Acid-catalyzed hydrolysis of bridged bi- and tricyclic compounds. XXXVIII—Kinetics and mechanisms of 1- and 3-nortricyclanols

Martti Lajunen* and Veli Lahti

Department of Chemistry, University of Turku, FIN-20014 Turku, Finland

Received 17 April 2001; accepted 6 June 2001

EPOC ABSTRACT: The disappearance of 1- and 3-nortricyclanols (1-OH and 2-OH) in aqueous perchloric acid was followed by capillary GC at different temperatures and acid concentrations. 1-OH is ca 1000 times more reactive than 2-OH. The activation parameters, solvent deuterium isotope effects and parameters of excess acidity equations were measured and the products were studied. Both isomeric nortricyclanols react according to the Ad_E^2 mechanism, i.e. the cyclopropane ring is protonated at the rate-determining stage of the reaction. The protonation causes, in the case of 1-OH, an isomerization called homoketonization with 2-norbornanone as the only product and, in the case of 2-OH, hydration, i.e. the formation of hydroxyl-substituted norbornyl cations, the fast attack of which by water produces several norbornanediols. Copyright © 2001 John Wiley & Sons, Ltd.

Additional material for this paper is available from the epoc website at http://www.wiley.com/epoc

KEYWORDS: nortricyclanes; kinetics; acid catalysis; excess acidity; homoketonization; hydration; reaction mechanisms

INTRODUCTION

Recently, a mutual comparison of the kinetics and mechanisms of acid-catalyzed hydrolysis (hydration) of 1- and 3-X-substituted nortricyclanes or tricyclo[$2.2, 1.0^{2.6}$]heptanes (**1-X** and **2-X**) was started at

our laboratory.¹ In the first case, when X = OAc, the disappearance rates and reaction mechanisms of the isomers were very similar, although the reaction was changed from $A_{AC}2$ ester hydrolysis² to the Ad_E2 or $A-S_E2$ hydration of the cyclopropane ring³ with increasing acid concentration. Even the concentration $[c(HClO_4) \approx 6 \text{ mol dm}^{-3}]$ where the portions of the two reactions were equal was observed to be similar for both isomers.¹

Copyright © 2001 John Wiley & Sons, Ltd.

This similarity is surprising, because **1-OAc** is a tertiary and **2-OAc** a secondary acetate. Evidently, the location of the acetoxyl group at a cyclopropane carbon in the tertiary isomer makes the normal A_{AL} 1 ester hydrolysis in this case less probable.² 1-Nortricyclanol (**1-OH**) was considered to be a possible unstable intermediate product of the hydrolysis for **1-OAc**.^{1,4} Therefore, it was chosen as the subject of additional studies on the comparison of 1- and 3-substituted nortricyclanes, when accordingly 3-nortricyclanol (**2-OH**) is the other isomer. Their disappearance rates were measured in aqueous perchloric acid at different temperatures and acid concentrations and in deuterioper-chloric acid, and the products were analyzed in order to elucidate the reaction mechanisms.

EXPERIMENTAL

Materials. 1-Nortricyclanol (1-OH) was prepared by LiAlH₄ reduction of the corresponding acetate (1-OAc) in dry diethyl ether.⁴ The substrate was unstable at room temperature, so it was stored in a freezer as a concentrated ether solution of the crude product. 3-Nortricyclanol (2-OH) was obtained by alkaline hydrolysis of 2-OAc.⁵ The purities by GC were 85% for 1-OH [contains 7% of 2-norbornanone (3) and in total 8% of

^{*}Correspondence to: M. Lajunen, Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.

three impurities] and 99.5% for **2-OH**. The substrates were identified from their ¹³C NMR spectra [**1-OH** (CDCl₃, TMS) tentative assignments: C-1, 66.3; C-2 and C-6, 18.0; C-3 and C-5, 34.2; C-4, 32.6; and C-7, 38.9; **2-OH**;⁶ and **3**⁷] and from GC–FTIR and/or GC–mass spectra.

