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Facile Stereoselective Synthesis of (E)-1-
Arylseleno-Substituted 1,3-Enynes and Their
Applications in Synthesis of (E)-Enediynes

Xiaoniu Fang,1,2 Minhua Jiang,1 Ronghua Hu,2 and Mingzhong Cai1

1Department of Chemistry, Jiangxi Normal University,
Nanchang, China

2Department of Chemistry, Jinggangshan University, Jian, China

Abstract: (E)-1-Iodo-2-arylselenoethylenes 1 underwent the Sonogashira cou-
pling reactions with terminal alkynes 2 to afford (E)-1-arylseleno-substituted
1,3-enynes 3 in high yields. (E)-1-Arylseleno-substituted 1,3-enynes 3 were
coupled with alkynylmagnesium bromides 4 in the presence of a catalytic amount
of NiCl2(PPh3)2 to give stereoselectively (E)-enediynes 5 in good yields.

Keywords: (E)-1-Arylseleno-substituted 1,3-enyne, (E)-enediyne, nickel catalysis,
Sonogashira coupling, stereoselective synthesis

INTRODUCTION

Enyne systems have attracted much attention from synthetic organic che-
mists because enynes show interesting chemical and biological reactiv-
ities.[1] Conjugated enynes are also important synthetic intermediates
because the conjugated enyne moiety can be readily converted in a stereo-
specific manner into the corresponding diene system.[2] Recently, Hara
et al. described the formation of highly substituted enynes using a cou-
pling reaction between alkenylzirconium compounds and alkynyl
halides.[3] Cadierno et al. reported the stereoselective synthesis of chiral
terminal (E)-1,3-enynes derived from the optically active aldehydes.[4]
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The stereocontrolled synthesis of 1,3-enynes containing metal or
heteroatom functional groups has also attracted considerable interest in
organic synthesis because many useful functional group transformations
can be achieved by introduction and removal of metal or heteroatom
functions. The stereoselective synthesis of 1,3-enynylsulfides,[5] 1,3-
enynyltellurides,[6] 1,3-enynylsulfones,[7] 1,3-enynylsilanes,[8] 1,3-
enynylstannanes,[9] and fluoro or CF3-substituted 1,3-enynes[10] has
already been described in the literature. The synthesis of (E)-2-arylseleno-
substituted 1,3-enynes has also been reported[11]; however, report on the
synthesis of (E)-1-arylseleno-substituted 1,3-enynes is rare. Sonogashira
coupling is a reliable and convenient reaction for constructing enyne unit
and has often been used for the preparation of such compounds.[12]

Herein, we report that (E)-1-arylseleno-substituted 1,3-enynes could
be conveniently synthesized via Sonogashira coupling reactions of
(E)-1-iodo-2-arylselenoethylenes with terminal alkynes (Scheme 1).

RESULTS AND DISCUSSION

(E)-1-Iodo-2-arylselenoethylenes 1 were easily prepared by the hydrozir-
conation of arylselenoacetylenes, followed by the reaction with iodine
according to a literature procedure.[13] (E)-1-Iodo-2-arylselenoethylenes
1 are difunctional group reagents in which two synthetically versatile
groups are linked to the olefinic carbon atoms and can be considered
both as vinylic selenides and as vinylic iodides. We carried out the
Sonogashira coupling reactions of (E)-1-iodo-2-arylselenoethylenes 1

with terminal alkynes 2; the experimental results are summarized in
Table 1. As shown in Table 1, the Sonogashira coupling reactions
proceeded smoothly in piperidine at room temperature in the presence
of catalytic amounts of Pd(PPh3)4 and CuI to afford stereoselectively
desired (E)-1-arylseleno-substituted 1,3-enynes 3 in high yields. It is well
documented that the Sonogashira coupling reaction of vinylic iodides
with terminal alkynes in the presence of a palladium and CuI cocatalyst
occurs with retention of configuration.[12] The E-configuration of the

Scheme 1. Synthesis of (E)-1-arylseleno-substituted 1,3-enynes.
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compounds 3a–g has been proved by their 1H NMR spectra, which show
a doublet at d¼ 5.64–5.80 with a coupling constant of 15.6–16.0 Hz.

