Lewis-Säure-Base-Reaktionen von Goldtrihalogeniden mit Bismuttrihalogeniden – Synthese und Kristallstrukturen von AuBiX₆ (X = Cl, Br)

J. Beck* und St. Wagner

Gießen, Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität.

Bei der Redaktion eingegangen am 9. Juli 1997.

Professor Rudolf Hoppe zum 75. Geburtstag gewidmet

Inhaltsübersicht. Goldtrihalogenide AuX₃ (X = Cl, Br) reagieren mit den entsprechenden Bismuttrihalogeniden BiX₃ (X = Cl, Br) in geschlossenen Ampullen zu den 1:1-Addukten AuBiX₆. AuBiCl₆ entsteht bei 220 °C unter den Bedingungen des chemischen Transportes, während AuBiBr₆ wegen der geringen thermischen Stabilität von AuBr₃ unter solvothermalen Bedingungen in SiBr₄ als Lösungsmittel bei 150 °C dargestellt wurde. Beide Verbindungen sind isotyp und kristallisieren triklin in der Raumgruppe PI, Z = 4, mit den Gitterkonstanten a = 698,3(4) pm; b = 1009,3(5) pm; c = 1381(1) pm; $\alpha = 104,98(5)^\circ$; $\beta = 94,73(5)^\circ$; $\gamma = 110,06(3)^\circ$ für AuBiCl₆ und a = 735,7(4) pm; b = 1055,7(5) pm; c = 1445(1) pm; α = 104,88(5)°; β = 94,25(5)°; γ = 110,18(4)° für AuBiBr₆. Die Strukturen sind aus quadratisch-planaren [AuX₄]⁻Ionen und Ketten aus kantenverknüpften ([BiX_{4/2}]⁺)_n-Einheiten aufgebaut. Da die Bi-Ionen von acht Halogenid-Ionen in Form eines quadratischen Antiprismas umgeben sind, kann die Struktur alternativ so beschrieben werden, daß sie aus Ketten kantenverknüpfter ([BiX₄X_{4/2}]^{3–})_n-Antiprismen besteht, die über Au³⁺-Ionen verbunden sind.

Lewis-Acid-Base-Reactions of Gold Trihalides with Bismuth Trihalides – Synthesis and Structures of $AuBiX_6$ (X = Cl, Br)

Abstract. Gold trihalides AuX₃ (X = Cl, Br) react with bismuth trihalides in sealed glass ampoules to the 1:1 adducts AuBiX₆ (X = Cl, Br). AuBiCl₆ is obtained by a chemical transport reaction at 220 °C, whereas AuBiBr₆ was synthesized by solvothermal reaction in SiBr₄ at 150 °C. Both compounds crystallize triclinic, space group P1, Z = 4. AuBiCl₆: a = 698.3(4) pm; b = 1009.3(5) pm; c = 1381(1) pm; α = 104.98(5)°; β = 94.73(5)°; γ = 110.06(3)°; V = 867(1) · 10⁶ pm³. AuBiBr₆: a = 735.7(4) pm; b = 1055.7(5) pm; c = 1445(1) pm; α = 104.88(5)°; β = 94.25(5)°; γ = 110.18(4)°; V = 1001(1) ·

 10^6 pm^3 . The structures are build formally of square-planar $[AuX_4]^-$ and chains of edge-connected $([BiX_{4/2}]^+)_n$ units. Since each Bi ion is surrounded by eight halogenide ions in a square-antiprismatic form, the structure can alternatively be described as consisting of chains of edge sharing $([BiX_4X_{4/2}]^{3-})_n$ antiprisms connected by Au³⁺ ions.

Keywords: Gold trichloride; gold tribromide; bismuth trichloride; bismuth tribromide; solvothermal synthesis; crystal structure

Prof. Dr. J. Beck Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Heinrich-Buff-Ring 58 D-35392 Gießen Fax: INT. +049–641–34109 email: johannes.beck@anorg.chemie.uni-giessen.de

1 Einleitung

Goldtrihalogenide verhalten sich in Reaktionen mit anderen Metallhalogeniden meist als starke Lewis-Säuren. Mit Metall(I)-halogeniden beispielsweise werden Verbindungen des Typs M[AuX₄] (M = Ag, Na, K, Rb, Cs, NH₄, Tl) [1] gebildet, mit Chalkogentetrahalogeniden solche des Typs $[EX_3][AuX_4]$ (E = S, Se, Te) (X = Cl, Br) [2]. Die Strukturen enthalten stets quadratisch-planare AuX₄-Einheiten, deren Halogenato-

