Chlor(trifluorphosphan)gold(I): [Au(PF₃)Cl]

Chloro(trifluorophosphane)gold(I): [Au(PF₃)Cl]

Frauke Schödel, Michael Bolte, Matthias Wagner und Hans-Wolfram Lerner*

Frankfurt, Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität

Bei der Redaktion eingegangen am 21. November 2005.

Abstract. X-ray quality crystals of $[Au(PF_3)Cl]$ (orthorhombic, *Pnma*) are obtained from a toluene / pentane solution at 6 °C. According to the result of the X-ray structural analysis, $[Au(PF_3)Cl]$

contains an almost linear F₃P-Au-Cl unit. The shortest Au-Au contacts between two of these units are 3.3495(9) Å. **Keywords:** Gold; Trifluorophosphane; X-ray structure analysis

Einleitung

Liganden mit starkem σ -Donorcharakter sind geeignet Koordinationsverbindungen mit ungewöhnlichen Geometrien zu stabilisieren. Die Strukturen dieser Komplexe weisen vielfach zusätzliche Wechselwirkungen zwischen den Metallatomen auf. Unserer Arbeitsgruppe gelang es durch Umsetzung von CuCl₂ bzw. CuBr₂ mit LiN(SiMe₃)₂ und 1,4-Dihydroxynaphthalin die Ammoniak-Addukte Cu(NH₃)Cl und Cu(NH₃)₂Br zu synthetisieren. Bemerkenswerterweise zeigen die Festkörperstrukturen von Cu(NH₃)Cl und Cu(NH₃)₂Br kurze Cu-Cu-Kontakte [Cu(NH₃)Cl: 2.979(1) Å; Cu(NH₃)₂Br: 2.931(1) Å] [1].

Häufig wird bei Cu-Komplexen mit kurzen Cu-Cu Abständen im Festkörper durch Anregung mit ultraviolettem Licht eine Emission im sichtbaren Spektralbereich festgestellt. Im Gegensatz dazu konnte jedoch bei den beiden Komplexen Cu(NH₃)Cl und Cu(NH₃)₂Br dieses Phänomen nicht beobachtet werden. Bei Au-Komplexen wird einerseits als Ursache für das Auftreten einer roten Lumineszenz die Anregung eines metallnahen Elektrons diskutiert [2], wobei ein Zusammenhang mit kurzen Metall-Metall-Abständen im Molekül gesehen wird. Andererseits wird bei Au-Komplexen eine Lumineszenz im blauen Spektralbereich einem Charge-Transfer von Metall zu Ligand zugeordnet [2]. Obwohl die Festkörperstruktur von Au(CO)Cl verhältnismäßig lange Gold-Gold-Kontakte [3] zeigt, wurde durch Anregung mit ultraviolettem Licht bei 273 K eine rote und bei 77 K sowohl eine rote als auch blaue Lumineszenz aufgefunden [4]. Erst in jüngerer Zeit wurden die Darstellung

* Dr. H.-W. Lerner Institut für Anorganische Chemie Johann Wolfgang Goethe-Universität Marie-Curie-Straße 11 D-60439 Frankfurt am Main Fax:++49-69-79829260 E-mail: lerner@chemie.uni-frankfurt.de und die Eigenschaften des Addukts von Gold(I)-chlorid mit Trifluorphosphan beschrieben, welches ähnliche Eigenschaften wie Au(CO)Cl aufweisen sollte. Der Komplex Au(PF₃)Cl erwies sich stabiler als Au(CO)Cl und dissozierte im Vakuum nicht so leicht wie der CO-Komplex [5]. Eingehende Studien zeigten jedoch eine Zersetzung des Addukts Au(PF₃)Cl durch Lichteinwirkung, was die photochemischen Abscheidung von Gold aus der Gasphase ermöglicht [5, 6]. Nachfolgend berichten wir über das Ergebnis der Einkristall-Röntgenstrukturanalyse des Komplexes aus Gold(I)-chlorid und Trifluorphosphan.

Ergebnisse und Diskussion

Die Synthese des Komplexes aus Gold(I)-chlorid und Trifluorphosphan erfolgte in Anlehnung an eine Literaturvorschrift [7] aus AuCl und PF₃ gemäß Schema 1.

Schema 1

652

Es zeigte sich, dass beim Einwirken von Tageslicht auf Benzollösungen des Komplexes Au(PF₃)Cl dieselben Photolyseprodukte wie beim Bestrahlen in der Gasphase [5] auftraten. Wie in Schema 1 aufgezeigt ist, bildeten sich hierbei neben elementarem Gold die Phosphorfluoride PF₃ und POF₃ [8]. Die Phosphorfluoride wurden durch ³¹P-NMR-Spektroskopie und das Gold durch Pulverröntgendiffraktometrie identifiziert. Darüber hinaus beobachteten wir beim Einwirken von Licht der Wellenlänge von 340 nm bei 298 K auf eine Lösung von Au(PF₃)Cl in Benzol eine Emission mit der Wellenlänge 464 nm im blauen sichtbaren Spektralbereich. Abbildung 1 zeigt das Anregungs- und das Emissionsspektrum von Au(PF₃)Cl bei einer Konzentration von 0.128 mol/L in Benzol.