Enediyne compounds have recently received considerable attention
because they can be used not only to study on the mechanism for their
function in antitumor antibiotics[14–16] such as dynemicin, neocarzinosta-
tin, and esperamicin but also are utilized in syntheses of oligoenynes and
oligoenediynes as well as p-conjugated polymers for electronic and
photonic applications.[17] Very recently, they have been widely used as
important synthetic intermediates in organic synthesis.[18] It is well
known that vinylic selenides can couple with Grignard reagents in the
presence of a catalytic amount of nickel-phosphine complexes to afford
the corresponding unsaturated hydrocarbons with loss of selenium-
containing groups.[19] We carried out the cross-coupling reactions of
(E)-1-arylseleno-substituted 1,3-enynes 3 with alkynylmagnesium bro-
mides 4 in ether in the presence of a catalytic amount of NiCl2(PPh3)2

to afford the selenium-free (E)-enediynes 5 (Scheme 2). The typical
results are summarized in Table 2. As shown in Table 2, the cross-
coupling reactions of (E)-1-arylseleno-substituted 1,3-enynes 3 with
alkynylmagnesium bromides 4 proceeded smoothly under mild

Table 1. Synthesis of (E)-1-arylseleno-substituted 1,3-enynes 3a–ga

Entry Ar R Product Yieldb (%)

1 Ph n-C4H9 3a 88
2 Ph n-C6H13 3b 87
3 Ph Me3Si 3c 85
4 Ph MeOCH2 3d 90
5 Ph Ph 3e 89
6 4-ClC6H4 Me3Si 3f 86
7 4-MeC6H4 Me3Si 3g 88

aThe reactions were performed with 1.0 mmol of 1, 1.5 mmol of 2, 0.05 mmol of
Pd(PPh3)4, and 0.1 mmol of CuI in 3 mL of piperidine at room temperature.

bIsolated yield based on 1 used.

Scheme 2. Synthesis of (E)-enediynes.
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conditions to give the corresponding (E)-enediynes 5 in good yields. The
E-configuration of the compounds 5a, 5d, and 5e has been proved by
their 1H NMR spectra, which show two doublets at d¼ 5.88–6.12 with
a coupling constant of 16.0 Hz. Because arylseleno-substituted
compounds are toxic and give off a bad smell, we tried to combine the
Sonogashira coupling and Ni-catalyzed coupling reactions into a one-
pot reaction to synthesize (E)-enediynes 5, but this was unsuccessful.

EXPERIMENTAL

General

IR spectra were obtained on a Perkin-Elmer 683 instrument as neat films.
1H NMR spectra were recorded on a Bruker AC-400 (400-MHz) spectro-
meter with TMS as an internal standard using CDCl3 as solvent. 13C
NMR spectra were recorded on a Bruker AC-400 (100-MHz) spectro-
meter using CDCl3 as solvent. Mass spectra were determined on a
Finnigan 8230 mass spectrometer. Microanalyses were measured using
a Yanaco MT-3 CHN microelemental analyzer. Piperidine was dried
over potassium hydroxide (KOH) and distilled before use. Diethyl ether
was distilled from sodium benzophenone ketyl prior to use.

General Procedure for the Synthesis of (E)-1-Arylseleno-Substituted

1,3-Enynes 3a–g

(E)-1-Iodo-2-arylselenoethylene 1 (1.0 mmol), Pd(PPh3)4 (0.05 mmol),
piperidine (3 mL), and CuI (0.1 mmol) were added to a flask under argon,

Table 2. Synthesis of (E)-enediynes 5a–ea

Entry Ar R R1 Product Yieldb (%)

1 Ph n-C4H9 Me3Si 5a 72
2 Ph n-C6H13 n-C4H9 5b 75
3 4-MeC6H4 Me3Si Me3Si 5c 81
4 4-MeC6H4 Me3Si n-C6H13 5d 76
5 Ph Ph n-C6H13 5e 69

aThe reactions were performed with 1.0 mmol of 3, 2.5 mmol of 4, and
0.03 mmol of NiCl2(PPh3)2 in 12 mL of Et2O at reflux temperature.

bIsolated yield based on 3 used.
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and the resulting mixture was stirred at room temperature for 5 min.
Terminal alkyne 2 (1.5 mmol) was added to this solution, and the reaction
mixture was stirred at room temperature for 3 h, quenched with
sat. NH4Cl aq. solution (10 mL) at 0 �C, and extracted with Et2O
(2� 25 mL). The ethereal solution was washed with water (2� 10 mL)
and dried over MgSO4. The solvent was removed under vacuum, and
the residue was purified by flash chromatography on silica gel eluting
with light petroleum ether (bp 30–60 �C).