^{*} Korrespondenzadresse:

me Brückenfunktionen haben. Allerdings sind diese Brücken asymmetrisch mit kurzen Gold-Halogen-Bindungen und entsprechend langen M-X- bzw. E-X-Bindungen. Bismuttrihalogenide reagieren mit entsprechenden Reaktionspartnern ebenfalls als Lewis-Säure unter Bildung von Halogenobismutat-Ionen, wie die Beispiele $(S_4N_3)BiCl_4$ [3], $Cs_2NaBiCl_6$ [4] oder $(NH_4)_3Bi_2Cl_9$ [5] zeigen. Im System Au/Bi/F ist bisher kein 1:1-Addukt aus AuF₃ und BiF₃ charakterisiert. Es konnte nur Bi₂F[AuF₄]₅ [6], formal ein 5:2-Addukt, erhalten werden, in dem ebenfalls quadratischplanare AuF₄-Einheiten vorliegen. Wir fanden, daß die Bismuttrihalogenide BiCl₃ und BiBr₃ mit den entsprechenden Goldtrihalogeniden 1:1-Addukte bilden, worüber wir im folgenden berichten.

2 Experimentelles

AuCl₃, AuBr₃, BiCl₃ und BiBr₃ wurden jeweils aus den Elementen dargestellt (Goldmetall, Fa. Degussa, 99,9%, gelöst in Königswasser und mit Oxalsäure gefällt; Bismut-Pulver, Fa. Aldrich, 99,9%; Chlor, Fa. Messer-Griesheim, 99,8%, getrocknet über P_2O_5 ; Brom, Fa. Fluka, 99,8%, getrocknet über Molsieb 3 Å). Mit Ausnahme von AuBr₃ wurden alle Halogenide zur Reinigung sublimiert. SiBr₄ wurde aus Silicium-Pulver (Fa. Fluka, 99,8%) und CuBr (Fa. Fluka, 99,9%) dargestellt [7] und zur Reinigung destilliert. Das Befüllen und Öffnen der Reaktionsampullen erfordert wegen der Hydrolyseempfindlichkeit der Metallhalogenide die Verwendung von getrocknetem Schutzgas.

AuBiCl₆

Unter Feuchtigkeitsausschluß wurden 0,050 g (0,16 mmol) AuCl₃ und 0,051 g (0,16 mmol) BiCl₃ in eine zuvor unter Feinvakuum bei 500 °C ausgeheizte Glasampulle gefüllt. Die Ampulle wurde evakuiert, abgeschmolzen und mit den Edukten auf der heißen Seite in einen Rohrofen gelegt. Im Temperaturgefälle von 230° \Rightarrow 215 °C bildeten sich im Verlauf einiger Tage in der Mitte der Ampulle orangefarbene Kristalle von AuBiCl₆ in einer Ausbeute von etwa 60%.

AuBiBr₆

Unter Feuchtigkeitsausschluß wurden 0,080 g (0,18 mmol) AuBr₃ und 0,080 g (0,18 mmol) BiBr₃ in eine dickwandige Ampulle (10 mm Außendurchmesser, 2,2 mm Wandstärke) gefüllt und mit 0,7 ml SiBr₄ und zwei Tropfen Brom überschichtet. Die Flüssigkeiten wurden ausgefroren, die Ampulle unter Vakuum abgeschmolzen und bei 120 °C in einen horizontalen Rohrofen gelegt. Die Temperatur wurde mit einer Rate von 10°/d auf 150 °C erhöht. Nach zwei Tagen wurde die Temperatur mit 10°/d auf Raumtemperatur gesenkt. Dabei bildeten sich tief-dunkelrote Kristalle von AuBiBr₆, die durch Abdestillieren des SiBr₄ unter Vakuum isoliert werden konnten. Die Ausbeute lag bei etwa 60%.

