fax: 1-(819) 820-6823. e-mail: pierre.deslongchamps@courrier.usherb.ca

the investigation of this strategy have become widely available. Thus, the stage is set to test the scope and limitations as well as the practical implementations of TADA strategy. To this end, certain natural products, among them (+)-maritimol $(1)^3$ isolated from Stemodia maritima L. (Scrophulariaceae) used as a Caribbean folk medicine for treatment of venereal diseases was selected as a target. Diterpene 1 represents a real synthetic challenge⁴ with its unique tetracyclic stemodane framework (a trans-decalin (ring A/B) fused to a bicyclo[3.2.1]octane (ring C/D) system), which requires the construction of seven chiral centers, especially the two adjacent quaternary carbons at C-9 and C-10 (Scheme 1). On the other hand, from a synthetic point of view, its tricyclic A.B.C[6.6.5] trans.svn.cis (TSC) ring system correlates well with our previous fundamental model studies demonstrating the stereospecific transformation of 14- and 15membered trans, cis, cis (TCC) macrocyclic trienes into the corresponding A.B.C. [6.6.6]⁵ and $[6.6.7]^6$ TSC-tricycles. Accordingly, the requisite TSC-tricycle 2 is potentially available by an extension of these model studies to the 13-membered TCC macrocyclic triene 3. Furthermore, using an appropriately functionalized tetrasubstituted dienophile, the C-9 functionality obtained, together with the C-12 functionality, a remainder of the former macrocyclization connector, could serve later as a foothold for the construction of ring D as it had been demonstrated in an earlier successful synthesis,⁷ Moreover, examination of the transition states of TADA shows that of the four hypothetical possibilities, only the two endo-states should be considered as the alternative two exo-states are conformationally restricted.¹ A quasi 1,3-diequatorial alignment of the pro-3(S)-oxygen- and the pro-4(R)-methyl functionalities in the endo transition state 4 is expected to be favored over a *quasi* triaxial alignment of these and the additional *pro*-10-methyl groups in the competing transition state 5, thus, inducing the desired absolute stereocontrol leading to key

intermediate 2. In addition, the *anti* arrangement of these substituents can be routinely acquired via an enantioselective Evans' aldol methodology and this strategy promises an easy access to the final 4-gem-dimethyl system of ring A in maritimol (1). To realize all the above requirements, a linear synthesis was designed to assemble the key macrocycle 3. An acetylenic ester tandem vicinal difunctionalization mastered in our laboratory⁸ was used to deliver the appropriately functionalized tetrasubstituted dienophile. This was followed by an Evans' aldol reaction⁹ to introduce the necessary chirality. Two Horner-Emmons olefinations^{10,11} furnished the correct diene system and the sequence was concluded by the macrocyclization via a cyanoester or a malononitrile connector¹² followed by some functional group modifications.

In this paper, we report the synthesis of the key macrocycles, our results on their TADA reaction testing the presuppositions outlined above and the conclusions of these model studies.

2. Results and Discussion

2.1. Synthesis of TCC Macrocyclic Trienes:

Preparation of the tetrasubstituted dienophile and introduction of the chirality presented a synthetic challenge by itself due to an inevitably intensive protective group manipulation. Two sequences, Route A and Route B were carried out (Scheme 2 and 3).

Scheme 2: Route A: (a) DHP, CSA (90%). (b) *n*-BuLi then $ClCO_2Me$ (86%). (c) Me_2CuLi then MOMI. (d) DIBAL-H (83% over 2 steps). (e) TBDPSCI, imidazole. (f) PPTS (89% over 2 steps). (g) (COCI)₂, DMSO then Et₃N (93%). Route B: (a) NaH, PMBCI, (n-Bu)₄NI (95%). (b) *n*-BuLi then $ClCO_2Et$ (83%). (c) Me_2CuLi then MOMI (87%). (d) DIBAL-H (90%). (e) TBDMSCI, imidazole. (f) DDQ (73% over 2 steps). (g) (COCI)₂, DMSO then Et₃N (93%).

In Route A, a tetrahydropyranyl (THP) protection of pentynol (6) under standard conditions with dihydropyran (DHP) and camphorsulfonic acid (CSA), then quenching the lithium acetylide of 7a with methyl chloroformate furnished acetylene ester 8a. It was subjected to organocupration and the intermediate vinyl cuprate was quenched with iodomethyl methylether (MOMI) to give the tetrasubstituted olefin 9a with a Z/E ratio of 20:1.⁶ This mixture was separated after reduction to isolate allyl alcohol 10a in 83% yield over 2 steps. Sequential protection as *tert*-butyldiphenylsilyl (TBDPS) ether 11a, deprotection of the THP ether with pyridinium *para*-toluenesulfonate (PPTS) to primary alcohol 12a and its Swern oxidation¹³ provided aldehyde 13a as a substrate for the Evans' aldol reaction⁹ with chiral imide 14.¹⁴ The aldol product 15a was transamidated using Weinreb's technique¹⁵, then secondary alcohol 16a was protected as triisopropylsilyl (TIPS) ether 17a, diisobutylaluminum hydride (DIBAL-H) reduction of which gave aldehyde 13a in a yield of 33% over the 11-step sequence.

Scheme 3: Route A: (a) n-Bu₂BOTf, Et₃N (74%). (b) HN(OCH₃)CH₃ · HCl, AlMe₃ (94%). (c) 2,6-lutidine, TIPSOTf (89%). (d) DIBAL-H (99%). Route B: (a) n-Bu₂BOTf, Et₃N (82%, 99% corr.). (b) HN(OCH₃)CH₃ · HCl, AlMe₃ (94%). (c) 2,6-lutidine, TIPSOTf (94%). (d) DIBAL-H (96%).

Route B paralleled route A starting with *p*-methoxybenzyl (PMB) ether **7b**. The same sequence was used to get tetrasubstituted allyl alcohol **10b** with a Z/E ratio of 9:1 and an isolated yield of 87% in the tandem difunctionalization of acetylene ester **8b**. Here, deprotection of PMB with dichlorodicyanobenzoquinone (DDQ) offered the opportunity to protect allyl alcohol **10b** with the less acid resistant *tert*-butyldimethylsilyl (TBDMS) ether in **11b** to conclude the sequence from primary alcohol **12b** to aldehyde **18b** as in Route A with a yield of 35% over the 11 steps. For further progression, aldehyde **18a** was selected because of the excellent stereocontrol

achieved in the tandem difunctionalization.[†] The Z,E-diene system was completed in three steps with two Horner-Emmons olefinations (Scheme 4). Thus, an olefination with N-methoxy-Nmethyl-carbamoylmethylphosphonate¹⁰ delivered the *trans* double bond in amide 19 with 86:14 selectivity and 86% isolated yield. Then, following a DIBAL-H reduction to aldehyde 20, a second olefination with Still's phosphonate¹¹ gave the *cis* double bond in ester 21 with 30:1 selectivity and 89% isolated yield. Preparation for the macrocyclization was made as follows: DIBAL-H ester reduction of 21 to alcohol 22 and a subsequent chlorination with triphenylphosphine/hexachloroacetone (PPh₃/HCA) system¹⁶ to allylic chloride 23 gave the electrophile

Scheme 4: (a) NaH, $(EtO)_2POCH_2CON(Me)OMe.$ (b) DIBAL-H (99%). (c) $KN(TMS)_2$, $(CF_3CH_2O)_2POCH_2CO_2Me$, 18-Crown-6. (d) DIBAL-H (98%). (e) PPh₃, HCA. (f) NaOMe, $CNCH_2CO_2Me$ (82% over 2 steps). (g) PTSA, MeOH (h) Syringe pump addition to Cs_2CO_3 in MeCN (81%). (i) Syringe pump addition of admixtured 29 and connector to Cs_2CO_3 in MeCN. (j) NaOH in THF (97%). (k) Cu_2O (cat.) reflux in MeCN, Argon (85%). (l) $Me_2BBr.$ (m) NaOAc in DMF. (n) K_2CO_3 in MeOH (79% over 3 steps). (o) TPAP, NMO (87%). (p) CICOOEt, Et_3N then NH_3 then Cl_3CCOCI , $Et_3N.$ (q) HCO_2Na in DMF. (r) HCI in THF (65% over 3 steps). (s) Dess-Martin periodinane (85%).

However, 18b is also to be used in a synthesis of (+)-aphidicolin, details of which are going to be published in due course.

for the alkylation of connector methyl cyanoacetate. Here, a large excess of connector was necessary to suppress bis-alkylation. However, even with 30-fold excess, still 3% of bis-alkylated product was observed. Selective deprotection of TBDPS in cyanoester 24 to alcohol 25 with *para*-toluenesulfonic acid (PTSA) in methanol (86%) and chlorination as above (95%) gave precursor 26 for macrocyclization. This step was accomplished under high dilution conditions $(c_{final}=2 \text{ mM})$ with a 10 hour syringe pump addition of chloride 26 to a suspension of 5 eq. Cs_2CO_3 in acetonitrile at 70°C to give macrocycle 27 as an 1:1 epimeric mixture in 81% yield.

The observation that the second alkylation competes successfully with the first one at the connector coupling stage, led us to develop a novel double alkylation macrocyclization methodology, as alcohol 22 afforded ready access to diol 28 then dichloride 29 as described above. Accordingly, slow addition of a mixture of dichloride 29 and methyl cyanoacetate to a suspension of Cs_2CO_3 in acetonitrile at 70°C gave the same macrocycle 27 in 53% yield.¹²The final modifications on 27 consisted in a decarboxylation¹⁷ via acid 30 to the 1:1 epimeric mixture of cyanide 31 (82% yield), deprotection of the methoxy group via a three step sequence involving Me₂BBr cleavage¹⁸ to bromide 32, substitution to acetate 33 and basic hydrolysis to alcohol 34 (79% yield) to conclude with a tetrapropylammonium perrhuthenate/N-methyl-morpholine N-oxide (TPAP/NMO) oxidation¹⁹ to produce aldehyde 35 (87% yield).

The double alkylation macrocyclization methodology described above worked even better with malononitrile to produce the enantiopure dinitrile macrocycle **36** in 73% combined yield from diol **28**.¹² Macrocycle **36** was also obtained from acid **30** via its amide²⁰ in 83% overall yield from **27**. Final conversion of the methoxy group to an aldehyde was performed slightly differently from the protocol described for aldehyde **35**. Here, the same Me₂BBr cleavage¹⁸ of the methoxide afforded bromide **37**, however, it was transformed to formate **38**, acidic hydrolysis of which afforded the extremely base sensitive alcohol **39** in 65% overall yield. Final oxidation to aldehyde **40** was made using the non-basic Dess-Martin periodinane method²¹ in 85% yield.

2.2. Transannular Diels-Alder Studies:

For these investigations, macrocycles 27, 35 and 40 were selected. While the first macrocycle could undergo Diels-Alder reaction only with thermal activation, the other two having a conjugated dienophile offer an opportunity for Lewis acid catalyzed reactions to decrease the activation barrier thus the reaction temperature in order to improve selectivity.

Preliminary thermal experiments conducted on epimeric macrocycles 27 at 230°C showed the formation of four tricyclic products. For correct evaluation of the reaction, the separation of the epimeric macrocycles became inevitable. Though hard, they could be separated by chromatography and, to our delight, the more polar one, termed 27R after the absolute configuration at C-1, gave crystals good enough for X-ray analysis to determine its structure

unambiguously (figure 1). The results of the Diels-Alder experiments are summarized in Scheme 5. Accordingly, a pair of tricycles were formed from both epimeric substrates 27S and 27R with a different ratio. After separation of the products from both reactions, thorough inspection of their ¹H NMR spectra revealed a structural cross correlation between those pairs. A lower (7 Hz) coupling constant of the C-4 methyl and the broad high field multiplets of 3-H (~3.3 ppm) and 5-H (~1.8 ppm) in isomers 41 over the respective higher (8 Hz) coupling constant and the narrow low field multiplets (~3.8 ppm) and (3.0 ppm) in isomers 42 confirmed a 3,4-*trans*-diequatorial arrangement in the formers over a 3,4-*trans*-diaxial arrangement in the latters. The total skeletal diastereoselective excess of the expected tricycle 41 was about 30%. It is clear that, under a thermal activation, the *pro*-3 and *pro*-4 functionalities do not induce enough control in the TADA reaction through the equilibrium of transition states 4 and 5, the decisive factor is, in fact, the bulkier CO₂Me-group at the *pro*-12 position which prefers to end up in an *anti*-position with the *pro*-9 functionality.

Scheme 5: (a) 230°C, 3 hours, PhMe, sealed tube.

The next model studies were conducted under Lewis acid catalyzed conditions. A 1:1 epimeric mixture of macrocyclic aldehydes 35 show a clean transformation to a 1:1 mixture of two tricycles in a Lewis-acid catalyzed TADA at 0°C. However, according to their ¹H NMR spectra, these compounds, instead of being epimers, are structural isomers showing the characteristics of isomers 41 and 42. It was verified by repeating the experiment with separated epimers 35R and 35S to obtain clean tricycles 43 and 44a, respectively (Scheme 6). Moreover, by changing the silyloxy group in 44a to 4-nitrobenzoate, the crystalline 44b was obtained, X-ray analysis of which confirmed its structure unambiguously (figure 2). Though the difference in the activation temperature of epimers 35R and 35S reflects the conformational expectations outlined in the introduction, now it is perfectly clear that the original *pro-3(S)*- and 4(*R*)-functionalities intended to induce selectivity in the TADA reaction not only cannot enforce enough control but their influence is totally overruled by the *pro-12* functionality. On the other hand, a position for excellent control has just been located there.

Scheme 6: (a) 5eq. Me₂AlCl, CH₂Cl₂, -40°C, 2 hours. (b) same as (a) at 0°C. (c) Bu₄NF then 4-NO₂-PhCOCl, pyr.

The undisturbed influence of the pro-3(S)- and 4(R)-functionalities upon selectivity control can be weighed by the reaction of 1,1-dicyano-macrocycle 40 symmetrized at the pro-12 position. Though with long reaction period, the best ratio of 45 and 46 (9:2 or 63% d.e.) was achieved at 0°C. After a week, the conversion was 98%, however, selective deprotection of the equatorial silyloxy group also occurred to isolate 45b and 46 (Scheme 7). Monitoring the reaction did not reveal any change in the ratio of Σ 45/46, i.e., the diastereoselective excess remained constant to demonstrate an equal controlling effect of both the protected and the unprotected 8(S)-alcohol.

Scheme 7: (a) 5eq. SnCl₄, CH₂Cl₂, 0°C, 7 days.

Figure 1: X-ray structure of macrocycle 27R in stereoview.

Figure 2: X-ray structure of tricycle 44b in stereoview.

3. Conclusion

With macrocycles 27, the bulkier COOMe group at *pro*-12 ends up preferably *anti* to the C-9 substituent in the TADA products. This result is somewhat surprising as the bulkier COOMe prefers to be "inside" the boat-like conformation (5a and 4b being preferred over 4a and 5b,

respectively) at the transition state level. This tendency is even more pronounced when the COOMe group is replaced by a hydrogen, since the nitrile group is found exclusively *anti* to the formyl group in the TADA products of macrocycles **35**. With macrocycle **40**, there is not an overwhelming preference for the diequatorial transition state **4d**. This could be explained if the "*chair-boat*" transition state **5d** for ring AB can be replaced by a "*boat-boat*" transition state with two quasi equatorial substituents at *pro*-C-3 and C-4. Indeed, there may be no large energy difference between a chair-like or a boat-like ring A conformation at the transition state level. A possible explanation of these results would be that there is a steric or electrostatic repulsion between *syn* aligned *pro*-C-9 and C-12 substituents at the transition state level. However, attempts to obtain theoretical support for this assumption by molecular modeling at the transition state level have not been successful.