Data

(E)-1-Phenylseleno-1-octen-3-yne (3a)

Oil, bp 78 �C (0.35 torr). IR (film): n (cm�1) 3058, 2957, 2931, 2871, 2212,
1708, 1578, 1477, 930, 736, 690; 1H NMR (CDCl3): d 7.52–7.50 (m, 2H),
7.32–7.30 (m, 3H), 6.99 (d, J¼ 15.6 Hz, 1H), 5.80 (d, J¼ 15.6 Hz, 1H),
2.31–2.26 (m, 2H), 1.52–1.37 (m, 4H), 0.91 (t, J¼ 7.2 Hz, 3H); 13C
NMR (CDCl3): d 133.3, 131.8, 129.4, 128.8, 127.9, 114.0, 91.6, 78.9,
30.7, 22.0, 19.2, 13.6; MS (EI): m=z 264 (Mþ, 17), 263 (54), 142 (100),
129 (56), 115 (70), 91 (63), 77 (74). Anal. calc. for C14H16Se: C, 63.88;
H, 6.13. Found: C, 63.59; H, 6.16%.

(E)-1-Phenylseleno-1-decen-3-yne (3b)

Oil, bp 82 �C (0.3 torr). IR (film): n (cm�1) 3059, 2955, 2930, 2857, 2211,
1712, 1578, 1477, 930, 736, 690; 1H NMR (CDCl3): d 7.52–7.50 (m, 2H),
7.32–7.30 (m, 3H), 6.99 (d, J¼ 16.0 Hz, 1H), 5.80 (d, J¼ 16.0 Hz, 1H),
2.30–2.25 (m, 2H), 1.53–1.47 (m, 2H), 1.39–1.25 (m, 6H), 0.88 (t,
J¼ 6.8 Hz, 3H); 13C NMR (CDCl3): d 133.3, 131.8, 129.4, 128.8, 127.8,
114.0, 91.7, 78.9, 31.3, 28.6, 28.5, 22.5, 19.5, 14.1; MS (EI): m=z 292
(Mþ, 13), 291 (51), 142 (100), 129 (57), 115 (75), 91 (85), 77 (84). Anal.
calc. for C16H20Se: C, 65.97; H, 6.92. Found: C, 65.74; H, 6.78%.

(E)-1-Phenylseleno-4-(trimethylsilyl)-1-buten-3-yne (3c)

Oil, bp 89 �C (0.5 torr). IR (film): n (cm�1) 3059, 2958, 2142, 1712, 1578,
1250, 844, 690; 1H NMR (CDCl3): d 7.54–7.52 (m, 2H), 7.34–7.32 (m, 3H),
7.21 (d, J¼ 16.0 Hz, 1H), 5.71 (d, J¼ 16.0 Hz, 1H), 0.16 (s, 9H); 13C NMR
(CDCl3): d 136.4, 134.1, 129.6, 128.3, 127.8, 111.7, 103.3, 95.2, �0.12; MS
(EI): m=z 280 (Mþ, 5.8), 250 (55), 78 (44), 73 (100). Anal. calc. for C13 H16

SiSe: C, 55.90; H, 5.77. Found: C, 55.62; H, 5.79%.

4174 X. Fang et al.
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(E)-1-Phenylseleno-5-methoxy-1-penten-3-yne (3d)

Oil, bp 73 �C (0.4 torr). IR (film): n (cm�1) 3057, 2929, 2204, 1713,
1578, 1094, 930, 739, 690; 1H NMR (CDCl3): d 7.55–7.51 (m, 2H),
7.35–7.32 (m, 3H), 7.16 (d, J¼ 15.6 Hz, 1H), 5.76 (d, J¼ 15.6 Hz, 1H),
4.18 (s, 2H), 3.37 (s, 3H); 13C NMR (CDCl3): d 135.3, 133.8, 129.6,
128.2, 128.1, 111.5, 85.7, 84.7, 60.4, 57.6; MS (EI): m=z 252 (Mþ, 16),
251 (57), 220 (78), 142 (93), 129 (82), 115 (72), 95 (100), 77 (84), 51
(77). Anal. Calc. for C12H12OSe: C, 57.38; H, 4.81. Found: C, 57.19;
H, 4.56%.