Kinetic measurements. The disappearance of the substrates in aqueous perchloric acid was followed by GC (with a FFAP capillary column) using cyclohexanone (for **1-OH**) or 2-norbornanone (**3**, for **2-OH**) as the internal standard and dichloromethane as the extraction solvent.¹ The pseudo-first-order rate constants were obtained from the slopes of the strictly linear (r = 0.9990-0.99997) correlation of ln S_t vs $t(S_{\infty} = 0)$, where S_t is the ratio of the GC integrals of the substrate and the internal standard at time *t*. Each rate constant was measured twice, the values being equal to within at least 4% (average 1.4%) for both **1-OH** and **2-OH**. The impurities (8%, see above) did not affect the kinetic runs on **1-OH** by GC.

Product analyses. The only product of hydrolysis (and isomerization) of **1-OH** was identified by comparing its retention time with that of authentic 2-norbornanone (**3**). The formation of **3**- d_1 from **1-OH** was also observed in 0.25 M DClO₄ (D₂O) (1.3 h at ca 321 K; ca $10t_{1/2}$) by GC–MS. A ²H NMR spectrum of the isolated (by CH₂Cl₂ extraction) **3**- d_1 was recorded in CHCl₃–CDCl₃ (9:1) with TMS- d_1 (not enriched according to D) as the internal reference and the spectrum was compared with those obtained by Nickon *et al.*⁸

About 0.2 g of **2-OH** was stirred magnetically with 50 cm^3 of 3 M HClO₄(aq.) for 0.5 h (ca $1t_{1/2}$) and 5 h ($\geq 10t_{1/2}$) at ca 318 K in a tightly stoppered Erlenmeyer flask. The solution was extracted several times with CH₂Cl₂ and the combined organic solution was neutralized and dried by allowing it to flow through anhydrous K₂CO₃. The solvent was evaporated almost totally and the residue was analyzed by GC, GC–FTIR and GC–MS, the components being mainly identified by comparing their spectra with those stored in the memories of the spectrometers.

RESULTS AND DISCUSSION

Rate constants, activation parameters and isotope effects

The rate constants of disappearance for 1- and 3nortricyclanol (1-OH and 2-OH) were measured in aqueous perchloric acid at different temperatures and acid concentrations and in deuterioperchloric acid. The pseudo-first-order rate constants (k_{ψ}) are shown in Table 1. 1-OH is much more reactive than 2-OH (990 times in 1.0 M HClO₄ at 298.2 K) and also clearly more reactive

Copyright © 2001 John Wiley & Sons, Ltd.

Table 1. Rate constants for disappearance of 1- and 3-nortricyclanol (**1-OH** and **2-OH**) in aqueous perchloric acid at different temperatures and acid concentrations and in deuterioperchloric acid

		$c(\text{HClO}_4)^{\text{a}}_{\text{c}}$		
Substrate	<i>T</i> (K)	$(\text{mol } \text{dm}^{-3})$	X_0^{b}	$k_{\psi} (10^{-4} \text{ s}^{-1})^{\text{c}}$
1-OH	288.2	0.249		1.130 ± 0.005
	298.2	0.248		3.69 ± 0.05
	298.2	0.250		$3.70 \pm 0.07^{ m d}$
	298.2	0.249		$1.360 \pm 0.015^{\rm e}$
	298.2	1.014		22.5 ± 0.3
	308.2	0.247		11.17 ± 0.07
	318.2	0.246		30.1 ± 0.6
2-OH	298.2	1.013		0.0227 ± 0.0003^{d}
	318.2	1.005	0.257	0.336 ± 0.004
	328.2	1.000		1.148 ± 0.004
	338.2	0.994		3.546 ± 0.019
	348.2	0.988		10.59 ± 0.11
	288.2	5.459		2.252 ± 0.011
	298.2	5.427		8.39 ± 0.12
	298.2	5.427		8.1 ± 0.4^{a}
	308.2	5.388		26.9 ± 0.4
	318.2	1.510	0.362	0.723 ± 0.004
	318.2	2.002	0.467	1.384 ± 0.004
	318.2	2.361	0.549	2.184 ± 0.008
	318.2	2.953	0.699	4.267 ± 0.025
	318.2	3.488	0.856	7.975 ± 0.026
	318.2	3.939	1.007	13.64 ± 0.08
	318.2	4.383		14.15 ± 0.07^{e}
	318.2	4.381	1.173	22.97 ± 0.11
	318.2	4.904	1.392	43.8 ± 0.4
	318.2	5.358	1.602	74.3 ± 0.6