Abbildung 1 Anregungs(I)- und Emissionsspektrum(II) von Au(PF₃)Cl. Anregung von Au(PF₃)Cl bei Wellenlänge $\lambda = 340$ nm führt zu einer intensiven Emission bei der Wellenlänge $\lambda = 464$ nm.

Geeignete Einkristalle der Verbindung Au(PF₃)Cl wurden durch Zugabe von Pentan aus einer Lösung in Toluol bei 6 °C erhalten. Abbildung 1 gibt die ORTEP-Darstellung des Moleküls wieder. Das Addukt Au(PF₃)Cl besitzt im Kristall eine orthorhombische Elementarzelle (Raumgruppe *Pnma*).

Abbildung 2 Festkörperstruktur von Au(PF_3)Cl. Die thermischen Ellipsoide geben eine Aufenthaltswahrscheinlichkeit von 50 % an.

Zentrales Strukturelement von Au(PF₃)Cl ist die nahezu lineare F₃P-Au-Cl-Einheit [P(1)-Au(1)-Cl(1):173.6(2)°], an der das Au-Atom des weiteren noch mit je zwei benachbarten Au-Zentren verknüpft ist. Die Au-Atome bilden im Festkörper von Au(PF₃)Cl eine unendliche Zick-Zack-Kette [Au(1)#1-Au(1)-Au(1)#2: 107.75(4)°]. Die P-F-Bindungslängen mit im Mittel 1.522(11) Å und der Au-Cl-Abstand von 2.283(4) Å liegen innerhalb der entsprechenden Normalbereiche [9]. Der ermittelte Au-P-Abstand in Au(PF₃)Cl von 2.172(5) Å ist der kürzeste aller bisher durch Röntgenstrukturanalyse für Gold(I)chlorid-Phosphan-Addukte (R₃P-Au-Bindungslängen: 2.183 – 2.280 Å) bestimmten Werte [9]. Die kürzere Au-P-Distanz in Au(PF₃)Cl im Vergleich zu den entsprechenden Gold-Komplexen mit anderen Phosphanderivaten als Liganden lässt sich auf das hohe σ-Donor-Vermögen und die guten π -Akzeptoreigenschaften von PF₃ zurückführen. Der P-Au-Cl-Bindungswinkel von 173.6(2)° liegt im Bereich der bisher bestimmten Werte von AuCl-Phosphan-Addukten (R_3P -Au-Cl-Winkel: 164.18 - 180°)] [9]. Die durch Röntgenbeugung sichtbar gemachten Strukturmotive von Au(PF₃)Cl und von Au(CO)Cl stimmen sehr gut überein. Jedoch ist, wie in Tabelle 1 ersichtlich wird, der Au-Au-Abstand in Au(PF₃)Cl etwas kürzer als der in Au(CO)Cl, wobei beide Werte im Bereich der bisher bestimmten Au-Au-Abstände von AuCl-Addukten liegen [9]. Die Au-Au Abstände in Au(PF₃)Cl und Au(CO)Cl sind allgemein um ca. 0.8 Å länger als die in Gold(I)-Verbindungen mit den kürzesten Au-Au-Kontakten (ca. 2.5 A)] [9].

Tabelle 1 Vergleich der Bindungslängen /Å und Bindungswinkel /° von Au(PF₃)Cl und Au(CO)Cl bestimmt durch Röntgenbeugung.

	Au(PF ₃)Cl	Au(CO)Cl [3]	Au(PR ₃)Cl [9]	Au(NR ₃)Cl [9]
Au–Au	3.3495(9)	3.38	_	_
Au-Cl	2.283(4)	2.261(6)	2.233 - 2.391	2.243 - 2.269
Au-E ^{a)}	2.172(5)	1.93(2)	2.183 - 2.280	1.976 - 2.089
Cl-Au-E ^{a)}	173.6(2)	180	164.2 - 180	176.7 - 178.9

^{a)} E = P, C, N

Experimentelles

Alle Untersuchungen wurden unter Ausschluss von Luft und Wasser unter Verwendung von Stickstoff (99.9996 %) und Argon (99.9996 %) als Schutzgas durchgeführt. Toluol und Benzol wurden mit Natrium in Gegenwart von Benzophenon vorgetrocknet und vor Gebrauch über diesen Stoffen abdestilliert. Zur Verfügung stand AuCl. PF₃ wurde aus ZnF_2 und PCl₃ (Molverhältnis 3:2) synthetisiert. Für NMR-Spektren dienten Kernresonanzspektrometer Bruker DPX 250 und Bruker Avance 400. Das UV-Spektrum wurde mit einem Varian Cary-50 Scan UV-Vis-Spektrometer aufgenommen. Das Emissionsspektrum wurde mit einem Perkin Elmar LS 50B Fluororezenz-Spektrometer bestimmt.