(E)-1-Phenylseleno-4-phenyl-1-buten-3-yne (3e)

Oil, bp 118 �C (0.6 torr). IR (film): n (cm�1) 3057, 2196, 1706, 1597,
1565, 1488, 928, 688; 1H NMR (CDCl3): d 7.58–7.21 (m, 11H), 5.71
(d, J¼ 15.6 Hz, 1H); 13C NMR (CDCl3): d 134.6, 133.8, 131.6,
131.4, 129.6, 128.4, 128.3, 128.2, 128.1, 112.2, 90.2, 87.9; MS (EI):
m=z 284 (Mþ, 74), 228 (82), 204 (78), 169 (100), 126 (66), 77 (44).
Anal. calc. for C16H12Se: C, 67.85; H, 4.27. Found: C, 67.59; H,
4.08%.

(E)-1-[(4-Chlorophenyl)seleno]-4-(trimethylsilyl)-1-buten-3-yne (3f)

Oil, bp 85 �C (0.35 torr). IR (film): n (cm�1) 2958, 2110, 1556, 1473, 1254,
1089, 930, 842, 760; 1H NMR (CDCl3): d 7.45 (d, J¼ 8.4 Hz, 2H), 7.29 (d,
J¼ 8.4 Hz, 2H), 7.14 (d, J¼ 15.6 Hz, 1H), 5.73 (d, J¼ 15.6 Hz, 1H), 0.17
(s, 9H); 13C NMR (CDCl3): d 135.5, 135.4, 134.9, 130.0, 126.2, 112.6,
103.1, 95.8, 0.01; MS (EI): m=z 316 (Mþ, 37Cl, 15), 314 (Mþ, 35Cl, 31),
191 (100), 189 (53), 156 (47), 73 (36). Anal. calc. for C13H15ClSiSe: C,
49.76; H, 4.82. Found: C, 49.54; H, 4.89%.

(E)-1-[(4-Methylphenyl)seleno]-4-(trimethylsilyl)-1-buten-3-yne (3g)

Oil, bp 82 �C (0.4 torr). IR (film): n (cm�1) 2960, 2163, 1563, 1489, 1251,
927, 843, 803, 760; 1H NMR (CDCl3): d 7.42 (d, J¼ 8.4 Hz, 2H), 7.19 (d,
J¼ 15.6 Hz, 1H), 7.13 (d, J¼ 8.4 Hz, 2H), 5.64 (d, J¼ 15.6 Hz, 1H), 2.34
(s, 3H), 0.16 (s, 9H); 13C NMR (CDCl3): d 138.8, 137.1, 134.7, 130.5,
123.9, 111.1, 103.6, 95.1, 21.3, 0.04; MS (EI): m=z 294 (Mþ, 14), 263
(35), 91 (43), 73 (100). Anal. calc. for C14H18SiSe: C, 57.32; H, 6.18.
Found: C, 57.50; H, 6.31%.

(E)-1-Arylseleno-Substituted 1,3-Enynes 4175
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General Procedure for the Synthesis of (E)-Enediynes 5a–e

To a mixture of (E)-1-arylseleno-substituted 1,3-enyne 3 (1.0 mmol) and
NiCl2(PPh3)2 (0.03 mmol) in diethyl ether (8 mL), alkynylmagnesium bro-
mide 4 (2.5 mmol) in diethyl ether (4 mL) was added under argon at room
temperature with stirring. The resulting mixture was heated to reflux for
10 h. The mixture was treated with sat. NH4Cl aq. solution (15 mL) at
0 �C and extracted with diethyl ether (2� 20 mL). The ethereal solution
was washed with water (2� 20 mL) and dried (MgSO4). Removal of
the solvent under reduced pressure gave an oil, which was purified by pre-
parative thin-layer chromatography (TLC) on silica gel eluting with light
petroleum ether (bp 30–60 �C).

Data

(E)-1-(Trimethylsilyl)-6-butyl-3-hexen-1,5-diyne (5a)

Oil, bp 65 �C (0.6 torr). IR (film): n (cm�1) 3033, 2960, 2162, 2118, 1250,
1073, 937, 844; 1H NMR (CDCl3): d 6.02 (d, J¼ 16.0 Hz, 1H), 5.89
(d, J¼ 16.0 Hz, 1H), 2.36–2.31 (m, 2H), 1.54–1.37 (m, 4H), 0.92
(t, J¼ 7.2 Hz, 3H), 0.20 (s, 9H); 13C NMR (CDCl3): d 122.8, 119.3,
103.4, 98.9, 96.8, 79.0, 30.6, 22.0, 19.4, 13.6, �0.17; MS (EI): m=z 204
(Mþ, 9.4), 190 (100), 73 (68). Anal. calc. for C13H20Si: C, 76.39; H,
9.86. Found: C, 76.25; H, 9.69%.