From the view of the asymmetric total synthesis of (+)-maritimol, it appears clear now that only one chiral center at the *pro*-C-12 position on the macrocycle is sufficient to obtain complete stereochemical control. We are presently working in this direction while trying, at the same time, to conceive a more convergent synthetic route.

4. Experimental

Reactions were performed under nitrogen or argon atmosphere with flame-dried glassware. All solvents were dried and distilled shortly before use: tetrahydrofuran (THF), ether (Et₂O) from sodium/benzophenone ketyl; benzene, acetonitrile, dichloromethane, dimethylsulfoxide (DMSO) and toluene from calcium hydride; methanol from magnesium/iodine. Most amines were dried over calcium hydride and distilled, hexachloroacetone was also distilled. Cesium carbonate was flame-dried under reduced pressure before use. All other starting materials and reagents were obtained commercially and used as such or purified by standard means. All solvents and reagents purified or dried were stored under nitrogen. Thin-layer chromatography were carried out on precoated glass plates with silica gel 60F-250 (Merck). Materials were detected by visualization under an ultraviolet lamp and by dipping into a solution of phosphoceric acid (10% in ethanol) followed by heating on a hot plate. For flash chromatography, Merck Kieselgel silica gel 60 (230-400 Mesh) was used. Aqueous work-ups were carried out with either ether, hexane, ethyl acetate (EtOAc) washed with reasonable quantity of brine or, with dichloromethane washed with water. All organic solutions were dried over MgSO₄ and evaporated under reduced pressure.

The optical rotation ($[\alpha]_D$) values were obtained with a Perkin-Elmer 141 polarimeter. The infrared (IR) spectra were recorded on a v-scale in cm⁻¹, on a Perkin-Elmer 1600 FT-IR spectrometer. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded on a Bruker AC-300 instrument. For ¹H NMR, the following abbreviations were used: br broad; s singlet; d

doublet; t triplet; q quartet; qn quintet and m multiplet. Chemical shifts are reported in ppm δ units, relative to CHCl₃ (7.26 ppm) or benzene (7.15 ppm) as internal standards. Proton decoupled ¹³C NMR spectra used CDCl₃ (77.00 ppm) or benzene-d₆ (126.00 ppm) as internal standards. When necessary, decoupling experiments and 2D techniques were applied. Mass spectra (MS) were obtained on a VG Micromass ZAB-2F instrument. Crystallographic analyses were performed on an Enraf-Nonius CAD-4 diffractometer (Mo K α radiation; λ =0.70930 Å).

5-(Tetrahydropyranyl)oxy-1-pentyne (7a): To a solution of 4-pentynol (6) (35.3 g, 0.42 mol) and camphorsulfonic acid (9.96 g, 4.20 mmol) in CH₂Cl₂ (1.0 L), 3,4-dihydro-2*H*-pyrane (51.0 mL, 542 mmol) was added dropwise at 0°C. The mixture was stirred overnight. A Na₂CO₃ solution (250 mL, sat.) was added and the resulting mixture was stirred for an additional 15 min. After an aqueous work-up with CH₂Cl₂, the crude product was purified by chromatography (5% EtOAc in hexane) to afford acetal **7a** (63.5 g, 90%) as a colorless oil. IR (film): 3298, 2944, 2871, 2118, 1441. ¹H NMR (CDCl₃): 4.50 (1H, t, J=3.5 Hz, OCHO), 3.75 (2H, m, CH₂OTHP), 3.40 (2H, m, CH₂O), 2.21 (2H, td, J=7.0, 2.5 Hz, CH₂C≡), 1.87 (1H, t, J=2.5 Hz, ≡CH), 1.60 (8H, m, 4xCH₂). ¹³C NMR (CDCl₃): 98.3, 83.5, 68.3, 65.3, 61.6, 30.3, 28.4, 25.2, 19.2, 15.0. MS (*m/z*): 167 (M-H)⁺. HR-MS, calcd for C₁₀H₁₆O₂ (M-H)⁺: 167.1072; found: 167.1074.

5-(p-Methoxybenzyl)oxy-1-pentyne (7b): To a solution of 4-pentynol (6) (27.92 mL, 0.3 mol) in THF (1.5 L), NaH (13.13 g, 300 mmol, 60% dispersion in oil) was added at 0°C. The mixture was allowed to warm to 22°C. After 30 min stirring, *para*-methoxybenzyl chloride (40.48 mL, 299 mmol) and Bu₄NI (4.42 g, 11.9 mmol) were added. The milky white emulsion was refluxed for 2h, then upon cooling, a saturated NH₄Cl solution (500 mL) was added. The phases were separated. After an aqueous work-up with ether, a slush of the crude product and wet silica (200 mL) in 20% EtOAc in hexane (500 mL) was vigorously stirred for 30 min at 22°C to destroy the excess of the reagent then MgSO₄ was added. The mixture was filtered through a silica plug and eluted with EtOAc. The filtrate was evaporated and purified by chromatography (20% EtOAc in hexane) to afford ether **7b** (57.6 g, 95%) as a pale yellow oil. IR (film): 3294, 2936, 2858, 1612, 1512. ¹H NMR (CDCl₃): 7.28-7.25 and 6.89-6.87 (2x2H, m, *p*-CH₃OPh), 4.44 (2H, s, ArCH₂O), 3.81 (3H, s, ArOCH₃), 3.55 (2H, t, J=6.5 Hz, OCH₂), 2.31 (2H, td, J=6.5, 3.0 Hz, CH₂C), 1.94 (1H, t, J=3.0 Hz, CH), 1.82 (2H, qn, J=6.5 Hz, OCH₂O). NMR (CDCl₃): 159.2, 130.6, 129.3, 113.8, 84.0, 72.6, 68.4, 55.3, 28.7, 15.3. MS (*m*/*z*): 204 (M)⁺. HR-MS, calcd for C₁₃H₁₆O₂ (M)⁺: 204.1150; found: 204.1154.

Methyl 6-(tetrahydropyranyl)oxy-2-hexynoate (8a): To a solution of acetal 7a (63.5 g, 378 mmol) in THF (2 L), butyllithium (1.6 M in hexane, 236 mL, 378 mmol) was added dropwise *via* canula at -78°C. The mixture was stirred at -78°C for 30 min, at -20°C for 75 min then methyl

chloroformate (90.0 mL, 1.15 mole) was added. It was stirred for 30 min at -20°C then allowed to slowly warm up to 22°C over 90 min. NH₄Cl solution (300 mL, sat.) was added and the major part of the volatiles were evaporated. After an aqueous work-up with ether, the crude product was purified by chromatography (10 to 15% EtOAc in hexane) to afford **8a** (73.5 g, 86%) as a pale yellow oil. IR (film): 2947, 2872, 2237, 1716, 1437, 1258, 1033. ¹H NMR (CDCl₃): 4.59 (1H, t, J=3.5 Hz, OCHO), 3.85 (2H, m, CH₂OTHP), 3.76 (3H, s, OCH₃), 3.55-3.40 (2H, m, CH₂O), 2.47 (2H, t, J=7.0 Hz, CH₂C), 1.87 (2H, q, J=7.0 Hz, CH₂CH₂OTHP), 1.80-1.45 (6H, m, $3xCH_2$). ¹³C NMR (CDCl₃): 153.2, 98.0, 88.3, 72.4, 64.7, 61.3, 51.7, 30.0, 27.3, 24.9, 18.8, 14.9. MS (*m/z*): 225 (M-H)⁺. HR-MS calcd for C₁₂H₁₈O₄ (M-H)⁺: 225.1127; found: 225.1106.

Ethyl 6-(*p*-methoxybenzyl)oxy-2-hexynoate (8b): The previous procedure was followed with ether 7b (1.21 g, 5.92 mmol), THF (42 mL), butyllithium (4.80 mL, 6.51 mmol, 1.36 M in hexane) and ethyl chloroformate (1.70 mL, 17.8 mmol). Chromatography (15 to 20% EtOAc in hexane) afforded 8b (1.37 g, 83%) as a pale yellow oil. IR (film): 3397 (br), 2938, 2862, 2234, 1708, 1256. ¹H NMR (CDCl₃): 7.25 and 6.87 (2x2H, m, *p*-CH₃OPh), 4.43 (2H, s, ArCH₂O), 4.21 (2H, q, J=7.0 Hz, OCH₂CH₃), 3.80 (3H, s, ArOCH₃), 3.53 (2H, t, J=6.5 Hz, OCH₂), 2.45 (2H, t, J=6.5 Hz, CH₂C≡), 1.85 (2H, qn, J=6.5 Hz, CH₂), 1.30 (3H, t, J=7.0 Hz, CH₂CH₃). ¹³C NMR (CDCl₃): 158.9, 153.3, 130.0, 128.9, 113.5, 88.3, 72.3, 67.6, 61.4, 54.8, 27.5, 15.2, 13.7. MS (*m/z*): 276 (M)⁺. HR-MS, calcd. for C₁₆H₂₀O₄ (M)⁺: 276.1361; found: 276.1354.

(Z)- and (E)-Methyl 2-methoxymethyl-3-methyl-6-(tetrahydropyranyl)oxy-2-hexenoate (9a): To a suspension of CuI (13.2 g, 69.3 mmol, 99,99%) in THF (600 mL), MeLi (98.0 mL, 137 mmol, 1.4 M in ether) was added dropwise *via* canula at 0°C. The mixture was stirred at 0°C for 15 min. After the dissolution of the yellow precipitate formed, a precooled solution of acetylenic ester 8a (5.5 g, 68.5 mmol) in THF (170 mL) was added *via* canula at -78°C. The mixture was stirred for 100 min at -78°C and MOMI (13.8 mL, 158 mmol) was added dropwise. The temperature was kept at -78°C for an additional 30 min, then the cooling bath was replaced by an ice bath. After another 60 min stirring at 0°C, NH₄Cl solution (500 mL, sat.), ether (500 mL) and NH₄OH (5mL, cc.) were added. Following an aqueous work-up with ether, crude 9a (19.5 g) was used in the next step without any characterization and further purification.

(*E*)-2-Methoxymethyl-3-methyl-6-(tetrahydropyranyl)oxy-2-hexenol (10a): To a solution of crude ester 9a (19.5 g, 68.1 mmol) in an 1:1 mixture of hexane/CH₂Cl₂, DIBAL-H (204 mL, 204 mmol, 1 M in hexane) was added dropwise *via* canula over 25 min at -78°C. The mixture was stirred at -78°C for 1 h, then MeOH (70 ml) was slowly added. It was warmed up to 22°C with further 30 min stirring. Ether (1.4 L) was added then the resulting slush was poured into an Erlenmeyer flask containing brine (70 mL). After stirring for 15 min, MgSO₄ (120 g) was added.

After stirring for 10 min, it was filtered under vacuum, washed with EtOAc and evaporated. The ¹H NMR spectra of the crude material indicated an E/Z olefin ratio of 20:1. Chromatography (25 to 50% EtOAc in hexane) afforded **10a** (14.6 g, 83% for 2 steps) as a pale yellow oil. IR (CH₂Cl₂): 3603, 3464, 2945, 1660, 1454. ¹H NMR (CDCl₃): 4.54 (1H, m, OCHO), 4.25 and 4.15 (2H, 2d, J=12 Hz, CH₂OH), 4.08 (2H, s, CH₂OCH₃), 3.85 and 3.70 (2H, 2m, CH₂OTHP), 3.45 (2H, m, CH₂OCHO), 3.35 (3H, s, OCH₃), 2.62 (1H, s, OH), 2.30 (2H, m, CH₂C(CH₃)=), 1.75 (4H, m, 2xCH₂), 1.76 (3H, s, C(CH₃)=), 1.60-1.45 (4H, m, 2xCH₂).¹³C NMR (CDCl₃): 137.4, 130.4, 98.9, 71.3, 66.2, 62.6, 60.7, 58.0, 30.6, 30.3, 27.8, 25.2, 19.7, 17.9. MS (*m/z*): 259 (M+H)⁺, 276 (M+NH₄)⁺. HR-MS, calcd for C₁₄H₂₆O₄ (M+H)⁺: 259.1909; found: 259.1904.

(Z)- and (E)-ethyl 3-methyl-6-(p-methoxybenzyl)oxy-2-methoxymethyl-2-hexenoate (9b): The procedure to prepare 9a was applied with CuI (2.419 g, 12.65 mmol, 99.99%), THF (120 mL), MeLi (17.98 mL, 25.17 mmol, 1.4 M in ether), ester 8b (3.478 g, 12.69 mmol) in THF (15 mL + 2x7 mL rinse) and MOMI (2.44 mL, 28.7 mmol). ¹H NMR spectra of the crude product indicated a Z/E olefin ratio of 9:1. An analytical sample 9b was purified by chromatography (7 to 20% EtOAc in hexane) affording a pale yellow oil for characterization. IR (film): 3401.5 (br), 2978, 1711.0 (br), 1247.0, 1094.5. ¹H NMR (CDCl₃): 7.22-7.23 and 6.88-6.85 (2x2H, 2m, p-CH₃OPh), 4.42 (2H, s, ArCH₂O), 4.20 (2H, q, J=7.0 Hz, OCH₂CH₃), 4.15 (2H, s, CH₂OCH₃), 3.80 (3H, s, ArOCH₃), 3.46 (2H, t, J=6.5 Hz, PMBOCH₂), 3.31 (3H, s, CH₂OCH₃), 2.41 (2H, t, J=8.0 Hz, CH₂C(CH₃)=), 2.04 (3H, s, C(CH₃)=, (E)-isomer), 1.89 (3H, s, C(CH₃)=, (Z)-isomer), 1.86-1.73 (2H, m, CH₂), 1.27 (3H, t, J=7.0 Hz, CH₂CH₃). ¹³C NMR (CDCl₃): 168.5, 159.1, 151.3, 130.6, 129.1, 126.0, 113.6, 72.6, 69.8, 69.1, 60.2, 57.9, 55.2, 33.3, 28.4, 19.8, 14.2. MS (m/z): 304 (M)⁺. HR-MS, calcd. for Cl₁₉H₂₈O₅ (M)⁺: 304.167; found: 304.1671.