^a Temperature corrected.

^b Excess acidity, temperature corrected.^{10,11}

^c Error limits are standard deviations.

^d Calculated from the activation parameters (Table 2).

^e Measured in $DClO_4$ (D₂O).

than 1-acetoxynortricyclane (1-OAc; 19 times).¹ Hence it is natural that 1-OH could not be detected by GC in the hydrolysis of 1-OAc. The rate constants measured for 2-OH are in fair agreement with those measured earlier under similar conditions.⁵ The activation parameters for 1-OH were measured in 0.25 M HClO₄(aq.) and for 2-OH in 1.0 and 5.4 M HClO₄(aq.). Their values are shown in Table 2 together with the solvent deuterium isotope effects. All values were calculated from the second-order rate constants [$k_a = k_y/c$ (HClO₄)].

The slightly or moderately negative entropies of activation, -5 to -27 J K⁻¹ mol⁻¹ at 298 K, and the isotope effects, $k_{\rm H}/k_{\rm D} = 1.62-2.72$, greater than unity are typical of the rate-determining protonation of the cyclopropane ring ($Ad_{\rm E}2$ mechanism; Schemes 1 and 2).⁶ In the case of **2-OH**, the decrease in ΔS^{\neq} from -5 to -27 J K⁻¹ mol⁻¹ with increasing acid concentration (1.0–5.4 M) seems normal for the $Ad_{\rm E}2$ mechanism.⁹ Thus, ΔS^{\neq} , -27 J K⁻¹ mol⁻¹, for **1-OH** in 0.25 M acid is unexpectedly negative. The reason for this is not known.

Substrate	$c(\text{LClO}_4)^a \pmod{d}$	m^{-3}) ΔH^{\neq}	$(kJ mol^{-1})$	$\Delta S^{\neq} (\mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1})$	¹) $k_{\rm H}/k_{\rm D}$
1-OH	0.25	81.	2 ± 0.7	-27 ± 3	2.72 ± 0.07
2-ОН	1.01 5.43	103. 86.	8 ± 0.4 9 ± 1.8^{b}	-5.0 ± 1.2 -27 ± 6^{b}	
	4.38) <u> </u>	27 ± 0	$1.62\pm0.02^{\rm c}$
	<i>m</i> ′	$pK_{S'H}^+$	$m^{\neq} m^*$	$\alpha_A{}^d$	$\log(k_0/M^{-1} s^{-1})$
2-ОН	0.97 ± 0.07	-2.04 ± 0.26	1.52 ± 0.08	0.84 ± 0.05	-4.85 ± 0.03

Table 2. Parameters of activation and solvent deuterium isotope effects at 298 K (unless noted otherwise) and parameters of the excess acidity equation [Eqn. (3)] at 318 K for the hydrolysis of 1- and 3-nortricyclanol (**1-OH** and **2-OH**) in $HClO_4(aq.)$, with standard deviations

 $^{a}_{L}$ L = H or D.

^b The Arrhenius plot is slightly curved; however, r = 0.9996 for the linear regression.