(E)-1-Hexyl-6-butyl-3-hexen-1,5-diyne (5b)

Oil, bp 58 �C (0.45 torr). IR (film): n (cm�1) 3031, 2960, 2163, 2118, 1252,
1073, 935, 844; 1H NMR (CDCl3): d 5.88 (s, 2H), 2.34–2.29 (m, 4H),
1.55–1.24 (m, 12H), 0.93–0.87 (m, 6H); 13C NMR (CDCl3): d 120.3,
120.2, 95.0, 94.9, 79.1, 31.3, 30.7, 28.6, 22.5, 22.0, 19.6, 19.3, 14.0, 13.6;
MS (EI): m=z 216 (Mþ, 4.5), 146 (52), 132 (95), 118 (98), 115 (80), 91
(100). Anal. calc. for C16H24: C, 88.82; H, 11.18. Found: C, 88.55; H,
11.27%.

(E)-1,6-Bis(trimethylsilyl)-3-hexen-1,5-diyne (5c)

White solid, mp 71–72 �C (lit.[20] mp 72 �C). IR (film): n (cm�1) 2955,
2174, 2127, 1251, 1093, 933, 843; 1H NMR (CDCl3): d 6.01 (s, 2H),

4176 X. Fang et al.
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0.20 (s, 9H); 13C NMR (CDCl3): d 121.7, 102.9, 100.7, �0.24; MS
(EI): m=z 220 (Mþ, 11), 207 (75), 205 (69), 191 (43), 155 (38), 73
(100). Anal. calc. for C12H20Si2: C, 65.37; H, 9.14. Found: C, 65.56; H,
9.27%.

(E)-1-(Trimethylsilyl)-6-hexyl-3-hexen-1,5-diyne (5d)

Oil, bp 71 �C (0.5 torr). IR (film): n (cm�1) 3033, 2959, 2162, 2118, 1250,
1073, 937, 844; 1H NMR (CDCl3): d 6.01 (d, J¼ 16.0 Hz, 1H), 5.88 (d,
J¼ 16.0 Hz, 1H), 2.35–2.30 (m, 2H), 1.54–1.26 (m, 8H), 0.89 (t,
J¼ 7.2 Hz, 3H), 0.19 (s, 9H); 13C NMR (CDCl3): d 122.8, 119.3, 103.4,
98.9, 96.8, 79.0, 31.3, 28.6, 28.5, 22.5, 19.7, 14.0,� 0.18; MS (EI): m=z
232 (Mþ, 8.5), 217 (35), 73 (100). Anal. calc. for C15 H24 Si: C, 77.51;
H, 10.41. Found: C, 77.27; H, 10.20%.

(E)-1-Hexyl-6-phenyl-3-hexen-1,5-diyne (5e)

Oil, bp 68 �C (0.35 torr). IR (film): n (cm�1) 3032, 2927, 2856, 2214, 1261,
1023, 934, 754; 1H NMR (CDCl3): d 7.46–7.41 (m, 2H), 7.38–7.33 (m,
3H), 6.12 (d, J¼ 16.0 Hz, 1H), 6.06 (d, J¼ 16.0 Hz, 1H), 2.38–2.33 (m,
2H), 1.56–1.25 (m, 8H), 0.90 (t, J¼ 7.2 Hz, 3H); 13C NMR (CDCl3): d
132.5, 131.5, 129.2, 128.4, 121.7, 119.4, 96.6, 93.4, 88.1, 79.2, 31.3,
29.7, 28.5, 22.5, 19.7, 14.1; MS (EI): m=z 236 (Mþ, 34), 202 (100), 178
(33), 165 (45). Anal. calc. for C18H20: C, 91.47; H, 8.53. Found: C,
91.18; H, 8.29%.

CONCLUSION

In conclusion, we have developed an efficient and stereoselective method
for the synthesis of (E)-1-arylseleno-substituted 1,3-enynes and (E)-
enediynes. The present method has the advantages of readily available
starting materials, straightforward and simple procedures, mild reaction
conditions, and good yields.
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