(*E*)-3-Methyl-6-(*p*-methoxybenzyl)oxy-2-methoxymethyl-2-hexenol (10b): The procedure to prepare 10a was applied to reduce a crude mixture of 9b (29.87 g, 88.8 mmol) in a mixture of hexane (400 mL) and CH₂Cl₂ (800 mL) with DIBAL-H (270 mL, 266 mmol, 1.0 M in CH₂Cl₂). Chromatography (20 to 60% EtOAc in hexane) afforded 10b (23.62 g, 90%) as a pale yellow oil. IR (film): 3442 (br), 2931, 2865, 1512, 1247. ¹H NMR (CDCl₃): 7.25 and 6.87 (2x2H, 2m, *p*-CH₃OPh), 4.42 (2H, s, ArCH₂O), 4.20 (2H, s(br), CH₂OH), 4.07 (2H, s, CH₂-OCH₃), 3.80 (3H, s, ArOCH₃), 3.42 (2H, t, J=6.0 Hz, CH₂OPMB), 3.34 (3H, s, CH₂OCH₃), 2.52 (1H, s, OH), 2.26 (2H, t, J=7.5 Hz, CH₂C(CH₃)=), 1.75 (3H, s, C(CH₃)=), 1.70 (2H, m, CH₂-CH₂O). ¹³C NMR (CDCl₃): 159.1, 137.7, 130.2, 130.1, 129.2, 113.6, 72.3, 71.7, 68.8, 61.0, 58.1, 55.1, 30.4, 27.9, 18.0. MS (*m*/*z*): 294 (M)⁺. HR-MS, calcd for C₁₇H₂₆O₄ (M)⁺: 294.1831; found: 294.1827.

(Z)-1-(*tert*-Butyldiphenylsilyl)oxy-2-methoxymethyl-3-methyl-6-(tetrahydropyranyl)oxy-2-hexene (11a): A solution of *tert*-butylchlorodiphenylsilane (14.4 g, 52.4 mmol) in CH₂Cl₂ (40 mL) was cannulated into a solution of allyl alcohol **10a** (8.46 g, 32.8 mmol), imidazole (3.79 g, 55.7 mmol) and dimethylaminopyridine (200 mg, 1.64 mmol) in CH_2Cl_2 (130 mL) over 25 min at 22°C. After stirring for 1 h, NaHCO₃ (75 mL, sat.) was added. After stirring this mixture for 15 min, then an aqueous work-up with CH_2Cl_2 , the crude product was passed through a silica plug and eluted with 50% EtOAc in hexane. The filtrate was evaporated to afford alcohol **11a** as a pale yellow oil to be used in the next step without characterization and any further purification.

(Z)-6-(*tert*-Butyldiphenylsily)oxy-5-methoxymethyl-4-methyl-4-hexenol (12a): Pyridinium *p*-toluene-sulfonate (PPTS) (840 mg, 3.28 mmol) was added to a 2-propanol (180 mL) solution of the previous alcohol 11a at 65°C. After 6h stirring, it was cooled to 22 °C for quenching with NaHCO₃ (1 g). The solution was then allowed to stir for another 15 min. The volatiles were evaporated, then EtOAc/hexane (150 ml, 3:7) was added. The salts were filtered off and washed with the same solution. The filtrate was evaporated to near dryness and then chromatographied (20 to 40% EtOAc in hexane) to afford alcohol 12a (12.0 g, 89% for 2 steps) as a pale yellow oil. IR (film): 3423, 3069, 2932, 1660, 1467, 1106. ¹H NMR (CDCl₃): 7.70 and 7.40 (4H+6H, 2m, Ar<u>H</u>), 4.25 (2H, s, C<u>H</u>₂OSi), 3.97 (2H, s, C<u>H</u>₂OCH₃), 3.50 (2H, t, J=6.0 Hz, C<u>H</u>₂OH), 3.22 (3H, s, OC<u>H</u>₃), 2.09 (2H, t, J=7.5 Hz, C<u>H</u>₂C(CH₃)=), 1.77 (3H, s, C(C<u>H</u>₃)=), 1.68 (1H, s, O<u>H</u>), 1.60-1.50 (2H, m, C<u>H</u>₂CH₂OH), 1.06 (9H, s, C(C<u>H</u>₃)₃). ¹³C NMR (CDCl₃): 138.6, 135.5, 133.5, 129.5, 129.4, 127.4, 69.3, 61.7, 61.0, 57.6, 30.8, 30.1, 26.7, 19.1, 18.1. MS (*m*/z): 413 (M+H)⁺, 430 (M+NH₄)⁺. HR-MS, calcd for C₂₅H₃₆O₃Si (M+H)⁺: 413.2512; found: 413.2508.

(*Z*)-1-(*tert*-Butyldimethylsilyl)oxy-2-methoxymethyl-3-methyl-6-(*p*-methoxybenzyl)oxy-2hexene (11b): The procedure to prepare 11a was applied for the protection of alcohol 10b (5.67 g, 19.3 mmol) in THF (400 mL) with imidazole (6.56 g, 96.3 mmol) and *tert*-butylchlorodimethylsilane (11.61 g, 77.0 mmol). A 10 mg sample was purified by chromatography (40% EtOAc in hexane) for characterization to afford 11b as a pale yellow oil. IR (film): 3452 (br), 2931, 2867, 1250. ¹H NMR (CDCl₃): 7.25 and 6.87 (2x2H, 2d, J=8.5 Hz, *p*-CH₃OPh), 4.42 (2H, s, ArCH₂O), 4.21 (2H, s, CH₂OSi), 4.00 (2H, s, CH₂OCH₃), 3.79 (3H, s, ArOCH₃), 3.42 (2H, t, J=6.5 Hz, PMBOCH₂), 3.29 (3H, s, CH₂OCH₃), 2.22 (2H, t, J=7.5 Hz, CH₂C(CH₃)=), 1.78 (3H, s, C(CH₃)=), 1.71 (2H, qn, J=6.5 Hz, CH₂), 0.90 (9H, s, C(CH₃)₃), 0.07 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 159.0, 138.0, 130.6, 130.0, 129.0, 113.6, 72.3, 69.5, 69.1, 60.0, 57.6, 55.1, 30.8, 28.5, 25.9, 25.6, 18.4, -5.42. MS (*m*/*z*): 376 (M-CH₂OH)⁺, 351 (M-C₄H₉)⁺. HR-MS, calcd. for C₂₃H₄₀O₄Si (M-C₄H₉)⁺: 351.1991; found: 351.1997.

(Z)-6-(*tert*-Butyldimethylsilyl)oxy-5-methoxymethyl-4-methyl-2-hexenol (12b): A solution of crude alcohol 11b in CH_2Cl_2 (190 mL) and water (10 mL) was added with DDQ (4.81 g, 21.2 mmol). It was stirred for 4h, then a saturated NaHCO₃ solution (20 mL) was added. The phases

4669

were separated, the organic one was dried, evaporated and the crude product was directly purified by column chromatography (20 to 50% EtOAc in hexane) to afford **12b** (4.08 g, 73% for two steps) as a pale yellow oil. IR (film): 3440.2 (br), 2928.1, 1255.1, 1062.3 (br), 836.4. ¹H NMR (CDCl₃): 4.21 (2H, s, CH₂OSi), 3.97 (2H, s, CH₂OCH₃), 3.54 (2H, t, J=6.5 Hz, CH₂OH), 3.29 (3H, s, OCH₃), 2.31 (2H, t, J=6.5 Hz, CH₂C(CH₃)=), 1.76 (3H, s, C(CH₃)=), 1.68 (2H, qn, J=6.5 Hz, CH₂), 0.90 (9H, s, C(CH₃)₃), 0.09 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 138.9, 129.9, 69.6, 60.8, 60.1, 57.6, 30.2, 30.0, 25.9, 18.3 17.9, -5.5. MS (*m/z*): 243 (M-CH₂OCH₃)⁺, 241 (M-C₄H₉)⁺. HR-MS, calcd. for C₁₅H₂₂O₃Si (M-CH₂OCH₃): 243.1780; found: 243.1775.

(Z)-6-(*tert*-Butyldiphenylsilyl)oxy-5-methoxymethyl-4-methyl-4-hexenal (13a): A solution of DMSO (4.80 mL, 68.0 mmol) in CH₂Cl₂ (10 mL) was added dropwise to a CH₂Cl₂ (120 mL) solution of oxalyl chloride (2.85 mL, 32.6 mmol) at -78°C. It was stirred at -78°C for 1h, then a solution of alcohol 12a (11.7 g, 28.4 mmol) in CH₂Cl₂ (25 mL) was added dropwise *via* canula. The resulting mixture was stirred for an hour at -78°C, then triethylamine (19.4 mL, 139 mmol) was added. Stirring was continued for 15 min at -78°C and 45 min at 22 °C. Water (40 ml) was added and the phases were separated. Following an aqueous work-up with CH₂Cl₂, the crude product was passed through silica (150 mL) and eluted with 30% EtOAc in hexane (750 mL) to afford aldehyde 13a (11.5 g, 99%) as a pale yellow oil after evaporation. IR (CHCl₃): 3072, 3009, 2931, 2859, 1723, 1428. ¹H NMR (CDCl₃): 9.63 (1H, s, CHO), 7.68 and 7.40 (4H+6H, 2m, ArH), 4.23 (2H, s, CH₂OSi), 4.02 (2H, s, CH₂OCH₃), 3.27 (3H, s, OCH₃), 2.45-2.20 (4H, m, 2xCH₂), 1.76 (3H, s, C(CH₃)=), 1.05 (9H, s, C(CH₃)₃). ¹³C NMR (CDCl₃): 201.6, 136.6, 135.6, 133.6, 130.9, 129.6, 127.6, 69.5, 61.1, 57.9, 42.6, 26.8, 26.6, 19.2, 18.2. MS (*m/z*): 353 (M-C₄H₉)⁺. HR-MS, calcd for C₂5H₃4O₃Si (M-C₄H₉)⁺: 353.1573; found: 353.1568.

(Z)-6-(*tert*-Butyldimethylsilyl)oxy-5-methoxymethyl-4-methyl-4-hexenal (13b): The former Swern oxidation was applied to oxidize alcohol 12b (8.92 g, 30.9 mmol) in CH₂Cl₂ (30 mL+ 2x10 ml rinse) with DMSO (5.27 mL, 74.2 mmol) activated with oxalyl chloride (3.26 mL, 34.0 mmol) in CH₂Cl₂ (150 mL) and quenched with triethylamine (21.6 mL, 155 mmol). Chromatography (20 to 40% EtOAc in hexane) afforded 13b (8.24 g, 93%) as a pale yellow oil. IR (film): 2955, 2820, 1727, 1255, 1062, 837. ¹H NMR (CDCl₃): 9.72 (1H, s, C<u>H</u>O), 4.13 (2H, s, C<u>H₂OSi), 3.92 (2H, s, C<u>H₂OCH₃), 3.23 (3H, s, OCH₃), 2.51-2.39 (4H, m, C<u>H₂CH₂CHO), 1.72</u> (3H, s, C(C<u>H₃)=), 0.84 (9H, s, C(CH₃)₃), 0.01 (6H, s, Si(C<u>H₃)₂). ¹³C NMR (CDCl₃): 201.5, 136.4, 130.9, 69.3, 60.1, 57.7, 42.7, 26.5, 25.8, 18.2, -5.6. MS (*m/z*): 255 (M-OCH)⁺, 241 (M-CH₂OCH₃)⁺. HR-MS, calcd. for C₁₅H₃₀O₃Si (M-OCH₃)⁺: 255.1780; found: 255.1775.</u></u></u></u>

(Z)-[3(2R,3S),4R]-3-[8-(*tert*-Butyldiphenylsilyl)oxy-3-hydroxy-7-methoxymethyl-2,6-dimethyl-6-octenoyl]-4-benzyl-2-oxazolidinone (15a): To a solution of 14 (4.40 g, 18.9 mmol) in CH₂Cl₂ (70 mL), dibutylboron triflate (5.45 mL, 21.7 mmol) was added dropwise over 10 min at 0°C. Et₃N (3.42 mL, 24.5 mmol) was added over 12 min then the resulting mixture was cooled to -78°C. A -78°C precooled solution of aldehyde 13a (8.13 g, 19.8 mmol) in CH₂Cl₂ (15 mL) was added dropwise via canula. After stirring for 2h, phosphate buffer (20 mL, pH:7) and methanol (65 mL) were added at -78°C. The temperature was allowed to warm to 0°C over 20 min then a 2:1 mixture (60 mL) of methanol and 30% H_2O_2 was added dropwise. After 30 min stirring at 0° C, the volatiles were evaporated. Following an aqueous work-up with ether, the crude product was chromatographied (25 to 50% EtOAc in hexane) to afford 15a (9.44 g, 74%) as a thick colorless oil. $[\alpha]^{27}_{D}$: -34.0° (c: 1.00, CHCl₃). IR (CHCl₃): 3541, 3013, 2932, 2361, 1781, 1688, 1428, 1384, 1225. ¹H NMR (CDCl₃): 7.75-7.15 (15H, m, ArH), 4.70-4.60 (1H, m, (Bn)CH), 4.28 (2H, AB m, CH₂OSi), 4.16 (2H, d, J=5.0 Hz, (Bn)CHCH₂O), 4.01 and 3.93 (2H, 2d, J=10.5 Hz, CH₂OCH₃), 3.85-3.75 (1H, m, CHOH), 3.67 (1H, m, CH(CH₃)), 3.23 (1H, dd, J=15.0, 3.5 Hz, HCHPh), 3.21 (3H, s, OCH₃), 3.01 (1H, d, J=3.5 Hz, OH), 2.78 (1H, dd, J=15.0, 9.5 Hz, HCHPh), 2.30-2.05 (2H, m, $-CH_2C(CH_3)=$), 1.78 (3H, s, $C(CH_3)=$), 1.60-1.35 (2H, m, CH₂CHOH), 1.21 (3H, d, J=7.0 Hz, CH(CH₃)), 1.06 (9H, s, C(CH₃)₃). ¹³C NMR (CDCl₃): 176.9, 152.8, 138.5, 135.6, 135.0, 133.6, 129.9, 129.5, 129.3, 128.9, 127.5, 127.3, 70.7, 69.3, 66.0, 61.1, 57.8, 55.0, 42.5, 37.7, 32.3, 30.5, 26.9, 19.1, 18.3, 11.1. MS (*m/z*): 644 (M+H)⁺, 661 $(M+NH_4)^+$. HR-MS, calcd for C₃₈H₄₉NO₆Si $(M-C_4H_9)^+$: 586.2625; found: 586.2617.

(Z)-[3(2R,3S),4R]-3-[8-(tert-Butyldimethylsilyl)oxy-3-hydroxy-7-methoxymethyl-2,6dimethyl-6-octenoyl]-4-benzyl-2-oxazolidinone (15b): The previous Evans' aldol protocol was applied to a solution of oxazolidinone 14 (9.69g, 41.6 mmol) in CH₂Cl₂ (100 mL), dibutylboron triflate (12.0 mL, 47.8 mmol), Et₁N (7.53 mL, 54.0 mmol) and a solution of aldehyde 13b (12.5 g, 43.7 mmol) in CH_2Cl_2 (50 mL). The crude product was purified by chromatography (20 to 40% EtOAc in hexane) to afford 15b (18.17 g, 84%, 99% corrected after recovery of unreacted **13b**) as a thick pale yellow oil. $[\alpha]^{25}_{D}$: -49.0° (c: 2, CHCl₃). IR (film): 3446.1 (br), 2930, 1780, 1695, 1459, 1383, 1248, 1210, 1090. ¹H NMR (CDCl₃): 7.36-7.19 (5H, m, ArH), 4.70-4.63 (1H, m, (Bn)CH), 4.29 (1H, d, J=11.0 Hz, HCHOSi), 4.23-4.15 (2H, m, (Bn)CHCH₂O), 4.19 (1H, d, J=11.0 Hz, HCHOSi), 4.03 (1H, d, J=11.0 Hz, HCHOCH₃), 3.95 (1H, d, J=11.0 Hz, HCHOCH₃), 3.84-3.77 (1H, m, CH(OH)), 3.80-3.71 (1H, m, CH(CH₃)), 3.61 (1H, m, OH), 3.30 (3H, s, OCH₃), 3.25 (1H, dd, J=13.5, 3.5 Hz, HCHPh), 2.78, (1H, dd, J=13.5, 9.5 Hz, HCHPh), 2.49 (1H, dt, J=13.5, 9.0 Hz, HCHC(CH₃)=), 2.18 (1H, ddd, J=13.5, 7.5, 5.5 Hz, HCHC(CH₃)=), 1.79 (3H, s, C(CH₃)=), 1.64-1.56 (2H, m, CH₂CHOH), 1.25 (3H, d, J=7.0 Hz, CH(CH₃)), 0.91 (9H, s, C(CH₃)₃), 0.10 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 176.7, 152.9, 138.8, 135.1, 130.1, 129.4, 128.9, 127.3, 70.2, 69.6, 66.0, 60.1, 57.8, 55.1, 42.9, 37.7, 32.1, 30.4, 29.9, 18.4, 10.1, 11.7, -5.4. MS (m/z): 520 (M)⁺, 488 (M-OCH₃)⁺. HR-MS, calcd. for $C_{28}H_{45}O_6NSi(M)^+$: 520.3094; found: 520.3083.