^c 318.2 K. ^d $\alpha_{\rm A} = m^{\neq} m^{*}/1.80.^{10,13}$

The excess acidity method

The excess acidity theory^{10,11} was applied to the rate constants measured for the disappearance of 3-nortricyclanol (**2-OH; 1-OH** being too reactive for the corresponding measurements) at different acid concentrations at one temperature, 318.2 K (Table 1). The rate constant should follow the equation^{10,11}

$$\log k_{\psi} - \log c_{\mathrm{H}^+} = m^{\neq} m^* X_0 + \log k_0 \tag{1}$$

if no protonation of the substrate other than the ratedetermining step on the cyclopropane ring occurs (the 'pure' $Ad_{\rm E}2$ mechanism), and the equation^{1,12}

$$\log k_{\psi} - \log[c_{\rm S}/(c_{\rm S} + c_{{\rm S}'{\rm H}^+})] - \log c_{{\rm H}^+}$$
$$= m^{\neq} m^* X_0 + \log k_0 \tag{2}$$

Scheme 1

Copyright © 2001 John Wiley & Sons, Ltd.

if the hydroxyl substituent of the substrate S is also protonated in a fast equilibrium producing S'H⁺ (the 'impure' $Ad_{\rm E}2$ mechanism; Scheme 2).

In the above equations, k_{ψ} is the pseudo-first-order rate constant measured in aqueous acid with concentration $c_{\rm H^+}$ [= $c({\rm HClO_4})$] and excess acidity X_0 ($c_{\rm H^+}$ and X_0 are corrected according to temperature);^{10,11} m^{\neq} is the slope parameter indicative of the character of the transition state and m^* is the slope parameter dependent on the site of proton attack (the cyclopropane ring in this case, when $m^* = 1.80 \pm 0.10$);^{11,13} k_0 is the medium-independent rate constant of the rate-determining step (r.d.s. in Scheme 2); and $c_{\rm S}$ and $c_{\rm S'H^+}$ are the concentrations of the unprotonated substrate and of the substrate protonated on the substituent, respectively.

In the case of substrate 2-OH, the hydroxyl group is

Scheme 2

J. Phys. Org. Chem. 2001; 14: 854-858

partly protonated in the moderately concentrated acids $[c(\text{HCIO}_4) = 1.0-5.4 \text{ M}]$ used in the present work. Thus, the plot log k_a vs X_0 ($k_a = k_{\psi}/c_{\text{H}^+}$) obeying Eqn. (1) is not linear (Fig. 1). In order to estimate the protonation correction term, $-\log[c_{\text{S}}/(c_{\text{S}} + c_{\text{S'H}})]$, of Eqn. (2), the equation is changed to a non-linear form:^{1,12,14}

$$\log k_{\psi} - \log c_{\mathrm{H}^{+}} = m^{\neq} m^{*} X_{0} - \log[1 + (c_{\mathrm{H}^{+}}/K_{\mathrm{S'H}^{+}}) 10^{m' X_{0}}] + \log k_{0} \quad (3)$$

with the excess acidity equation:^{10,11}

$$\log(c_{S'H^+}/c_S) - \log c_{H^+} = m'X_0 + pK_{S'H^+} \qquad (4)$$

derived for the protonation equilibrium (Scheme 2). In these equations, m' is the slope parameter indicative of the protonation of the hydroxyl group and $K_{S'H^+}$ the thermodynamic dissociation constant of the substrate protonated on the substituent. Non-linear least-squares minimization can be used for the evaluation of the four parameters of Eqn. (3), i.e. $m^{\neq} m^*$, $K_{S'H^+}$ (or $pK_{S'H^+}$), m'and k_0 (or log k_0), by iteration from the experimental values of k_{ψ} , c_{H^+} and X_0 (Table 1) and from the estimated approximate values of the parameters. The iterated best values of the parameters are given in Table 2.