Summenformel	AuBiCl ₆	Α	uBiBr ₆	
Gitterkonstanten [pm]	$a = 698,3(4)$ $\alpha = 104,98($	5)° a	$= 735,7(4)$ $\alpha = 104,88(5)^{\circ}$	
1 .2	$b = 1009,3(5)$ $\beta = 94,73(6)$	5)° b	$= 1055,7(5)$ $\beta = 94,25(5)^{\circ}$	
	$c = 1381(2)$ $\gamma = 110,06(3)$)° c	$= 1445(1)$ $\gamma = 110,18(4)^{\circ}$	
Zellvolumen	$867(1) \cdot 10^6 \text{ pm}^3$	1($001(1) \cdot 10^6 \text{ pm}^3$	
Formeleinheiten	., -	Z = 4		
Dichte (berechnet)	$4,738 \text{ g} \cdot \text{cm}^{-3}$	5,	$871 \text{ g} \cdot \text{cm}^{-3}$	
Kristallsystem	-	triklin	-	
Raumgruppe		P1 (Nr. 2	2)	
Farbe	orange	dı	unkelrot	
Meßtemperatur		295 K		
Röntgenstrahlung	Mo-K $\overline{\alpha}$; $\lambda = 71,073 \text{ pm}$			
Diffraktometer	STOE IPDS			
Meßbereich		$9,5^{\circ} < 2\theta$	< 56°	
Gemessene Reflexe	6724	76	601	
davon unabhängig; R _m	3722; 8,6%	44	431; 14,9%	
Verfeinerte Parameter		149		
Reflexe/Parameter	24,5	29	9,7	
Absorptionskorrektur	numerisch mittels HABITUS, Beschreibung des Kristalls über			
	16 Flächen	14	4 Flächen	
Absorptionskoeffizient	$\mu = 389.1 \text{ cm}^{-1}$	μ	$= 560,3 \text{ cm}^{-1}$	
Extinktionskoeffizient	0,0101(4)	0,	,0062(2)	
Gütefaktoren	$wR(F^2) = 14,82\%$	w	$\mathbf{R}(\mathbf{F}^2) = 8,06\%$	
	R(F) = 5,18%	R	L(F) = 5,09%	
für [n] Reflexe mit $I > 2\sigma(I)$	R(F) = 4,99% [3532]	R	$L(\mathbf{F}) = 3,70\% [3439]$	
Restelektronendichte	$-2,25/+1,87 \ [e/10^{6} \text{ pm}^{3}]$]	$1,71/+2,14 \ [e/10^6 \ pm^3]$	

Tabelle 1 Kristallographische Daten und Angaben zur Kristallstrukturbestimmung von AuBiCl₆ und AuBiBr₆. Die in Klammern angegebenen Standardabweichungen beziehen sich auf die letzte angegebene Stelle.

Strukturbestimmungen

Da beide Verbindungen an der Luft hydrolysieren, wurden alle Kristalle unter Schutzgas in Glaskapillaren eingeschmolzen. Präzessionsaufnahmen zeigten nur die Symmetrie $\overline{1}$. Daher wurde die trikline Raumgruppe P $\overline{1}$ angenommen, die durch den Verlauf der Strukturverfeinerung [8] bestätigt wurde. Die Ortsparameter aller Atome konnten durch die direkten Methoden [9] erhalten werden. An beiden Datensätzen wurde eine numerische Absorptionskorrektur [10] vorgenommen.

Einzelheiten zur Messung am Einkristalldiffraktometer und die kristallographischen Daten finden sich in Tabelle 1, Tabelle 2 enthält die Ortskoordinaten und Temperaturfaktoren der Atome. Weitere Daten der Strukturbestimmungen sind beim Fachinformationszentrum Karlsruhe GmbH, D-76334 Eggenstein-Leopoldshafen, hinterlegt und können

Tabelle 2 Ortskoordinaten und äquivalenter isotroper Auslenkungskoeffizient B_{eq} der Atome von AuBiCl₆ und AuBiBr₆. Die in Klammern angegebenen Standardabweichungen beziehen sich auf die letzte angegebene Stelle.

Atom	X	у	Z	\mathbf{B}_{eq}
AuBiCl ₆				
Au(1)	0.29681(8)	0.63040(6)	0.76699(4)	2.70(2)
Au(2)	0.5	0.5	0.5	2.77(2)
Au(3)	0	0	0	2.65(2)
Bi (1)	0.60863(8)	0.92839(6)	0.62006(4)	2.70(2)
Bi(2)	0.96336(8)	0.31386(6)	0.87060(4)	2.80(2)
Cl(1)	0.6342(7)	0.7273(5)	0.7518(4)	3.68(7)
Cl(2)	0.2549(8)	0.8391(5)	0.7534(5)	4.18(9)
Cl(3)	-0.0423(7)	0.5343(6)	0.7831(5)	4.18(9)
Cl(4)	0.3348(7)	0.4178(5)	0.7775(4)	3.68(8)
Cl(5)	0.7238(7)	0.3804(5)	0.5035(5)	4.5(1)
Cl(6)	0.7711(7)	0.7122(4)	0.5114(4)	3.95(9)
Cl(7)	-0.2435(7)	0.0931(5)	-0.0351(4)	3.79(8)
Cl(8)	-0.2499(6)	-0.1971(5)	0.0251(4)	3.65(8)
Cl(9)	0.5956(6)	1.1830(5)	0.7387(4)	3.34(7)
Cl(10)	0.9841(6)	1.0514(5)	0.7236(3)	3.24(7)
Cl(11)	0.7567(6)	1.0477(5)	0.4868(4)	3.16(7)
Cl(12)	0.7347(6)	0.4327(4)	0.9787(3)	3.08(7)