(Z)-(2R,3S)-8-(tert-Butyldiphenylsilyl)oxy-3-hydroxy-N-methoxy-7-methoxymethyl-N,2,6trimethyl-6-octenamide (16a): Me₃Al (37.4 mL, 74.8 mmol, 2.0 M in toluene) (CAUTION: **Pyrophoric**) was added dropwise to a stirred CH_2Cl_2 (165 mL) suspension of N₀-dimethylhydroxylamine hydrochloride (7.34 g, 75.2 mmol) at 0°C. It was stirred for 2h at 22°C then cooled to -20°C. A solution of 15a (22.7 g, 35.3 mmol) in CH₂Cl₂ (55 mL) was added dropwise via canula. It was allowed to warm up to 22°C and the stirring was allowed to continue for an additional 4.5 h. It was poured in a vigorously stirred tartaric acid solution (1.0 M, 215 mL) at 0°C. Stirring was maintained for 1h at 22°C, then the phases were separated. Following an aqueous work-up with CH₂Cl₂, the crude product was purified by chromatography (45% to 65% EtOAc in hexane) to afford 17.5 g alcohol 16a (94%) as a white solid. $[\alpha]_{D}^{25}$ -10.1° (c 1.00, CHCl₃). IR (CHCl₃): 3455, 3067, 2935, 1636, 1466. ¹H NMR (CDCl₃): 7.75-7.65 and 7.45-7.35 (4H+6H, 2m, ArH), 4.31 and 4.22 (2H, 2d, J=11.5 Hz, CH₂OSi), 4.02 and 3.91 (2H, 2d, J=10.5 Hz, CH2OCH3), 3.85 (1H, s, OH), 3.69 (1H, m, CHOH), 3.62 (3H, s, NOCH3), 3.20 (3H, s, CH₂OCH₃), 3.17 (3H, s, NCH₃), 2.85-2.70 (1H, m, CH(CH₃)), 2.30-2.00 (2H, m, CH₂C(CH₃)=), 1.78 (3H, s, C(CH₃)=), 1.65-1.50 and 1.45-1.30 (2H, 2m, CH₂CH(OH)), 1.11 (3H, d, J=7.0 Hz, CH(CH₃)), 1.05 (9H, s, C(CH₃)₃). ¹³C NMR (CDCl₃): 138.9, 135.7, 133.7, 129.5, 127.6, 71.0, 69.4, 61.4, 61.1, 57.8, 39.2, 32.7, 32.0, 30.6, 26.9, 19.2, 18.3, 11.0. MS (m/z): 528 (M+H)⁺, 496 $(M-OCH_3)^+$. HR-MS, calcd for $C_{30}H_{45}NO_5Si (M+H)^+$: 528.3145; found: 528.3142.

(Z)-(2R,3S)-8-(*tert*-Butyldimethylsilyl)oxy-3-hydroxy-N-methoxy-7-methoxymethyl-N,2,6trimethyl-6-octenamide (16b): The previous Weinreb's procedure was applied to a suspension of N,O-dimethylhydroxylamine hydrochloride (6.68 g, 68.4 mmol) in CH₂Cl₂ (140 mL) with Me₃Al (34.2 mL, 68.4 mmol, 2.0 M in toluene) and a solution of **15b** (16.94 g, 32.6 mmol) in CH₂Cl₂ (85 mL). Chromatography (45 to 65% EtOAc in hexane) afforded **16b** (12.31 g, 94%) as a pale yellow oil. $[\alpha]^{25}_{D}$: -23.9° (c: 2, CH₂Cl₂). IR (film): 3450, 2933, 1654, 1463, 1254. ¹H NMR (CDCl₃): 4.29 and 4.17 (2H, 2d, J=11.0 Hz, CH₂OSi), 4.02 and 3.92 (2H, 2d, J=11.0 Hz, CH₂OCH₃), 3.69-3.64 (1H, m, CH(OH)), 3.68 (3H, s, NOCH₃), 3.29 (3H, s, OCH₂CH₃), 3.18 (3H, s, NCH₃), 2.92-2.80 (1H, m, CH(CH₃)), 2.48 (1H, dt, J=13.0, 8.0 Hz, HCHC(CH₃)=), 2.14 (1H, dt, J=13.0, 6.5 Hz, HCHC(CH₃)=), 1.77 (3H, s, C(CH₃)=), 1.58-1.50 (2H, m, CH₂CH(OH)), 1.18 (3H, d, J=7.0 Hz, CH(CH₃)), 0.90 (9H, s, C(CH₃)=), 0.90 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 139.1, 129.9, 70.7, 69.6, 61.5, 60.1, 57.8, 40.1, 32.5, 32.0, 30.5, 26.0, 18.5, 18.1, -5.3. MS (*m*/*z*): 356 (M-C₂H₇O)⁺, 346 (M-C₄H₉)⁺. HR-MS, calcd. for C₂₀H₄₁O₅Si (M-C₂H₇O)⁺: 356.2257 and for (M-C₄H₉)⁺: 346.2050; found: 356.2266 and 346.2042, respectively.

(Z)-(2R,3S)-8-(tert-Butyldiphenylsilyl)oxy-N-methoxy-7-methoxymethyl-N,2,6-trimethyl-3-(triisopropylsilyl)oxy-6-octenamide (17a): To a solution of alcohol 16a (5.00 g, 9.48 mmol) in CH₂Cl₂ (250 mL), 2,6-lutidine (4.50 mL, 38.6 mmol) and triisopropylsilyl triflate (5.78 mL, 21.5 mmol) were added at 0°C. After 10 min, the cooling bath was removed and the stirring was continued for an additional 30 min. The excess of the triflate was destroyed with methanol (7.5 mL) and NH₄Cl (50 mL, sat.). After an aqueous work-up with CH₂Cl₂, the crude product was purified by chromatography (15% EtOAc in hexane) to afford amide **17a** (5.77 g, 89%) as a colorless oil. $[\alpha]^{25}_{D}$: +18.5° (c: 1.00, CHCl₃). IR (film): 3069, 2939, 2865, 1665, 1464. ¹H NMR (CDCl₃): 7.75-7.65 and 7.45-7.35 (4H+6H, 2m, Ar<u>H</u>), 4.28 (2H, AB-d, C<u>H₂OTBDPS</u>), 4.15-4.05 (1H, m, C<u>H</u>(OTIPS)), 4.05 (2H, s, C<u>H₂OCH₃</u>), 3.42 (3H, s, N(OC<u>H₃</u>)), 3.26 (3H, s, CH₂OC<u>H₃</u>), 3.00 (3H, s, N(C<u>H₃</u>)), 2.85-2.75 (1H, m, C<u>H</u>(CH₃)), 2.10-1.90 (2H, m, C<u>H₂C(CH₃)=</u>), 1.75 (3H, s, C(C<u>H₃)=</u>), 1.60-1.40 (2H, m, C<u>H₂CH(OTIPS</u>)), 1.09 (3H, d, J=7.0 Hz, CH(C<u>H₃</u>)), 1.03 (9H, s, C(C<u>H₃)=</u>), 1.01 (21H, s, TIPS). ¹³C NMR (CDCl₃): 137.8, 135.5, 133.9, 129.5, 127.6, 73.5, 69.0, 61.1, 61.0, 57.8, 40.2, 34.7, 32.0, 29.4, 26.8, 19.3, 18.4, 18.2, 13.0, 12.8. MS (*m/z*): 640 (M-C₃H₇)⁺. HR-MS, calcd for C₃₉H₆₅NO₅Si₂ (M-C₃H₇)⁺: 640.3853; found: 640.3848.

(Z)-(2R,3S)-8-(tert-Butyldimethylsilyl)oxy-N-methoxy-7-methoxymethyl-N,2,6-trimethyl-3-(triisopropylsilyl)oxy-6-octenamide (17b): The previous procedure was applied to protect hydroxyamide 16b (559 mg, 1.38 mmol) in CH₂Cl₂ (6 mL) with 2,6-lutidine (657 µL, 5.68 mmol) and triisopropylsilyl triflate (856 µL, 3.19 mmol). Chromatography (20% EtOAc in hexane) afforded 17b (733 mg, 94%) as a colorless oil. $[\alpha]^{25}_{D}$: +17.6° (c: 1.83, CH₂Cl₂). IR (film): 2941, 2865, 1665, 1463, 1253. ¹H NMR (CDCl₃): 4.21-4.15 (1H, m, C<u>H</u>(OTIPS)), 4.19 (2H, s, CH₂OTBDMS), 3.97 (2H, s, CH₂OCH₃), 3.68 (3H, s, N(OCH₃)), 3.28 (3H, s, CH₂OCH₃), 3.16 (3H, s, N(CH₃)), 3.02-2.92 (1H, m, CH(CH₃)), 2.23-2.04 (2H, m, CH₂C(CH₃)=), 1.75 (3H, s, C(CH₃)=), 1.65-1.55 (2H, m, CH₂CH(OTIPS)), 1.20 (3H, d, J=7.0 Hz, CH(CH₃)), 1.07 (21H, s, TIPS), 0.89 (9H, s, C(CH₃)₃), 0.06 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 137.9, 129.7, 73.8, 68.9, 61.3, 60.1, 57.8, 40.5, 34.9, 32.2, 29.5, 26.0, 18.5, 18.3, 18.3, 13.4, 13.2, -5.3. MS (m/z): 516 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₉H₆₁O₅Si₂ (M-C₃H₇)⁺: 516.3540; found: 516.3535.

(Z)-(2R,3S)-8-(tert-Butyldiphenylsilyl)oxy-7-methoxymethyl-2,6-dimethyl-3-(triisopropylsilyl)oxy-6-octenal (18a): To a solution of amide 17a (16.4 g, 24.0 mmol) in THF (250 mL), DIBAL-H (72.0 mL, 72.0 mmol, 1.0 M in CH₂Cl₂) was added dropwise over 0.5h at -78°C. It was stirred for 1h, then acetone (4 mL) was added. Stirring was continued for an additional 5 min at -78°C, then the mixture was poured in a vigorously stirred mixture of hexane (170 mL) and tartaric acid (260 mL, 1M). After 1 h of stirring and an aqueous work-up with ether, the crude product was passed through a plug of silica and eluted with a 40% EtOAc in hexane. Evaporation afforded aldehyde 18a (14.9 g, 99%) as a colorless oil to be used in the next step without delay. $[\alpha]^{25}_{D}$: -8.3° (c: 1.00, CHCl₃). IR (film): 3069, 2940, 1729, 1661, 1464. ¹H NMR (CDCl₃): 9.73 (1H, s, CHO), 7.75-7.65 and 7.45-7.35 (4H+6H, 2m, ArH), 4.22 (2H, s, CH₂OTBDPS), 4.15 (1H, m, C<u>H</u>(OTIPS)), 4.04 (2H, s, C<u>H</u>₂OCH₃), 3.28 (3H, s, OC<u>H</u>₃), 2.24 (1H, qd, J=7.0 Hz, 3.0 Hz, C<u>H</u>(CH₂)CHO), 1.90-1.80 (2H, m, C<u>H</u>₂C(CH₃)=), 1.76 (3H, s, C(C<u>H</u>₃)=), 1.55-1.45 (2H, m, C<u>H</u>₂(OTIPS), 1.04 (9H, s, C(C<u>H</u>₃)₃), 0.98 (21H, s, TIPS), 0.92 (3H, d, J=7.0 Hz, CH(C<u>H</u>₃)CHO). ¹³C NMR (CDCl₃): 205.0, 137.3, 135.6, 133.7, 130.0, 129.6, 127.6, 72.6, 69.1, 61.0, 57.9, 50.6, 33.4, 30.7, 26.8, 19.3, 18.5, 18.1, 12.7, 6.9. MS (*m*/*z*): 581 (M-C₃H₇)⁺, 567 (M-C₄H₉)⁺. HR-MS, calcd for C₃₇H₆₀O₄Si₂ (M-C₃H₇)⁺: 581.3482; found: 581.3478.

(Z)-(2R,3S)-8-(tert-Butyldimethylsilyl)oxy-7-methoxymethyl-2,6-dimethyl-3-(triisopropylsilyl)oxy-6-octenal (18b): The previous procedure was applied to reduce amide 17b (435 mg, 0.78 mmol) in THF (6.9 mL) with DIBAL-H (2.6 mL, 3.89 mmol, 1.5 M in toluene). Chromatography (20% EtOAc in hexane) afforded 18b (374 mg, 96%) as a pale yellow oil. $[\alpha]^{25}_{D}$ -17.6° (c: 2, CH₂Cl₂). IR (film): 2943, 2865, 1729, 1464. ¹H NMR (CDCl₃): 9.85 (1H, s, CHO), 4.31 (1H, td, J=6.5, 3.0 Hz, CH(OTIPS)), 4.17 (2H, s, CH₂OTBDMS), 3.98 (2H, s, CH₂OCH₃), 3.30 (3H, s, OCH₃), 2.51 (1H, qd, J=7.0, 3.0 Hz, CH(CH₃)CHO), 2.22-2.00 (2H, m, CH₂C(CH₃)=), 1.78 (3H, s, C(CH₃)=), 1.72-1.55 (2H, m, CH₂CH(OTIPS)), 1.09 (3H, d, J=7.0 Hz, CH(CH₃)CHO), 1.05 (21H, s, TIPS), 0.90 (9H, s, C(CH₃)₃), 0.07 (6H, s, Si(CH₃)₂). ¹³C NMR (CDCl₃): 205.2, 137.4, 130.3, 73.0, 69.1, 60.1, 57.9, 51.0, 33.4, 30.8, 26.0, 18.6, 18.2, 12.8, 7.4, -5.3. MS (*m*/*z*): 457 (M-C₃H₇)⁺, 443 (M-C₄H₉)⁺. HR-MS, calcd. for C₂₇H₅₆O₄Si₂ (M-C₃H₇)⁺: 457.3169; found: 457.3160.