The excess acidity parameters for the Ad_E2 hydration of 3-nortricyclanol (**2-OH**) seem reasonable. The parameters dependent on the protonation of the hydroxyl group (m' = 0.97 and $pK_{S'H^+} = -2.0$ at 318 K) are very close to those measured earlier for other alcohols.^{9,12,15} The combined parameter $m^{\neq} m^*$ consists of two terms, the latter being dependent on the protonation site (in this case a cyclopropane ring) and the former on the character of the transition state of the Ad_E2 mechanism, i.e. according to Kresge and co-workers,^{16,17} on the progress

Figure 1. Excess acidity plots [Eqns (1) and (2)] for the Ad_{E2} hydration of 3-nortricyclanol (**2-OH**) in HClO₄(aq.) at 318.2 K: (\blacksquare) Eqn. (1); (\odot) Eqn. (2). The correction term, $-\log[c_S/(c_S + c_{S'H^+})]$, was calculated with Eqn. (4) from the m' and p $K_{S'H^+}$ values in Table 2

Copyright © 2001 John Wiley & Sons, Ltd.

857

of proton transfer from a hydroxonium ion (H_3O^+) to the substrate at the transition state $(0 \le m^{\neq} \le 1; m^{\neq} = \alpha_A, i.e.$ the excess acidity Brönsted α). Thus $\alpha_A = m^{\neq} m^*/1.80 = 0.84 \pm 0.05$, which is a typical value for the protonation of nortricyclanes in HClO₄(aq.) and in excellent agreement with the isotopic Brönsted α ($\alpha_1 = 0.85 \pm 0.02$) measured for **2-OH** in 0.1 M LClO₄ (L₂O) (L = H or D) at 348.2 K.¹⁸

Now the correction term, $-\log[c_S / (c_S + c_{S'H^+})]$, of Eqn. (2) can be calculated by Eqn. (4) from the values of m' and $pK_{S'H^+}$ in Table 2. If the left-hand side of Eqn. (2) vs X_0 is drawn, a strictly linear (r = 0.9992) plot is obtained (Fig. 1). The difference between the two plots in Fig. 1 [according to Eqns (1) and (2)] shows that the effect of protonation of the hydroxyl oxygen is marked on the hydration rate of the cyclopropane ring of **2-OH**.

Hydrolysis products

According to the product analyses (see Experimental), the only product of hydrolysis for 1-nortricyclanol (1-OH) is 2-norbornanone (3), which was also slowly formed from 1-OH during storage. The process (Scheme 1), called homoketonization, 4,8,19 is comparable with the keto-enol tautomerism,²⁰ both isomerizations being catalyzed by acids and bases. The mass spectrum of 3 formed in 0.25 M DClO_4 (D₂O) shows that it contains one deuterium atom per molecule and the ²H NMR spectrum indicates that ca. 90% of deuterium is situated at the endo-6 position ($\delta_D = 1.31$) and ca. 8% at the exo-6 position ($\delta_{\rm D} = 1.60$; besides 2% found at 1.84). The exo/endo ratio of 8:92 is in excellent agreement with that observed by Nickon et al.8 for the hydrolysis of 1-acetoxynortricyclane (1-OAc) in D₂SO₄-DOAc-D₂O $([DOAc]:[D_2O] = 1:1 \text{ or } 2:1)$ and shows that the ratedetermining deuteration (protonation) occurs dominantly at C-2 or C-6 by retention in aqueous acids (Scheme 1). The formation of a thermodynamically stable oxocarbenium ion (SH^+) is the probable reason for the relatively high protonation rate of 1-OH $[k_{\psi}(1-OH)/$ $k_{\psi}(2-OH) \approx 1000$; see Table 1).