AuBiBr₆

Au(1)	0.29773(7)	0.62766(5)	0.76514(3)	1.92(2)
Au(2)	0.5	0.5	0.5	1.89(2)
Au(3)	0	0	0	1.86(2)
Bi(1)	0.61363(7)	0.92591(5)	0.61911(3)	2.09(2)
Bi(2)	0.96037(8)	0.31290(6)	0.86999(3)	2.37(2)
Br(1)	0.6381(3)	0.7296(2)	0.7528(1)	3.14(3)
Br(2)	0.2508(3)	0.8366(2)	0.7501(2)	3.77(4)
Br(3)	-0.0440(3)	0.5286(3)	0.7787(2)	4.07(4)
Br(4)	0.3410(3)	0.4148(2)	0.7768(1)	3.03(3)
Br(5)	0.7165(3)	0.3749(2)	0.5069(2)	4.11(4)
Br(6)	0.7807(3)	0.7117(2)	0.5108(1)	3.26(3)
Br(7)	-0.2412(3)	0.0982(2)	-0.0317(2)	3.19(3)
Br(8)	-0.2552(2)	-0.1956(2)	0.02962(9)	2.86(3)
Br(9)	0.5928(2)	1.1801(2)	0.73988(8)	2.41(3)
Br (10)	0.9880(2)	1.0502(2)	0.72207(8)	2.38(3)
Br (11)	0.7572(2)	1.0469(2)	0.48356(8)	2.30(3)
Br(12)	0.7327(2)	0.4355(2)	0.97893(8)	2.35(3)

dort unter Angabe der Autoren, des Zeitschriftenzitates und der Hinterlegungsnummer CSD-407221 für AuBi Cl_6 und CSD-407220 für AuBi Br_6 angefordert werden.

3 Ergebnisse und Diskussion

Bismuttrichlorid und Goldtrichlorid sowie Bismuttribromid und Goldtribromid reagieren unter Bildung von gemischten Halogeniden der Zusammensetzung AuBiCl₆ und AuBiBr₆. Das ternäre Chlorid ist aus den binären Chloriden durch eine Abscheidung aus der Gasphase bei 220 °C zugänglich. Da sich AuBr₃ schon dicht oberhalb Raumtemperatur unter Br2-Abspaltung zersetzt, konnte AuBiBr₆ auf diese Weise nicht erhalten werden. Es bildet sich jedoch unter solvothermalen Bedingungen in SiBr₄ als Lösungsmittel bei 150 °C. Die Kristallstrukturbestimmungen zeigten, daß beide Verbindungen isotyp sind. Jedes der drei kristallographisch unabhängigen Gold-Ionen ist im Rahmen typischer Bindungslängen (Au-Cl: 227-229 pm; Au-Br: 240-243 pm) von vier Halogenid-Ionen in annähernd quadratisch-planarer Weise koordiniert (X-Au-X-Winkel von 89,7 bis 90,4°). Weitere Halogenid-Ionen im Abstand bis 384 pm (X = Cl) bzw. 402 pm (X = Br) ergänzen die Koordinationssphäre der Gold-Ionen zu einem stark elongierten Oktaeder. Um die Bi-Ionen befinden sich jeweils acht Halogenid-Ionen mit Abständen von 255 bis 323 pm (X = Cl) und 269 bis 340 pm (X = Br). Das Koordinationspolyeder der beiden kristallographisch unabhängigen Bi-Ionen kann als zweifach überkapptes trigonales Prisma oder als quadratisches Antiprisma aufgefaßt werden. Die Bi-X-Bindungslängen sind in Abb. 1 als Histogramm dargestellt. Die Koordination von Bi(1) durch Halogenid-Ionen zeigt eine enge Verwandtschaft zu der des Bi-Ions in BiCl₃ [11] bzw. α -BiBr₃ [12]. Drei Halogenid-Ionen mit kurzen Bi-X-Abständen (X(9), X(10), X(11)) bilden eine Dreiecksfläche eines trigo-

Abb. 1 Graphische Darstellung der Abstände Bi–X, oben für AuBiCl₆, unten für AuBiBr₆. Die Strichstärke der Markierungen entspricht der mittleren Standardabweichung der Bi–X-Bindungen. Symmetrieoperationen: I: x; y + 1; z II: x + 1; y + 1; z III: x + 1; y + 1; z + 1 IV: -x + 1; -y + 1;-z + 1 V: -x + 1; -y + 2; -z + 1 VI: -x + 2; -y + 2; -z + 2.