2(Z),8(Z)- and 2(E),8(Z)-(4R,5S)-10-(tert-Butyldiphenylsilyl)oxy-N-methoxy-9-methoxymethyl-N,4,8-trimethyl-5-(triisopropylsilyl)oxy- 2,8-decadienamide (19): NaH (1.20 g, 31.2 mmol, 60% dispersion in oil) was slowly added to a stirred THF (240 mL) solution of diethyl (Nmethoxy-N-methylcarbamoylmethyl)phosphonate (7.47 g, 31.2 mmol) at 0°C. After 30 min stirring, a solution of aldehyde 18a (14.9 g, 23.9 mmol) in THF (25mL) was added by canula. Upon removing the ice bath, the stirring was continued for 2.5 hours at 22 °C, then the reaction was quenched with NH₄Cl (100 mL, sat.). Following an aqueous work-up with ether, the crude product was purified by chromatography (20 to 30% EtOAc in hexane) to separate the isomers to yield 14.60g 19(E) (86%) and 2.33g 19(Z) (14%) as pale yellow oils. 19(E): $[\alpha]^{25}_{D}$: -4.5° (c: 1, CHCl₃). IR (film): 3070, 2940, 2865, 1740, 1667, 1636, 1463, 1381. ¹H NMR (CDCl₃): 7.75-7.35 (10H, m, ArH), 7.07 (1H, dd, J=15.5 Hz, 7.0 Hz, (CH₃)CHC(H)=), 6.33 (1H, d, J=15.5 Hz, C=C(H)C=O), 4.22 (2H, s, CH₂OTBDPS), 4.03 (2H, s, CH₂OCH₃), 3.70 (1H, m, CHOTIPS), 3.66 (3H, s, N(OCH₃)), 3.27 (3H, s, CH₂OCH₃), 3.23 (3H, s, N(CH₃)), 2.45-2.35 (1H, m, $(CH_3)CHC(H)=$, 2.05-1.85 (2H, m, $CH_2C(CH_3)=$), 1.74 (3H, s, $C(CH_3)=$), 1.45-1.35 (2H, m, CH₂CHOTIPS), 1.04 (9H, s, C(CH₃)₃), 1.00 (21H, s, TIPS), 0.92 (3H, d, J=7.0 Hz, CH(CH₃). ¹³C NMR (CDCl₃): 166.9, 150.4, 138.3, 135.6, 133.8, 129.5, 127.5, 118.0, 76.0, 69.2, 61.5, 61.0, 57.8, 41.5, 33.0, 32.3, 31.0, 26.8, 19.3, 18.5, 18.2, 13.6, 12.9. MS (m/z): 666 $(M-C_3H_7)^+$.

HR-MS, calcd. for $C_{38}H_{60}NO_5Si_2$ (M-C₃H₇)⁺: 666.4010; found: 666.4003. **19**(**Z**): $[\alpha]^{25}_{D}$: +43.9° (c: 1, CHCl₃). IR (film): 3048, 2941, 2816, 1658, 1463, 1254. ¹H NMR (CDCl₃): 7.55 (10H, m, Ar<u>H</u>), 6.20-6.15 (2H, m, C<u>H</u>=C<u>H</u>), 4.24 (2H, s, C<u>H</u>₂OTBDPS), 4.03 (2H, s, C<u>H</u>₂OCH₃), 3.77 (1H, m, C<u>H</u>OTIPS), 3.66 (3H, s, N(OC<u>H</u>₃)), 3.60-3.50 (1H, m, (CH₃)C<u>H</u>CH=), 3.25 (3H, s, CH₂OC<u>H</u>₃), 3.18 (3H, s, N(C<u>H</u>₃), 2.10-1.90 (2H, m,C<u>H</u>₂C(CH₃)=), 1.76 (3H, s, C(CH₃)=), 1.60-1.40 (2H, m, C<u>H</u>₂CHOTIPS), 1.04 (9H, s, C(C<u>H</u>₃)₃), 0.98 (21H, s, TIPS), 0.88 (3H, d, J=7.0Hz, CH(C<u>H</u>₃)). ¹³C NMR (CDCl₃): 167.2, 151.5, 138.3, 135.6, 133.9, 129.4, 129.3, 127.5, 116.5, 75.9, 69.0, 61.4, 61.0, 57.7, 36.4, 33.8, 32.1, 30.7, 26.9, 19.3, 18.8, 18.2, 13.3, 12.9. MS (*m*/*z*): 666 (M-C₃H₇)⁺. HR-MS, calcd. for C₃₈H₆₀NO₅Si₂ (M-C₃H₇)⁺: 666.4001; found: 666.4003.

2(E),8(Z)-(4R,5S)-10-(tert-Butyldiphenylsilyl)oxy-9-methoxymethyl-4,8-dimethyl-5-(triisopropylsilyl)oxy-2,8-decadienal (20): This aldehyde was prepared the same way as aldehyde **18a** in 99% yield as a pale yellow oil and used without delay in the next step. **20:** $[\alpha]^{25}_{D}$: -10.2° (c: 1, CHCl₃). IR (film) : 3071, 2942, 2865, 1694, 1635, 1463. ¹H NMR (CDCl₃): 9.46 (1H, d, J=8.0 Hz, CHO), 7.75-7.35 (10H, m, ArH), 6.96 (1H, dd, J=15.5, 6.0 Hz, (CH₃)CHC(H)=), 6.04 (1H, dd, J=15.5, 8.0 Hz, C=C(H)CHO), 4.22 (2H, s, CH₂OTBDPS), 4.02 (2H, s, CH₂OCH₃), 3.73 (1H, m, CHOTIPS), 3.28 (3H, s, OCH₃), 2.55-2.45 (1H, m, (CH₃)CHC(H)=), 1.93 (2H, m, CH₂C(CH₃)=), 1.75 (3H, s, C(CH₃)=), 1.45-1.35 (2H, m, CH₂CHOTIPS), 1.04 (9H, s, C(CH₃)₃), 1.01 (21H, s, TIPS), 0.92 (3H, d, J=7.0 Hz, CH(CH₃)). ¹³C NMR (CDCl₃): 193.78, 161.10, 137.62, 135.49, 133.61, 132.12, 129.73, 129.47, 127.47, 75.52, 69.04, 60.94, 57.84, 41.67, 32.75, 30.87, 26.73, 19.16, 18.44, 18.06, 12.70. MS (*m*/*z*): 593 (M-C₄H₉)⁺. HR-MS, calcd. for C₃₅H₅₃O₄Si₂ (M-C₄H₉)⁺: 593.3482; found: 593.3475.

Methyl 2(Z),4(E),10(Z)-(6R,7S)-12-(*tert*-butyldiphenylsilyl)oxy-11-methoxymethyl-6,10dimethyl-7-(triisopropylsilyl)oxy-2,4,10-dodecatrienoate (21): A solution of potassium bistrimethylsilyl amide (5.72 mL, 2.86 mmol, 0.5 M in toluene) was added dropwise to a stirred THF (40 mL) solution of bis (2,2,2-trifluoroethyl) methoxycarbonylmethylphosphonate (947 mg, 2.97 mmol) and 18-Crown-6 (3.27 g, 12.4 mmol) at -78°C. After an hour stirring at -78°C, a solution of aldehyde 20 (1.49 g, 2.29 mmol) in THF (15 mL) was cannulated to the reagent. It was stirred for 2.5 h then, after allowing it to warm to 22 °C, the reaction was quenched with NH₄Cl (40 mL, sat.). Following an aqueous work-up with ether, the crude product was purified by chromatography (7% EtOAc in hexane) to yield 1.44 g (89%) ester 21 (*Z/E* ratio 30:1) as a pale yellow oil. $[\alpha]^{25}_{D}$: -8.6° (c: 1, CHCl₃). IR (film): 3071, 2943, 2890, 1719, 1463, 1112. ¹H NMR (CDCl₃): 7.75-7.25 (11H, m, Ar<u>H</u> and HC=C<u>H</u>HC=CHCO₂CH₃), 6.51 (1H, dd, J=11.5, 11.5 Hz, <u>HC</u>=CHCO₂CH₃), 6.17 (1H, dd, J=15.5, 7.0 Hz, <u>HC</u>=CHHC=CHCO₂CH₃), 5.56 (1H, d, J=11.5 Hz, HC=C<u>H</u>CO₂CH₃), 4.22 (2H, s, C<u>H</u>₂OTBDPS), 4.03 (2H, s, C<u>H</u>₂OCH₃), 3.72 (3H, s, CO₂C<u>H</u>₃), 3.65 (1H, m, C<u>H</u>OTIPS), 3.27 (3H, s, OC<u>H</u>₃), 2.40 (1H, m, C<u>H</u>(CH₃)), 1.95-1.85 (2H, m, C<u>H</u>₂C(CH₃)=), 1.74 (3H, s, C(C<u>H</u>₃)=), 1.45-1.30 (2H, m, (TIPSO)CHC<u>H</u>₂), 1.04 (9H, s, C(C<u>H</u>₃)₃), 0.99 (21H, s, TIPS), 0.91 (3H, d, J = 7.0 Hz, CH(C<u>H</u>₃)). ¹³C NMR (CDCl): 166.9, 148.4, 145.7, 138.3, 135.6, 133.8, 129.5, 127.6, 126.0, 115.2, 76.3, 69.1, 61.0, 57.9, 51.0, 41.7, 33.0, 31.0, 26.9, 19.3, 18.6, 18.2, 13.5, 12.9. MS (m/z): 706 (M)⁺, 675 (M-OCH₃)⁺. HR-MS, calcd. for C₃₉H₅₉O₅Si₂ (M-C₃H₇)⁺: 663.3901; found: 663.3894.

2(Z),4(E),10(Z)-(6R,7S)-12-(tert-butyldiphenylsilyl)oxy-11-methoxymethyl-6,10-dimethyl-7-(triisopropylsilyl)oxy-2,4,10-dodecatrienol (22): DIBAL-H (4.6 mL, 4.65 mmol, 1.0 M in CH₂Cl₂) was added dropwise to a CH₂Cl₂ (20 mL) solution of ester **21** (1.31 g, 1.85 mmol) at -78°C. After 1h stirring, the excess reagent was destroyed with methanol (2.5 mL). Sodium tartrate (25 mL, sat.) was added, then it was allowed to warm to 22°C in 1 h. Following an aqueous work-up with CH₂Cl₂, chromatography (20-40% EtOAc in hexane) afforded 1.23 g (98%) alcohol 22 as a colorless oil. $[\alpha]^{25}_{D}$: -1.2° (c: 1, CHCl₃). IR (film): 3398, 2939, 2865, 1656, 1464. ¹H NMR (CDCl₃): 7.75-7.35 (10H, m, ArH), 6.21 (1H, dd, J=15.0, 11.0 Hz, CH-HC=CH), 6.01 (1H, dd, J=11.0, 11.0Hz, HC=CHCH₂OH), 5.81 (1H, dd, J=15.0, 7.0 Hz, CH-<u>HC</u>=CH), 5.48 (1H, dt, J=11.0, 7.0 Hz, HC=CHCH₂OH), 4.26 (2H, d, J=7.0 Hz, CH₂OH), 4.23 (2H, s, CH₂OTBDPS), 4.03 (2H, s, CH₂OCH₃), 3.62 (2H, m, CHOTIPS), 3.27 (3H, s, CH₂- OCH_3), 2.30 (1H, m, CH(CH₃)), 2.0-1.90 (2H, m, CH₂C(CH₃)=), 1.75 (3H, s, C(CH₃)=), 1.45-1.30 (3H, m, CH2CHOTIPS and OH), 1.04 (9H, s, C(CH3)3), 1.00 (21H, s, TIPS), 0.88 (3H, d, J = 7.0 Hz, CH(CH₃)). ¹³C NMR (CDCl₃): 139.8, 138.5, 135.5, 133.8, 131.1, 129.5, 129.4, 127.5, 127.4, 124.0, 76.5, 69.1, 61.0, 58.7, 57.8, 41.5, 32.9, 30.9, 26.8, 19.2, 18.5, 18.2, 14.1, 12.9. MS (m/z): 647 (M-OCH₃)⁺. HR-MS, calcd. for C₃₇H₅₇O₄Si₂ (M-C₄H₉)⁺: 621.3795; found: 621.3801.

Methyl 4(Z),6(E),12(Z)-(8R,9S)-14-(tert-butyldiphenylsilyl)oxy-2-cyano-13-methoxy-

methyl-8,12-dimethyl-9-(triisopropylsilyl)oxy-4,6,12-tetradecatrienoate (24): To a stirred THF (50 mL) solution of alcohol 22 (2.81 g, 4.14 mmol), PPh₃ (1.56 g, 5.95 mmol) and, after cooling to -40 °C, HCA (900 μ L, 5.93 mmol) was added. After another 15 min stirring at -40 °C, the reaction was allowed to rewarm. By this time, chloride 23 was formed. It was then cannulated into a preformed solution of sodium methyl cyanoacetate made by a dropwise addition of a solution of sodium methyl cyanoacetate made by a dropwise addition of methyl cyanoacetate (14.7 mL, 167 mmol) in MeOH (60 mL) and THF (80 mL) at 23 °C followed by 30 min stirring. After 3h stirring at 23 °C, the reaction was quenched with NH₄Cl (75 mL, sat.) at 0 °C. Following the evaporation of the bulk of the solvents and an aqueous work-up with ether, the crude product was purified by chromatography (30% EtOAc in hexane) to yield 2.58 g (82% over two steps) epimeric cyanoester 24 as a pale yellow oil. IR (film): 2942, 2865, 2250, 1754, 1654, 1463. ¹H NMR (CDCl₃): 7.75-7.30 (10H, m, Ar<u>H</u>), 6.20-6.05 (2H, m, HC=CHCH=CH) 5.90-5.80 (1H, m, CH-<u>HC</u>=CH), 5.30-5.20 (1H, m, HC=C<u>H</u>CH₂), 4.23 (2H, s, C<u>H</u>₂OTBDPS), 4.03

 $(C\underline{H}_2OCH_3)$, 3.80 (3H, s, $CO_2C\underline{H}_3$), 3.63 (1H, m, $C\underline{H}OTIPS$), 3.52 (1H, t, J=7.0 Hz, $C\underline{H}(CN)$), 3.27 (3H, s, $CH_2OC\underline{H}_3$), 2.78 (2H, m, $C\underline{H}_2CH(CN)$), 2.30 (1H, m, $C\underline{H}(CH_3)$), 2.00-1.90 (2H, m, $C\underline{H}_2C(CH_3)=$), 1.75 (3H, s, $C(CH_3)=$), 1.45-1.30 (2H, m, $CH(OTIPS)C\underline{H}_2$), 1.04 (9H, s, $C(C\underline{H}_3)_3$), 1.00 (21H, s, TIPS), 0.88 (3H, d, J=7.0 Hz, $CH(C\underline{H}_3)$). ¹³C NMR (CDCl₃): 166.1, 140.7, 138.4, 135.6, 133.8, 133.5, 129.5, 127.6, 123.5, 120.9, 116.1, 76.5, 69.2, 61.0, 57.9, 53.4, 41.6, 37.4, 32.9, 31.0, 28.0, 26.8, 19.3, 18.6, 18.2, 14.1. MS (m/z): 647 (M-C₃H₇)⁺. HR-MS, calcd. for C₄₁H₆₀NO₅Si₂ (M-C₄H₉)⁺: 702.4010; found: 702.4005.