3-Nortricyclanol (2-OH) in HClO₄(aq.) probably produces five or six isomeric norbornanediols (4–9; Scheme 2), the proportions of which do not vary markedly within 1–10 half-lives of the substrate. Attemps were made to identify them by GC (retention times), by GC–FTIR (the isomers could not be separated, but two ν_{OH} absorptions were detected: 3653 cm⁻¹ being typical of the free and 3601 cm⁻¹ of the hydrogen-bonded hydroxyl group; cf. ν_{OH} = 3657 cm⁻¹ for 2-OH) and by GC–MS [the molecular ion (M⁺· = 128) was sometimes hard to detect owing to the easy elimination of one or two water molecules]. The retention times and spectra were also compared with those recorded for six methoxynorborneols formed in the hydration of 3-methoxynortricyclane (2-OMe).²¹ The approximate amounts of the considered isomeric norbornanediols are shown in Scheme 2. Accordingly, the C-1—C-6 edge of the cyclopropane ring opposite to the 3-substituent is cleaved most easily, producing mainly 2,7-norbornanediols (4 and 5), in agreement with earlier observations.^{6,21-23}

Acknowledgements

We are grateful to Dr Robin A. Cox for a copy of Ref. 11 and to Miss Kirsti Wiinamäki, Dr Martti Dahlqvist, Mr Petri Tähtinen and Mr Jaakko Hellman for recording the GC–mass, GC–FTIR, ²H NMR and ¹³C NMR spectra, respectively.

REFERENCES

- Lajunen M, Yli-Mannila R, Salminen O. J. Phys. Org. Chem. 2000; 13: 133–138.
- 2. Euranto EK. In *The Chemistry of Carboxylic Acids and Esters*, Patai S (ed). Wiley: Chichester, 1969; chapt. 11.
- 3. DePuy CH. Top. Curr. Chem. 1973; 40: 73-101.
- 4. Nickon A, Lambert JL, Williams RO, Werstiuk NH. J. Am. Chem. Soc. 1966; 88: 3354–3358.

- 5. Lajunen M, Hirvonen P. Finn. Chem. Lett. 1974; 245-249.
- 6. Lajunen M. J. Chem. Soc., Perkin Trans. 2 1986; 1551-1555.
- Lippmaa E, Pehk T, Paasivirta J, Belikova N, Plate A. Org. Magn. Reson. 1970; 2: 581–604.
- Nickon A, Frank JJ, Covey DF, Lin Y-I. J. Am. Chem. Soc. 1974; 96: 7574–7576.
- 9. Lajunen M, Latva-Nirva E. J. Chem. Soc., Perkin Trans. 2 2000; 719–723.
- 10. Cox RA. Acc. Chem. Res. 1987; 20: 27-31.
- 11. Cox RA. Adv. Phys. Org. Chem. 2000; 35: 1-66.
- 12. Lajunen M, Virta M, Kylliäinen O. Acta Chem. Scand. 1994; 48: 122–126.
- 13. Cox RA, Yates K. Can. J. Chem. 1981; 59: 2116-2124.
- 14. Kresge AJ, Yin Y. J. Phys. Org. Chem. 1989; 2: 43-50.
- 15. Perdoncin G, Scorrano G. J. Am. Chem. Soc. 1977; 99: 6983-6986.
- Kresge AJ, More O'Ferrall RA, Hakka LE, Vitullo VP. J. Chem. Soc., Chem. Commun. 1965: 46–48.
- 17. Kresge AJ, Mylonakis SG, Sato Y, Vitullo VP. J. Am. Chem. Soc. 1971; **93**: 6181–6188.
- 18. Lajunen M. Acta Chem. Scand. 1991; 45: 377-382.
- 19. Nickon A, Frank JJ. Tetrahedron Lett. 1975; 16: 4335-4338.
- Lamaty G. In *Isotopes in Organic Chemistry*, Vol. 2, *Isotopes in Hydrogen Transfer Processes*, Buncel E, Lee CC (eds). Elsevier: Amsterdam, 1976; chapt. 2.
- 21. Lajunen M, Jantunen J, Koiranen P. Acta Chem. Scand. 1998; **52**: 728–732.
- 22. Kantolahti E. PhD Thesis, University of Jyväskylä, 1975.
- 23. Werstiuk NH, Timmins G, Cappelli FP. Can. J. Chem. 1980; 58: 1709–1724.