Abb. 2 Die Koordination der beiden unabhängigen Bi-Ionen in der Struktur von AuBiX₆, hier gezeigt am Beispiel AuBiCl₆. Die Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 50% [13].

nalen Prismas, drei Halogenid-Ionen mit langen Bi-X-Abständen (X(1), X(2), X(5)^{IV}) die gegenüberliegende Dreiecksseite. Die Halogenid-Ionen über den Vierecksflächen des Prismas (X(6), X(11)^V) haben mittlere Abstände. Die Separierung in drei Gruppen von Halogenid-Ionen ist in der Koordinationssphäre von Bi(2) nicht vorhanden. Ohne eine markante Lükke steigen die acht Bi-X-Abstände stetig an. Abbildung 2 zeigt die beiden Bi-Ionen, ihre Umgebung durch Halogenid-Ionen und ihre Verknüpfung zu den Gold-Ionen. Die quadratischen Antiprismen aus Halogenid-Ionen, die jedes Bi-Ion umgeben, sind über gemeinsame Kanten verknüpft. Jeweils vier Antiprismen sind durch gemeinsame trans-ständige Kanten nahezu linear angeordnet. Die Weiterverknüpfung zur Kette erfolgt dann über eine cis-ständige Kante. Formal läßt sich die Struktur von AuBiX₆ in polymere Halogenobismutatketten zerlegen, die durch Au³⁺-Ionen zusammengehalten werden: $n \operatorname{Au}^{3+} \cdot ([\operatorname{Bi}X_4X_{4/2}]^{3-})_n$ (Abb. 3 oben). Die kurzen Au-X-Bindungen, die im Bereich molekularer Tetrahalogenoaurat-Ionen liegen, legen dagegen eine andere Interpretation nahe, gemäß der die Verbindung als polymeres Halogenobismut-tetrahalogenoaurat aufgefaßt werden kann:

 $([BiX_{4/2}]^+)_n \cdot n [AuX_4]^-$ (Abb. 3 unten). Wegen der ausgeglichenen Au-X- und Bi-X-Bindungslängen trifft aber keine dieser beiden Interpretationen zu. Vielmehr ist AuBiX₆ als Doppelsalz BiX_{8/2}AuX_{4/2} anzusehen. MAPLE-Berechnungen zeigen eine gute Übereinstimmung der Summe der MAPLE-Werte der binären Halogenide AuX₃ und BiX₃ (2184,0 kcal/mol (X = Cl) bzw. 2014,7 kcal/mol (X = Br)) mit den berechneten Werten der ternären Verbindungen (AuBiCl₆: 2156,9 kcal/mol (-1,2%) bzw. AuBiBr₆: 2034,6 kcal/mol (1,0%)) [14]. Im Vergleich zu den binären Halogeniden wird bei der Bildung der ternären Halogenide die Koordinationszahl der Bi-Ionen er-

Abb. 3 Die Elementarzelle von AuBiX₆ in zwei verschiedenen Darstellungsweisen. Oben eine Polyederdarstellung mit Ketten aus kantenverknüpften quadratischen Antiprismen ($[BiX_4X_{4/2}]^{3-}$)_n, die durch Au³⁺-Ionen (schwarze Kugeln) verbunden werden. Unten eine Darstellung der $[AuX_4]^-$ Gruppen, zwischen denen Bänder von ($[BiX_{4/2}]^+$)_n verlaufen (Bi: große schwarze Kugeln, Au: kleine schwarze Kugeln, X: graue Kugeln) [16].