Methyl 4(*Z*),6(*E*),12(*Z*)-(8*R*,9*S*)-2-cyano-14-hydroxy-13-methoxymethyl-8,12-dimethyl-9-(triisopropylsilyl)oxy-4,6,12-tetradecatrienoate (25): PTSA (363 mg, 1.91 mmol) was added to a MeOH (50 ml) solution of silylether 24 (1.45 g, 1.91 mmol) at 23 °C. After 4 h stirring, NaHCO₃ (193 mg, 2.3 mmol) was added. Solvents were evaporated. An aqueous work-up with EtOAc, chromatography (0 to 40% EtOAc in hexane) afforded 250 mg (17%) silylether 24 and 715 mg (72%, 86% corrected) alcohol 25 as a pale yellow oil. IR (film): 3450, 2944, 2251, 1751, 1656. ¹H NMR (CDCl₃): 6.35-6.10 (2H, m, HC=CHCH=CHCH₂) 5.90 (1H, m, HC=CHCH=CHCH₂), 5.35-5.25 (1H, m, HC=CHCH₂), 4.16 (2H, d, J=1 Hz, CH₂OH), 4.05 (CH₂OCH₃), 3.80 (3H, s, CO₂CH₃), 3.76 (1H, m, CHOTIPS), 3.58 (1H, m, CH(CN)), 3.34 (3H, s, CH₂OCH₃), 2.85-2.75 (2H, m, CH₂CH(CN)), 2.47 (1H, m, CH(OTIPS)CH₂), 1.06 (9H, s, C(CH₃)₃), 1.06 (21H, s, TIPS), 1.02 (3H, d, J = 7.0 Hz, CH(CH))). ¹³C NMR (CDCl₃): 166.2, 140.4, 138.4, 133.4, 129.1, 123.6, 121.1, 116.1, 76.3, 71.9, 61.5, 58.3, 53.5, 41.9, 41.8, 37.4, 33.2, 30.6, 30.5, 28.0, 18.5, 18.2, 14.9, 14.7, 13.0. MS (*m*/*z*): 489 (M-CH₃OH)⁺. HR-MS, calcd. for C₂₈H₄₇NO₄Si (M-CH₃OH)⁺: 489.3274; found: 489.3285.

Methyl 4(Z),6(E),12(Z)-(8R,9S)-14-chloro-2-cyano-13-methoxymethyl-8,12-dimethyl-9-(triisopropylsilyl)oxy-4,6,12-tetradecatrienoate (26): PPh₃ (731 mg, 2.79 mmol) and HCA (420 mg, 2.77 mmol) was sequentially added to a stirred CH_2Cl_2 (10 mL) solution of alcohol 25 (1.32 g, 2.53 mmol) at -40 °C. After 15 min stirring, the mixture was warmed to 22 °C. The crude product was purified directly by chromatography (0-25% EtOAc in hexane) to yield 1.30 g (95%) chloride 26 as a pale yellow oil used without delay for macrocyclization.

Methyl $3(Z),5(E),11(Z)-(1\xi,7R,8S)-1$ -cyano-12-methoxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11-cyclotridecatrienecarboxylate (27): A solution of chloride 26 (360 mg, 667 µmol) in MeCN (10 mL) was syringe pumped over 10 h into a stirred MeCN (400 mL) suspension of Cs₂CO₃ (1.12 g, 3.44 mmol) at 70°C. Following 2 h stirring, the bulk of the solvent was stripped, the residue was dissolved in hexane/ether (100 mL, 1:1) then water (30 mL) was added. Following an usual work-up, chromatography (0-20% EtOAc in hexane) afforded 272 mg (81%) macrocycle 27 as a 1:1 mixture of epimers. It was separated for characterization and model studies. 275: $[\alpha]^{28}$; +59,2° (c; 1, CHCl₃), IR (CDCl₃); 2946, 2868, 2244, 1742, 1463, ¹H NMR (CDCl₃): 6.55 (1H, m, 5-H), 6.50-6.35 (1H, m, 4-H), 5.60 (1H, m, 3-H), 5.49 (1H, dd, J=15.0, 10.0 Hz, 6-<u>H</u>), 3.93 (2H, s, CH₂OCH₃), 3.78 (3H, s, CO₂CH₃), 3.62 (1H, m, 8-<u>H</u>), 3.25 (3H, s, CH₂OCH₃), 3.01 (1H, m, 2-H_A), 2.93 and 2.50 (2H, 2d, J=15.0 Hz, 13-H₂), 2.58 (1H, dd, J=13.0, 7.0 Hz, 2-HB), 2.45-2.30 (1H, m, 7-H), 2.19 and 2.02 (2H, 2td, J=13.0, 4.0 Hz, 10-H2), 1.73 (3H, s, 11-CH₃), 1.65-1.50 and 1.45-1.30 (1H, m, 9-H₂), 1.13 (3H, d, J=6.5 Hz, 7-CH₃, 1.08 (21H, s, TIPS). ¹³C NMR (CDCl₃): 169.8, 139.7, 138.0, 135.1, 126.2, 125.3, 122.2, 120.0, 77.6, 69.8, 58.0, 53.3, 47.4, 45.5, 36.8, 36.4, 34.9, 29.2, 19.4, 18.8, 18.5, 13.1. MS (m/z): 503 (M)⁺, 460 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₉H₄₉NO₄Si (M)⁺: 503.3431; found: 503.3427. **27***R*: $[\alpha]^{28}_{D}$: +79.2° (c: 1, CHCl₃). IR (film): 2948, 2250, 1743, 1225. ¹H NMR (CDCl₃): 6.51 (1H, m, 5-H). 6.42 (1H, m, 4-H), 5.70 (1H, m, 6-H), 5.43 (1H, m, 3-H), 3.90 (2H, AB-d, CH₂OCH₃), 3.82 (3H, s, CO₂CH₃), 3.80 (1H, m, 8-H), 3.19 (3H, s, CH₂OCH₃), 3.00-2.90 (1H, m, 2-H_A), 2.79 and 2.61 $(2H, 2d, J=15.0 \text{ Hz}, 13-\underline{H}_2), 2.69 (1H, dd, J=13.5, 7.5 \text{ Hz}, 2-\underline{H}_B), 2.55-2.40 (1H, m, 7-H), 2.34$ and 1.99 (2H, 2td, J=13.0, 4.0 Hz, 10-H2), 1.74 (3H, s, 11-CH3), 1.70-1.55 and 1.35-1.20 (2H, 2m, 9-H₂), 1.10 (24H, s, 7-CH₃ and TIPS). ¹³C NMR(CDCl₃): 169.9, 138.7, 137.6, 134.5, 125.9, 125.3, 121.9, 119.4, 76.2, 70.8, 57.8, 53.3, 47.9, 44.0, 36.2, 34.5, 32.8, 28.1, 19.2, 18.2, 17.5, 12.8. MS (m/z): 503 (M)⁺. HR-MS, calcd. for C₂₉H₄₉NO₄Si (M)⁺: 503.3431; found: 503.3427.

2(Z),4(E),10(E)-(6R,7.5)-11-methoxymethyl-6,10-dimethyl-7-(triisopropylsilyl)oxy-2,4,10-dodecatrien-1,12-diol (28): The same procedure as for allyl alcohol **25** was used to deprotect silylether **22**. Chromatography (25-60% EtOAc in hexane) afforded diol **28** in 72% (91% corr.) yield (21% silylether **22** was recovered). Diol **28:** $[\alpha]^{25}_{D.}$: - 5.7° (c:1, CHCl₃). IR (film): 3363, 2942, 2866, 1654, 1463, 1382. ¹H NMR (CDCl₃): 6.47 (1H, dd, J=15.0, 11.0 Hz, CH-HC=CH), 6.08 (1H, t, J=11.0 Hz, HC=CHCH₂), 5.74 (1H, dd, J=15.0, 8.5 Hz, CH-HC=CH), 5.56 (1H, m, HC=CHCH₂), 4.39 (1H, dd, J=13.0, 8.5 Hz, CH=CHCH_A), 4.20-4.00 (5H, m, CH=CHCH_B, CH₂OH and CH₂OCH₃), 3.75 (1H, m, CH(OTIPS)), 3.34 (3H, s, OCH₃), 2.50-2.40 (1H, m, CH(CH₃)), 2.33 and 2.05 (2H, 2td, J=13.0, 4.5 Hz, CH₂C(CH₃)=), 2.25 (2H, s, 2xOH), 1.74 (3H, s, C(CH₃)=), 1.70-1.55 and 1.50-1.35 (2H, 2m, CH(OTIPS)CH₂), 1.08 (21H, s, TIPS), 1.06 (3H, d, J=7.0 Hz, CH(CH₃)). ¹³C NMR (CDCl₃): 139.0, 138.7, 130.8, 128.8, 128.3, 124.4, 76.0, 72.2, 61.6, 58.2, 42.6, 33.8, 29.0, 18.5, 18.3, 16.6, 12.9. MS (*m*/*z*): 441 (M+H)⁺, 458 (M+NH₄)⁺. HR-MS, calcd. for C₂₅H₄₉O₄Si (M+H)⁺: 441.3400; found: 441.3412, and calcd. for C₂₅H₅₂NO₄Si (M+NH₄)⁺: 458.3665; found: 458.3661.

Methyl 3(Z),5(E),11(Z)-(1 ξ ,7R,8S)-1-cyano-12-methoxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11-cyclotridecatrienecarboxylate (27) (via dialkylation from diol 28): To a stirred solution of diol 28 (11.8 mg, 27.3 μ mol) in 500 μ L CH₂Cl₂, PPh₃ (15.8 mg, 2.2 eq) and HCA (9.1 μ L, 2.2 eq) was added at -78°C. The temperature was allowed to warm up to 22°C in 15 min then the mixture was adsorbed on a plug of silica having been washed with 50% ether in hexane. The plug was eluted fast with hexane to get rid of the chloroacetones then with 50% ether in hexane. Fractions of dichloride **29** were collected and evaporated to use immediately for the macrocyclization as follows. A mixture of dichloride **29** and methyl cyanoacetate (33 μ L, 1.2 eq, 1 M solution in MeCN) in MeCN (3 mL) was injected by syringe pump over 22 min into a suspension of Cs₂CO₃ (89 mg, 10 eq) in acetonitrile (30 mL) at 70-75 °C. The same work-up as for the stepwise reaction furnished 8.0 mg (58%) identical epimeric mixture of macrocycle **27**.

3(Z),5(E),11(Z)-(15,7R,8S)-12-methoxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,

11-cyclotridecatrienecarbonitrile (31): To a stirred solution of 1:1 epimeric mixture of ester 27 (342 mg, 680 µmol) in THF (10 mL), a NaOH solution (2.72 mL, 2.72 mmol, 1M) was added. It was stirred for 17h at 50°C. Upon cooling, it was acidified with HCl (3.0 mL, 3.0 mmol, 1M), then a usual work-up with CH₂Cl₂ (50 mL) furnished an 1:1 mixture of epimeric acid 30 (323 mg, 97%) as a white foam which was decarboxylated by having been refluxed in deoxygenated MeCN (15 mL) with Cu₂O (9 mg, 63 mmol) for 24h under Argon. Upon cooling, this suspension was filtered through a pad of silica and washed with 40% EtOAc in hexane. After evaporation of this solution, a purification with chromatography (10% EtOAc in hexane) furnished an 1:1 epimeric mixture of nitrile 31 (248 mg, 82% over 2 steps) as a white foam. 31: IR (film): 2942, 2866, 2237, 1653, 1464. ¹H NMR (CDCl₃): 6.40-6.15, 5.80-5.70 and 5.60-5.40 (2H+0.5H+1.5H, 3m, vinyl protons), 4.13 and 3.92 (2H, 2d, J=11.0 Hz, CH₂OCH₃) or 3.99 (2H, AB-d, CH₂OCH₃), 3.78 or 3.62 (1H, m, 8-H), 3.32 (3H, s, OCH₃), 1.74 or 1.73 (3H, 2s, 11-CH₃), 1.15-1.05 (24 H, 7-CH₃ and TIPS). ¹³C NMR (CDCl₃): 139.1, 138.1, 137.5, 137.1, 132.7, 132.0, 128.2, 127.0, 126.5, 126.1, 125.9, 124.8, 123.1, 122.9, 77.0, 75.3, 72.4, 71.8, 57.9, 46.1, 44.0, 36.0, 35.1, 34.1, 33.2, 31.8, 31.0, 30.6, 30.4, 26.9, 18.7, 18.5, 18.4, 18.1, 13.6, 13.3. MS (m/z): 445 (M)⁺, 402 (M-C₃H₇)⁺. HR-MS, calcd. for $C_{27}H_{47}NO_2Si$ (M)⁺: 445.3376; found: 445.3383.

3(Z),5(E),11(Z)-(1 ξ ,7R,8S)-12-hydroxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5, 11-cyclotridecatrienecarbonitrile (34): To a stirred solution of 1:1 epimeric mixture of ether 31 (82 mg, 184 µmol) in CH₂Cl₂ (20 mL), Me₂BBr (734 µL, 734 µmol, 1.0 M in 1,2-dichloroethane) was added at -10°C. After 20 min stirring, the excess reagent was destroyed with a saturated solution of NaHCO₃ (10 mL) at -78°C. Following an aqueous work-up with CH₂Cl₂, DMF (4 mL) and dry sodium acetate (151 mg, 1.84 mmol) were added to the evaporated crude bromide 32 and the solution was heated for 6h at 65°C. Upon cooling, following an aqueous work-up with ether, the crude acetate 33 was hydrolyzed in MeOH (3 mL) with anhydrous K₂CO₃ (255 mg, 1.85 mmol) for 3h at 23°C. Following an acidification with a solution of HCl (3.6 mL, 3.6 mmol, 1.0 N) and an aqueous work-up with ether, the crude product was purified by chromatography (20%

4679

EtOAc in hexane) to furnish 1:1 epimeric mixture of alcohol **34** (62.7 mg, 79% from **31**) as a colorless oil. IR (CDCl₃): 3610(br), 2960, 2868, 2249, 1652, 1464. ¹H NMR (CDCl₃): 6.35-6.15, 5.85-5.75 and 5.65-5.45 (2H+0.5H+1.5H, 3m, vinyl protons), 4.31 and 4.21 (2H, 2d, J=12.5 Hz, CH₂OH) or 4.24 (2H, s, CH₂OH), 3.80 or 3.60 (1H, m, 8-<u>H</u>), 1.75 or 1.74 (3H, s, 11-CH₃), 1.15-1.05 (24 H, m, 7-CH₃ and TIPS). ¹³C NMR (CDCl₃): 138.3, 137.2, 136.8, 132.3, 131.7, 130.0, 129.9, 126.6, 125.5, 124.2, 123.1, 76.6, 74.7, 63.0, 62.2, 45.8, 43.6, 35.8, 35.20, 33.78, 33.19, 31.39, 31.17, 30.29, 30.16, 26.60, 18.25, 17.74, 13.15, 12.89. MS (m/z): 431 (M)⁺, 388 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₆H₄₅NO₂Si (M)⁺: 431.3219; found: 431.3215.