Darstellung von Au(PF₃)Cl. In eine Suspension aus AuCl (1.51 g, 6.5 mmol) und Toluol wurde PF_3 (18.5 mmol) einkondensiert. Die Mischung wurde zwei Tage lang bei -65 °C gekühlt. Nach Filtration und langsamer Zugabe von Pentan schieden sich bei 6 °C perlmuttartige Plättchen ab.

³¹P-NMR (C₆D₆, extern H₃PO₄): $\delta = 113.3$ (q, ${}^{1}J_{PF} = -1357.3$ Hz). $-{}^{19}F$ -NMR (C₆D₆, extern CFCl₃): $\delta = -38.1$ (d, ${}^{1}J_{PF} = -1357.9$ Hz). UV_{vis}: $\lambda_{max} = 340$ nm, $\varepsilon_{1} = 9.3$ M⁻¹cm⁻¹.

Anmerkung: Eine 0.1 molare Lösung von Au(PF₃)Cl in C₆D₆ wurde 7 d dem Tageslicht ausgesetzt. Das ³¹P-NMR-Spektrum der so erhaltenen Lösung zeigte ausschließlich Signale die PF₃ [$\delta = 97.0$ (q, ¹J_{PF} = -1441 Hz)] und POF₃ [$\delta = -35.5$ (q, ¹J_{PF} = -1080 Hz)] zugeordnet werden konnten. Das hierbei abgeschie-

 Tabelle 2
 Ausgewählte
 Parameter
 der
 Röntgenstrukturanalyse

 von [Au(PF₃)]Cl.

Summenformel Molmasse Temperatur /K Wellenlänge /Å	AuClF ₃ P 320.39 173(2) 0.71073	
Kristallgröße /mm ³	$0.09 \cdot 0.08 \cdot 0.01$	
Kristallsystem	orthorhombisch	
Raumgruppe	Pnma	
a /A	18.366(3)	
b /Å	5.4110(9)	
c /A	4.6503(11)	
V/A^3	462.14(15)	
Z	4	
Dichte (ber.) $/Mg \cdot m^{-3}$	4.605	
μ / mm^{-1}	32.668	
Index-Bereich	$-23 \le h \le 21$	
	$-6 \le k \le 6$	
	$-5 \le 1 \le 5$	
θ-Bereich /°	4.37 - 26.53	
gesammelte Reflexe	3783	
unabhängige Reflexe	528	
GOOF	0.864	
$R1 \ [I > 2\sigma(I)]$	0.0307	
wR2	0.0665	
max. Restelektronendichte /e A^{-3}	1.191, -1.570	

dene Gold konnte durch Pulver-Röntgendiffraktometrie eindeutig nachgewiesen werden.

Kristallstruktur. Ein zur Röntgenstrukturanalyse (Daten s. Tabelle 2) geeigneter Kristall wurde an einem Glasfaden fixiert. Für die Strukturbestimmung von Au(PF₃)Cl wurde ein Stoe IPDS II Röntgendiffraktometer benutzt. Die Struktur wurde mit Direkten Methoden gelöst. Alle Atome wurden anisotrop verfeinert. Einzelheiten zu Kristallstrukturuntersuchung von [Au(PF₃)Cl] können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen unter Angabe der Hinterlegungsnummer CSD-415842 angefordert werden.

Literatur

- G. Margraf, J. W. Bats, M. Bolte, H.-W. Lerner, M. Wagner, Chem. Commun. 2003, 956.
- [2] E. Eitel, D. Oelkrug, W. Hiller, J. Strähle, Z. Naturforsch. 1980, 35b, 1247.
- [3] P. G. Jones, Z. Naturforsch. 1982, 37b, 823.
- [4] H.-N. Adams, W. Hiller, J. Strähle, Z. Anorg. Allg. Chem. 1982, 485, 81.
- [5] W. Fuß, M. Rühe, Z. Naturforsch. 1992, 47b, 591.
- [6] O. Takaoka, R. Hagiwara, (Seiko Instruments, Inc.; Japan), Jpn. Kokai Tokkyo Koho 2003, 3pp. CODEN: JKXXAF JP 2003186178 A2 20030703.
- [7] A. Gräfe, T. Kruck, J. Organomet. Chem. 1996, 506, 31.
- [8] POF_3 entsteht durch Reaktion von PCl_2F_3 mit Glas.
- [9] Cambridge Structural Database (CSD, Version 5.26 with two updates, August 2005; Allen, 2002). F. H. Allen, *Acta Crystallogr.* 2002, *B58*, 380.