höht, was als treibende Kraft zur Bildung dieser Verbindungen angesehen werden kann. Während das Au-Ion seine 4 + 2-Koordination wie in den binären Goldhalogeniden behält, erhöht sich die effektive Koordinationszahl [15] der Bi-Ionen von 3,3 (BiCl₃) bzw. 3,9 (BiBr₃) auf 6,7 und 7,7 in AuBiCl₆ bzw. 6,9 und 7,6 in AuBiBr₆, was annähernd einer Verdopplung der effektiven Koordinationszahl entspricht. Zudem sind in beiden ternären Halogeniden die Bi–X-Bindungen gegenüber den binären Bismuthalogeniden verkürzt. Der Mittelwert der acht kürzesten Bi–Cl-Bindungen in AuBiCl₆ beträgt 288 pm, in BiCl₃ dagegen 301 pm. In AuBiBr₆ beträgt dieser Mittelwert 303 pm, in α -BiBr₃ dagegen 322 pm. Allerdings ist der Anstieg der Koordinationszahl und die gleichzeitige Bindungslängenverkürzung nur bei AuBiBr₆ von einer signifikanten Dichteerhöhung begleitet. Der Mittelwert der Dichten von α -BiBr₃ und AuBr₃ beträgt 5,78 g · cm⁻³, die Dichte von AuBiBr₆ dagegen 5,87 g · cm⁻³. Bei AuBiCl₆ steigt die Dichte nur unwesentlich von 4,72 g · cm⁻³ (Mittelwert von BiCl₃ und AuCl₃) auf 4,74 g · cm⁻³ an.

Diese Arbeiten wurden vom Fonds der Chemischen Industrie dankenswerterweise finanziell unterstützt.

Literatur

- G. Sleater, H. Bärnighausen, G. Brauer, Z. Anorg. Allg. Chem. 1970, 372, 9; M. Bonamico, G. Dessy, Acta Crystallogr. 1973, B 29, 1735; M. Bonamico, G. Dessy, Acta Crystallogr. 1973, B 29, 1737; W. Werner, J. Strähle, Z. Naturforsch. 1977, 32 b, 741; P. G. Jones, R. Schelbach, E. Schwarzmann, Acta Crystallogr. 1987, C43, 1674.
- [2] P. G. Jones, R. Jentsch, E. Schwarzmann, Z. Naturforsch.
 1986, 41 b, 1483; C. Freire-Erdbrügger, D. Jentsch,
 P. G. Jones, E. Schwarzmann, Z. Naturforsch. 1987, 42 b,
 1553; P. G. Jones, R. Schelbach, E. Schwarzmann, Acta Crystallogr. 1987, C43, 607; P. G. Jones, D. Jentsch,
 E. Schwarzmann, Acta Crystallogr. 1988, C44, 210.

- Z. anorg. allg. Chem. 623 (1997)
- [3] B. Kruss, M. L. Ziegler, Z. Naturforsch. 1982, 27b, 1282.
- [4] L. R. Morss, W. R. Robinson, Acta Crystallogr. 1972, B 28, 653.
- [5] F. Lazarini, Acta Crystallogr. 1977, B 33, 2961.
- [6] H. Fitz, B. G. Müller, unveröffentlicht, H. Fitz, Diplomarbeit, Uni Gießen 1996.
- [7] K. H. Lieser, H. Elias, H. W. Kohlschütter, Z. Anorg. Allg. Chem. 1961, 313, 199.
- [8] G. M. Sheldrick, SHELXL93, Program for Crystal Structure Refinement, Universität Göttingen 1993.
- [9] G. M. Sheldrick, SHELXS86, Program for Crystal Structure Determination, Universität Göttingen **1986**.
- [10] W. Herrendorf, H. Bärnighausen; HABITUS, Programm zur Optimierung der Kristallgestalt für die numerische Absorptionskorrektur anhand geeigneter ψabgetasteter Reflexe, Universität Karlsruhe 1993; HABI-TUS II, erweiterte Version 1996.
- [11] S. C. Nyburg, G. A. Ozin, J. T. Szymański, Acta Crystallogr. 1972, B 28, 2885.
- [12] H. von Benda, Z. Kristallogr. 1980, 151, 271.
- [13] C. K. Johnson, ORTEP, A Thermal Ellipsoid Plot Program, Oak Ridge, Tenessee, USA, 1971.
- [14] R. Hoppe, Z. Naturforsch. 1995, 50 a, 555; Die in Klammern angegebenen Prozentangaben geben die jeweilige Abweichung an und verdeutlichen die Güte der MA-PLE-Werte.
- [15] R. Hoppe, Z. Kristallogr. 1979, 150, 23.
- [16] G. Bergerhoff; DIAMOND Visuelles Informationssystem f
 ür Kristallstrukturen, Bonn 1996.