3(Z),5(E),11(Z)-(15,7R,8S)-12-formyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11-cyclotridecatrienecarbonitrile (35): To a stirred solution of an 1:1 epimeric mixture of alcohol 34 (58.2 mg, 135 µmol) in CH₂Cl₂ (5 mL), NMO (20.5 mg, 1.3 eq), molecular sieve (100 mg, 4Å) and TPAP (3.3 mg, 7% eq) were added at 0°C. After 20 min stirring at 22°C, the bulk of the solvent was stripped, then the resulting suspension was purified directly by chromatography (40%) ether in hexane) to isolate 15.4 mg (27%) 35S, 14.2 mg (25%) 35R and 21.6 mg (37%) of the mixture of 35S and 35R as colorless oils. These aldehydes needed to be used without delay in the next step. 35S: ¹H NMR (CDCl₃): 10.15 (1H, s, CHO), 6.35-6.25, 5.78-5.68, 5.62-5.50 (2H+1H+1H, 3m, vinyl protons), 3.91-3.85 (1H, m, 8-H), 2.215 (3H, s, 11-CH₃), 1.13 (3H, d, J=6.8 Hz, 7-CH₃), 1.11 (21H, s, TIPS). ¹³C NMR (CDCl₃): 190.4, 162.0, 136.4, 133.9, 131.8, 126.4, 125.7, 121.4, 74.7, 43.6, 33.3, 32.9, 30.7, 29.4, 27.0, 18.3, 18.2, 17.9, 13.1. MS (m/z): 429 (M)⁺, 386 (M-C₃H₇)⁺. HR-MS, calcd. for $C_{26}H_{43}NO_2Si$ (M)⁺: 429,3063; found: 429,3072. 35R: ¹H NMR (CDCl₃): 10.13 (1H, s, CHO), 6.49-6.25, 5.63-5.50 (2H+2H, 2m, vinyl protons), 3.72-3.64 (1H, m, 8-H), 2.21 (3H, s, 11-CH₃), 1.16 (3H, d, J=6.6 Hz, 7-CH₃, 1.12 (21H, s, TIPS). ¹³C NMR (C_6D_6): 188.2, 157.5, 134.9, 132.7, 130.1, 124.9, 123.7, 119.4, 74.9, 44.0, 33.5, 30.2, 28.9, 28.0, 25.0, 17.0, 16.8, 15.8, 11.6. MS (m/z): 429 (M)⁺, 386 (M-C₃H₇)⁺. HR-MS, calcd. for $C_{26}H_{43}NO_2Si(M)^+$: 429.3063; found: 429.3072.

3(Z),5(E),11(Z)-(7R,8S)-12-methoxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11cyclotridecatrienedicarbonitrile (36) (via double alkylation from diol 28): Diol 28 (499 mg, 1.132 mmol) was transformed into dichloride 29 as described for the preparation of 27 via double alkylation macrocyclization. Then a solution of dichloride 29 and malononitrile (600 mg, 8 eq) in MeCN (10 mL) was syringe pumped over 3 hour to a stirred suspension of Cs₂CO₃ (3.690 g, 10 eq) in MeCN (550 mL) at 70°C. After an additional hour of stirring, the bulk of MeCN was evaporated, hexane/ether (100 mL, 50%) were added, washed with dil. HCl and brine, dried and evaporated. The crude product was purified by chromatography (20% ether in hexane) to isolate 389 mg (73%) macrocycle 36 as a pale yellow oil. 36: $[\alpha]^{20}_{D}$: +80.5° (c:2 ,CHCl₃). IR (film): 2941, 2867, 2371, 1461, 1107. ¹H NMR (CDCl₃): 6.53-6.40 (2H, m, 4-<u>H</u>, 5-<u>H</u>) 5.70-5.55 (2H, m, 3-<u>H</u>, 6-<u>H</u>), 4.06 (2H, AB-d, C<u>H₂</u>OCH₃), 3.74 (1H, ddd, J=8.3, 6.1, 2.2 Hz, 8-<u>H</u>), 3.38 (3H, s, OC<u>H₃</u>), 3.08 (1H, dd, J=13.4, 10.2 Hz, 2-<u>H_A</u>), 2.91 (1H, dd, J=13.4, 6.9 Hz, 2-<u>H_B</u>), 2.89 (1H, d, J=14.9 Hz, 13-<u>H_A</u>), 2.56 (1H, d, J=14.9 Hz, 13-<u>H_B</u>), 2.40 (1H, m, 7-<u>H</u>), 2.23 (1H, td, J=13.3, 4.5 Hz, 10-<u>H_A</u>), 2.02 (1H, td, J=13.3, 4.0 Hz, 10-<u>H_B</u>), 1.77 (3H, s, 11-C<u>H₃</u>), 1.61 (1H, tt, J=14.0, 4.5 Hz, 9-<u>H_A</u>), 1.27 (1H, m, 9-<u>H_B</u>), 1.12 (3H, d, J=6.7 Hz, 7-C<u>H₃</u>), 1.09 (21H, s, TIPS). ¹³C NMR (CDCl₃): 140.0, 138.8, 135.9, 125.1, 124.9, 120.1, 116.9, 115.9, 76.1, 70.2, 58.1, 44.7, 37.3, 36.5, 34.7, 34.1, 28.3, 19.4, 18.2, 18.0, 12.9. MS (m/z): 470 (M)⁺, 427 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₈H₄₆N₂O₂Si (M)⁺: 470.3328; found: 470.3337.

3(Z),5(E),11(Z)-(7R,8S)-12-methoxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11cyclotridecatrienedicarbonitrile (36) (from macrocycle 27): Ester 27 (256 mg, 509 µmol) was saponified to acid 30 by the procedure applied for the preparation of 31. Ethyl chloroformate (74 µL, 1.5 eq) was added to a stirred mixture of crude acid 30, THF (5 mL) and Et₃N (143 µL, 2 eq) at -40°C. The mixture was stirred for 30 min at -5°C then cooled back to -40°C to condense about 5 mL NH₃ (*l*) in it. The mixture was allowed to warm to 22°C in an hour to let the excess of NH₃ evaporate. Following an aqueous work-up with CH₂Cl₂, the dry crude amide was dissolved in CH₂Cl₂ then Et₃N (180 µL, 2.5 eq) and trichloroacetyl chloride (86 µL, 1.5 eq) were added at 0°C. After 2h stirring, the reaction was quenched with 2 drops of cc. NH₄OH. Following an aqueous work-up with CH₂Cl₂, the crude product was purified by the same way as in the previous procedure to give 200 mg (83% over 4 steps) identical macrocycle 36.

3(Z),5(E),11(Z)-(7R,8S)-12-hydroxymethyl-7,11-dimethyl-8-(triisopropylsilyl)oxy-3,5,11cyclotridecatrienedicarbonitrile (39): To a stirred solution of ether 36 (131 mg, 278 µmol) in CH₂Cl₂ (35 mL), Me₂BBr (1.08 mL, 4 eq, 1.0 M in 1,2-dichloroethane) was added at -10°C. After 15 min stirring, the excess reagent was destroyed with a saturated solution of NaHCO₃ (5 mL) at -40°C. Following an aqueous work-up with CH_2Cl_2 , DMF (5 mL) and dry sodium formate (183 mg, 10 eq) were added to the dry crude bromide 37 and the solution was heated for 3h at 50°C. Upon cooling, following an aqueous work-up with ether, the crude formate 38 was hydrolyzed in THF (20 mL) with HCl (4 mL, 1M) for 3 days at 22°C. Following an aqueous work-up with ether, the crude product was purified with chromatography (20% to 30% Et₂O in hexane) to furnish 83 mg (65% over 3 steps) alcohol **39** as a colorless oil. **39**: $[\alpha]_{D}^{20}$: +83° (c:2, CHCl₃). IR (film): 3524(br), 2944, 2867, 2248, 1459. ¹H NMR (CDCl₃): 6.55-6.40 (2H, m, 4-H, 5-H), 5.72-5.56 (2H, m, 3-H, 6-H), 4.37 (2H, s, CH2OH), 3.75 (1H, ddd, J=8, 6 and 2 Hz, 8-H), 3.09 (1H, dd, J=13.5,10.1 Hz, 2-H_A), 2.94 (1H, d, J=15.0 Hz, 13-H_A), 2.93 (1H, dd, J=15.0, 13.4) Hz, 2-HB), 2.62 (1H, d, J=15.0 Hz, 13-HB), 2.41 (1H, m, 7-H), 2.21 (1H, td, J=13.3, 4.5 Hz, 10-<u>H</u>_A), 2.02 (1H, td, J=13.3, 4.1 Hz, 10-<u>H</u>_B), 1.80 (3H, s, 11-C<u>H</u>₃), 1.61 (1H, tt, J=14.1, 4.5 Hz, 9-<u>H</u>_A), 1.27 (1H, m, 9-<u>H</u>_B), 1.12 (3H, d, J=6.7 Hz, 7-C<u>H</u>₃), 1.09 (21H, s, TIPS). ¹³C NMR (CDCl₃):

140.6, 138.9, 136.0, 126.6, 125.0, 119.9, 116.9, 115.9, 76.1, 60.2, 44.7, 37.0, 36.4, 34.0, 28.4, 19.2, 18.2, 17.9, 12.9. MS (m/z): 456 (M)⁺, 413 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₇H₄₄N₂O₂Si (M)⁺: 456.3172; found: 456.3182.

3(*Z*),**5**(*E*),**11**(*Z*)-(7*R*,**8***S*)-**12**-formyl-7,**11**-dimethyl-8-(triisopropylsilyl)oxy-3,**5**,**11**-cyclotridecatrienedicarbonitrile (40): To a stirred solution of alcohol **39** (204 mg, 447 µmol) in CH₂Cl₂ (10 mL), Dess-Martin periodinane (284 mg, 1.5 eq) was added at 0°C. After a stirring period of 20 min at 22°C, the reaction was quenched with cc. Na₂S₂O₃ (5 mL). After an aqueous work-up with CH₂Cl₂, the crude product was purified by chromatography (10% to 30% Et₂O in hexane) to afford 173 mg (85%) aldehyde **40** as a pale yellow oil. **40**: $[\alpha]^{20}_{\text{D}:}$ +184° (c:2, CHCl₃). IR (film): 2943, 2867, 2249, 1665, 1621, 1463. ¹H NMR (CDCl₃): 10.17 (1H, s, CHO), 6.57-6.44 (2H, m, 4-H, 5-H) 5.69-5.59 (2H, m, 3-H, 6-H), 3.75 (1H, ddd, J=8.7, 4.3, 2.1 Hz, 8-H), 3.09 (1H, dd, J=13.4, 10.6 Hz, 2-H_A), 2.93 (1H, dd, J=13.4, 6.4 Hz, 2-H_B), 2.79 (1H, d, J=15.0 Hz, 13-H_A), 2.65 (1H, d, J=15.0 Hz, 13-H_B), 2.56 (1H, td, J=13.1, 4.6 Hz, 10-H_A), 2.38 (1H, m, 7-H), 2.30 (3H, s, 11-CH₃), 2.24 (1H, td, J=13.1, 3.5 Hz, 10-H_B), 1.66 (1H, tt, J=14.0, 4.0 Hz, 11-H_A), 1.33 (1H, m, 11-H_B), 1.15 (3H, d, J=6.5 Hz, 13-CH₃), 1.11 (21H, s, TIPS). ¹³C NMR (CDCl₃): 190.6, 164.1, 138.3, 135.7, 132.5, 125.5, 120.6, 116.6, 115.4, 75.5, 44.7, 38.0, 34.2, 33.9, 32.3, 29.7, 19.4, 18.3, 18.2, 13.0. MS (*m*/z): 454 (M)⁺, 411 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₇H₄₂N₂O₂Si (M)⁺: 454.3015; found: 454.3019.

Methyl (9R, 10S, 12S)-12-cyano-14-methoxy-3 β -(triisopropylsilyl)oxy-15, 17, 19-trinor-14, 16-seco-5α,8β-stemod-6-en-16-oate (41S) and Methyl (9S,10R,12S)-12-cyano-14-methoxy- 3β -(triisopropylsilyl)oxy-15,17,19-trinor-14,16-seco-5 β ,8 α -stemod-6-en-16-oate (42S): A solution of macrocycle 27S (64.0 mg, 127 µmol) in toluene (2.0 mL) was heated for 3 h in a sealed tube at 230°C to produce a 4:6 mixture (¹H NMR) of tricycle 41S and 42S. These were separated and purified by chromatography (10% EtOAc in hexane) to isolate tricycle 41S (22.0 mg, 34.4%) as a colorless oil and tricycle 42S (34.2 mg, 53.4%) as a white foam. Tricycle 41S: $[\alpha]^{28}$ - 88.8° (c; 1, CHCl₃). IR (CHCl₃): 2945, 2892, 2240, 1746, 1461. ¹H NMR (CDCl₃): 5.78 (1H, dm, J = 10.5 Hz, 7-H) and 5.53 (1H, dt, J=10.5, 3.0 Hz, 6-H), 3.81 $(3H, s, CO_2CH_3)$, 3.44 and 3.26 (2H, 2d, J = 9.5 Hz, CH2OCH3), 3.33-3.23 (1H, m, 4-H), 3.24 (3H, s, CH2OCH3), 2.81 $(1H, dd, J=13.5, 8.0 Hz, 13-H_A)$, 2.65 (1H, m, 8-H), 2.44 $(2H, AB-d, 11-H_2)$, 2.11 (1H, d, J=13.5)Hz, 13-HB), 1.90-1.50 and 1.20-1.10 (5H+1H, 2m, 5-H, 4-H, 2-H2 and 1-H2), 1.14 (3H, d, J=6.5 Hz, 4-CH₃), 1.07 (21H, s, TIPS), 0.94 (3H, s, 10-CH₃). ¹³C NMR (CDCl₃): 170.1, 130.0, 128.6, 121.8, 77.6, 76.2, 58.8, 54.4, 53.6, 46.2, 44.0, 43.5, 40.4, 39.6, 38.4, 37.7, 32.2, 31.1, 18.3, 16.7, 15.8, 12.9. MS (m/z): 460 $(M-C_3H_7)^+$. HR-MS, calcd. for $C_{26}H_{42}NO_4Si$ $(M-C_3H_7)^+$: 460.2883; found: 460.2879. Tricycle 42S: $[\alpha]^{28}$ -47.3°(c:1, CHCl₃). IR (film): 2944, 2890, 2241, 1748, 1462. ¹H NMR (CDCl₃): 5.40-5.30 (2H, m, 6-H and 7-H), 3.85-3.80 (1H, m, 3-H), 3.73 (3H, s, CO₂C<u>H₃</u>), 3.47 and 3.41 (2H, AB-d, J=9.5 Hz, C<u>H₂</u>OCH₃), 3.35 (3H, s, CH₂OC<u>H₃</u>), 2.90 (1H, m, 5-<u>H</u>), 2.80-2.65 (2H, m, 11-<u>H_A</u> and 13-<u>H_A</u>), 2.63 (1H, m, 8-<u>H</u>), 2.37 (2H, d, J = 14.0 Hz, 11-<u>H_B</u> and 13-<u>H_B</u>), 1.95 (1H, m, 4-<u>H</u>), 1.85-1.30 (4H, m, 2-<u>H₂</u>, 1-<u>H₂</u>), 1.05 (21H, s, TIPS), 0.94 (3H, d, J=8.0 Hz, 4-C<u>H₃</u>), 0.92 (3H, s, 10-C<u>H₃</u>). ¹³C NMR (CDCl₃): 170.0, 130.0, 122.3, 76.0, 71.4, 58.8, 55.5, 53.4, 45.6, 43.9, 41.1, 40.9, 39.7, 38.4, 34.0, 27.3, 25.0, 18.1, 16.8, 15.3, 12.2. MS (*m*/*z*): 460 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₆H₄₂NO₄Si (M-C₃H₇)⁺: 460.2883; found: 460.2879.

Methyl (9R,10S,12R)-12-cyano-14-methoxy-3β-(triisopropylsilyl)oxy-15,17,19-trinor-14, 16-seco- 5α , 8 β -stemod-6-en-16-oate (41R) and Methyl (9S, 10R, 12R)-12-cyano-14-methoxy- 3β -(triisopropylsilyl)oxy-15,17,19-trinor-14,16-seco- 5β , 8α -stemod-6-en-16-oate (42R): A solution of macrocycle 27R (31.0 mg, 61.6 µmol) in toluene (2.0 mL) was heated for 3 h in a sealed tube at 230°C to produce a 9:1 mixture (¹H NMR) of tricycle 41R and 42R. These were separated and purified by chromatography (5 to 10% EtOAc in hexane) to obtain tricycle 41R (23.4 mg, 75.5%) as a white foam and tricycle 42R (2.6 mg, 8.4%) as a colorless oil. Tricycle **41R:** $[\alpha]^{28}$ -73.1° (c: 1, CHCl₃). IR (CHCl₃): 2945, 2867, 2241, 1745. ¹H NMR (CDCl₃): 5.60 (1H, dm, J=10.0 Hz, 7-H), 5.35 (1H, dt, J=10.0, 3.0 Hz, 6-H), 3.78 (3H, s, CO₂CH₃), 3.49 and 3.37 (2H, 2d, J=9.5 Hz, CH2OCH3), 3.34 (3H, s, CH2OCH3), 3.33-3.23 (1H, m, 3-H), 2.78 (1H, dd, J=13.5, 8.5 Hz, 13- H_A), 2.59 and 2.37 (2H, 2d, J=14.0 Hz, 11- H_2), 2.53 (1H, m, 8-H), 2.32 $(1H, d, J=13.5 Hz, 13-H_R)$, 1.85-1.45 and 1.25-1.10 (5H+1H, 2m, 5-H, 4-H, 2-H₂ and 1-H₂), 1.09 (3H, d, J=6.5 Hz, 4-CH₃), 1.07 (21H, s, TIPS), 0.92 (3H, s, 10-CH₃). ¹³C NMR (CDCl₃): 170.0, 129.9, 127.4, 122.0, 77.5, 76.1, 58.8, 54.6, 53.6, 45.5, 43.4, 43.2, 41.3, 38.5, 38.3, 38.0, 32.2, 31.0, 18.3, 16.6, 15.9, 12.9. MS (m/z): 472 (M-OCH₃)⁺, 460 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₆H₄₂NO₄Si (M-C₃H₇)⁺: 460.2883; found: 460.2887. Tricycle **42R**: ¹H NMR (CDCl₃): 5.60-5.45 (2H, m, 6-H and 7-H), 3.87-3.82 (1H, m, 3-H), 3.81 (3H, s, CO₂CH₃), 3.42 and 3.28 (2H, 2d, J=9.5 Hz, CH2OCH3), 3.24 (3H, s, CH2OCH3), 3.06 (1H, m, 5-H), 2.73 (1H, dd, J=13.0, 8.0 Hz, 13-H_A), 2.70 (1H, m, 8-H), 2.55 and 2.44 (2H, 2d, J=15.0 Hz, 11-H₂), 2.12 (1H, d, J=13.0 Hz, 13-HB), 2.05-1.20 (5H, m, 4-H, 2-H2, 1-H2), 1.07 (21H, s, TIPS), 0.97 (3H, d, J=7.0 Hz, 4-CH₃), 0.95 (3H, s, 10-CH₃).

(9*R*,10*S*,12*R*)-14-oxo-3 β -(triisopropylsilyl)oxy-15,17,19-trinor-14,16-seco-5 α ,8 β -stemod-6-en-16-nitrile (43): Me₂AlCl (150 µL, 5 eq, 1M in CH₂Cl₂) was added to a stirred CH₂Cl₂ (5 mL) solution of macrocycle 35*R* (12.9 mg, 30 µmol) at -40°C under Argon atmosphere. After two hours at this temperature, the reaction was quenched with NaHCO₃ (2 mL, 1M). After an aqueous work-up with ether, the product is filtered through a plug of silica to afford 12.8 mg (100%) tricycle 43 as a colorless oil. 43: $[\alpha]^{24}$ _D: -129.3° (c:1, CHCl₃). IR (CHCl₃): 3026, 2945, 2867, 2241, 1716, 1463. ¹H NMR (CDCl₃): 9.74 (1H, s, CHO), 5.73 (1H, d, J=10.5 Hz, 7-H), 5.66 (1H, dt, J=10.5, 3.0 Hz, 6-<u>H</u>), 3.31 (1H, ddd, J=4.9, 9.6, 10.7 Hz, 3-<u>H</u>), 3.08 (1H, m, 8-<u>H</u>), 2.58 (1H, m, 12-<u>H</u>), 2.46 (1H, dd, J=13.1, 7.9 Hz, 11-<u>H</u>_A), 2.20 (1H, m, 13-<u>H</u>_A), 1.97 (1H, dd, J=13.1, 9.2 Hz, 11-<u>H</u>_B), 1.90-1.70 (3H, m, 5-<u>H</u>, 13-<u>H</u>_B, 2-<u>H</u>_A), 1.68-1.35 (4H, m, 4-<u>H</u>, 2-<u>H</u>_B, 1-<u>H</u>₂), 1.14 (3H, d, J=6.2 Hz, 4-C<u>H</u>₃), 1.07 (21H, s, TIPS), 1.02 (3H, s, 10-C<u>H</u>₃). ¹³C NMR (CD₂Cl₂): 205.1, 130.0, 126.8, 122.8, 77.6, 65.0, 43.4, 38.6, 38.4, 37.9, 35.4, 32.4, 31.5, 30.9, 25.1, 18.4, 16.8, 15.8, 13.2. MS (m/z): 386 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₆H₄₃NO₂Si (M-C₃H₇)⁺: 386.2515; found: 386.2522.

(9*S*,10*R*,12*S*)-14-oxo-3β-(triisopropylsilyl)oxy-15,17,19-trinor-14,16-seco-5β,8α-stemod-6en-16-nitrile (44a): The same procedure was applied as for the preparation of 43 but at 0°C instead of -40°C to afford 12.2 mg (95%) tricycle 44a as a colorless oil. 44a: $[\alpha]^{24}_{D}$: +86.6° (c: 1, CHCl₃). IR (CHCl₃): 3020, 2944, 2866, 2242, 1716, 1464, 1046. ¹H NMR (CDCl₃): 9.73 (1H, s, CHO), 5.66 (1H, dt, J=10.0, 3.5 Hz, 6-H), 5.44 (1H, dm, J=10.0 Hz, 7-H), 3.90-3.86 (1H, m, 3-H), 3.15 (1H, m, 8-H), 2.95 (1H, m, 5-H), 2.61-2.51 (1H, m, 12-H), 2.41 (1H, dd, J=13.5, 8.0 Hz, 11-H_A), 2.30-1.32 (8H, m, in the order of 13-H_A, 11-H_B, 4-H, 1-H_A, 2-H_A, 13-H_B, 2-H_B, 1-H_B), 1.07 (21H, s, TIPS), 0.98 (3H, s, 10-CH₃), 0.96 (3H, d, J = 8.0 Hz, 4-CH₃). ¹³C NMR (CD₂Cl₂): 205.4, 130.3, 129.7, 122.8, 71.7, 66.0, 41.1, 38.9, 38.1, 35.4, 34.4, 32.0, 27.7, 25.0, 24.9, 18.3, 18.1, 15.2, 12.7. MS (*m*/*z*): 386 (M-C₃H₇)⁺. HR-MS, calcd. for C₂₆H₄₃NO₂Si (M-C₃H₇)⁺: 386.2515; found: 386.2522.

(9S,10R)-12-cyano-14-0x0-3β-(triisopropylsilyl)0xy-15,17,19-trinor-14,16-seco-5β,8αstemod-6-en-16-nitrile (46) and (9R,10S)-12-cyano-3β-hydroxy-14-oxo-15,17,19-trinor-14, 16-seco-5α,8β-stemod-6-en-16-nitrile (45b): To a stirred solution of macrocycle 40 (172 mg, 378 µmol) in CH₂Cl₂ (10 mL), SnCl₄ (2.27 mL, 6 eq, 1M in CH₂Cl₂) was added at -78°C. After a 7 days reaction with occasional stirring at 0° C, the reaction was guenched with NaHCO₃ (4 mL, 2M) at -78°C. After an aqueous work-up with CH_2Cl_2 , ¹H NMR spectra shows >98% conversion with a ratio of 46/45b = 2:9. Chromatography (30% to 100% Et₂O in hexane) afforded 28 mg (16%) 46 and 82 mg (72%) 45b as colorless oils. Tricycle 46: $[\alpha]^{24}_{D}$: +107° (c: 1.8, CHCl₃). IR (CHCl₃): 2944, 2867, 2250, 1721, 1464. ¹H NMR (CDCl₃): 9.81 (1H, s, CHO), 5.64-5.58 44 (1H, m, 6-H and 7-H), 3.91-3.87 (1H, m, 3-H), 3.40-3.34 (1H, m, 8-H), 3.04-2.98 (1H, m, 5-H), 2.91 (1H, d, J=15.2 Hz, 11-H_A), 2.75 (1H, d, J=15.2 Hz, 11-H_B), 2.42 (1H, d, J=13.7 Hz, 13-<u>H</u>_A), 2.29 (1H, dd, J=13.7 and 7.3 Hz, 13-<u>H</u>_B), 2.13-2.03 (1H, m, 4-<u>H</u>), 1.83 (2H, AB-d, 2-H_A) and 1-HA), 1.68-1.57 (1H, m, 2-HB), 1.30-1.20 (1H, m, 1-HB), 1.08 (21H, s, TIPS), 1.06 (3H, s, 10-CH₃), 0.97 (3H, d, J=7.8 Hz, 4-CH₃). ¹³C NMR (CDCl₃): 202.9, 133.1, 127.1, 116.7, 116.6, 70.9, 66.0, 42.1, 40.6, 39.7, 39.2, 38.7, 33.8, 31.6, 27.3, 24.3, 18.1, 17.6, 14.9, 12.2. MS (m/z): 411 $(M-C_3H_7)^+$. HR-MS, calcd. for $C_{24}H_{35}N_2O_2Si$ $(M-C_3H_7)^+$: 411.2468; found: 411.2471. Tricycle **45b:** $[\alpha]_{D}^{24}$: -202° (c: 2, CHCl₃). IR (CHCl₃): 3516, 3275(br), 2934, 2256, 1712, 1455.

¹H NMR (CDCl₃): 9.84 (1H, s, C<u>H</u>O), 5.90 (1H, dd, J=10.2, 1.7 Hz, 7-<u>H</u>), 5.67 (1H, dt, J=10.2, 3.1 Hz, 6-<u>H</u>), 3.31 (1H, m, 8-<u>H</u>), 3.18 (1H, ddd, J=10.8, 9.8, 5.1 Hz, 3-<u>H</u>), 3.02 (1H, d, J=14.9 Hz, 11-<u>H</u>_A), 2.55 (1H, d, J=14.9 Hz, 11-<u>H</u>_B), 2.42 (1H, dd, J=13.9, 1.3 Hz, 13-<u>H</u>_A), 2.29 (1H, dd, J=13.9, 7.3 Hz, 13-<u>H</u>_B), 1.93-1.85 (1H, m, 4-<u>H</u>), 1.78 (1H, ddd, J=11.4, 3.1, 1.7 Hz, 5-<u>H</u>), 1.65-1.28 (4H, m, 2-<u>H</u>₂, 1-<u>H</u>₂)1.16 (3H, d, J=6.2 Hz, 4-C<u>H</u>₃), 1.12 (3H, s, 10-CH₃). ¹³C NMR (CDCl₃): 202.7, 129.6, 127.0, 116.7, 116.3, 75.6, 65.1, 43.0, 41.7, 39.5, 38.2, 38.1, 36.8, 31.9, 31.4, 29.6, 16.3, 15.0. MS (*m*/*z*): 251 (M-H₂O-CHO)⁺, 280 (M-H₂O)⁺, 411 (M)⁺. HR-MS, calcd. for C₁₈H₂₂N₂O₂ (M)⁺: 298.1681; found: 298.1688.

5. Acknowledgments

Financial help from NSERC-Canada and FCAR-Quebec is highly appreciated. A NATO-NSERC postdoctoral fellowship to A. Toró and a FCAR, Bio-Mega/Boehringer Ingelheim graduate and a NSERC doctoral fellowship to G. Bélanger are also gratefully acknowledged.

6. References

- 1. Deslongchamps, P. Pure Appl. Chem. 1992, 64, 1831-1847.
- 2. Dory, Y.L.; Soucy, P.; Drouin, M.; Deslongchamps, P. J. Am. Chem. Soc. 1995, 117, 518-529.
- 3. Hufford, C.D.; Guerrero, R.D.; Doorenbos, N.J. J. Pharm. Sci. 1976, 95, 778-780.
- 4. Pearson, A.J.; Fang, X. J. Org. Chem. 1997;62, 5284-5292 and references cited therein.
- 5. Lamothe, S.; Ndibwami, A.; Deslongchamps, P. Tetrahedron Lett. 1988, 29, 1641-1644.
- 6. Hall, D.G.; Caillé, A-S.; Drouin, M.; Lamothe, S.; Müller, R.; Deslongchamps, P. Synthesis, 1995, 1081-1088.
- 7. Piers, E.; Abeysekera, B.F.; Herbert, D.J.; Suckling, I.D. Can. J. Chem. 1985, 63, 3418-3432.
- 8. Hall, D.G.; Chapdelaine, D.; Préville, P.; Deslongchamps, P. Synlett, 1994, 8, 660-662.
- 9. Evans, D.A.; Black, C. J. Am. Chem. Soc. 1993, 115, 4497-4513.
- 10. Netz, D.F.; Seidel, J.L. Tetrahedron Lett. 1992, 33, 1957-1958.
- 11. Still, W.C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
- 12. Chantigny, Y.; Toró, A.; Lemelin, C-A.; Deslongchamps, P. Tetrahedron Lett. 1998, 39, 7839-7840.
- 13. Mancuso, A.J.; Swern, D. Synthesis, 1981, 165-185.
- 14. Evans, D.A.; Gage, J.R. Org. Synth. 1989, 68, 77-82.
- 15. Levin, J.I.; Turos, E.; Weinreb, S.M. Synth. Commun. 1982, 12, 989-993.
- 16. Magid, R.M.; Fruchey, O.S.; Johnson, W.L.; Allen, T.G. J. Org. Chem. 1979, 44, 359-363.
- 17. Toussaint, O.; Capdevielle, P.; Maumy, M. Synthesis, 1986, 1029-1031.
- 18. Guindon, Y.; Yoakim, C.; Morton, H.E. J. Org. Chem. 1984, 49, 3912-3920.
- 19. Ley, S.V.; Norman, J.; Griffith, W.P.; Marshden, S.P. Synthesis, 1994, 639-666.
- 20. Saednya, A. Synthesis, 1985, 184-185.
- 21. Dess, D.B.; Martin, J.C. J. Am. Chem. Soc. 1991, 113, 7277-7287.