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5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β= 97.568(11) deg and v = 575.82(12) Å3. The 

UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy 

band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 

times that of KDP. From thermal analysis it is found that the crystal melts at 139o C and 

decomposes at 264o C. High optical transparency down to blue region, higher powder SHG 

efficiency and better thermal stability than that of urea makes this chalcone derivative a 

promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG 

efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric 

crystal systems of chalcone family is also discussed. 
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1. Introduction  

The demonstration of second harmonics in quartz single crystal by Franken et al led to 

the development of an exhilarating field of modern times known as nonlinear optics (NLO) 

which has plethora of applications in the field of opto-electronics [1-3]. The most desirable 

properties for a material to be the best NLO material are high power conversion efficiency, large 

transparency extending down to UV region, high melting point, high mechanical stability, high 

chemical inertness, high  laser damage threshold, phase matching etc [4,5]. Among the various 

classes of materials investigated for NLO properties, organic materials received unique 

consideration. The optical nonlinear behavior in this class of materials is electronic in origin and 

can be tuned through structural modifications [6]. These are characterized by an extremely 

extended π-conjugated chain with strong electron acceptor-donor pairs at the ends (D–π–A) [4, 

7]. Organic NLO materials are very often formed by hydrogen bonds and Van der Waals forces 

and hence posses high degree of delocalization. Due to the overlap of π orbits, delocalized 

electronic charge distribution leads to high mobility of the electron density. The optical 

nonlinearity can be increased by functionalizing the ends of the π bond system with apt electron 

donor and acceptor groups [8]. Hence, the search for new NLO materials had never ceased. 



  

Chalcone derivatives are an interesting type of organic NLO materials which can be 

tuned to match the requirements. In these systems, two aromatic rings have to be substituted with 

suitable electron donor or acceptor groups like -OCH3, -SCH3, -Cl, -Br etc to increase the 

asymmetric charge distribution in either or both ground state and excited states, giving rise to an 

enhanced optical nonlinearity [9,10]. The substitution of electron acceptors/donors on either of 

the benzene rings of chalcones significantly influences the noncentrosymmetric crystal packing 

structures requisite for second harmonic generation (SHG) [11]. Thus, chalcones can be 

considered as cross-conjugated molecules that possess two independent hyperpolarizable parts to 

have a two-dimensional β character [12]. Recently several chalcone derivatives have been 

reported where the phenyl moiety adjacent to carbonyl group was replaced with pyridine moiety 

[13-19]. The results show that these derivatives exhibit good second order NLO response. 

Among these, the chloro substituted chalcone [17] showed a SHG efficiency of 3.68 times that of 

urea and methoxy group substituted chalcone MPP [13] showed a SHG efficiency of 4.7 times 

that of urea. This high SHG response is attributed to the donor group substituted at para position 

of the phenylene moiety and the zigzag head-to-tail alignment of molecular dipoles in the crystal 

structure. This shows that a para substituent on the phenyl ring and the zigzag head-to-tail 

alignment of molecular dipoles connected through strong intermolecular hydrogen bonds in the 

crystal structure is necessary for enhancing the SHG activity of organic materials [12, 20]. It is 

well known that for a material to have highly efficient NLO properties, the constituting 

molecules must exhibit large molecular hyperpolarizabilities (β). Further, β increases with the 

increase in the electron donating strength of the substituent [21]. The electronagativity of Br 

group is 2.8 (Pauling value) [22] and hence its electron donating ability is greater than that of 

chloro and methoxy groups. Also it is reported that the Br substitution in chalcones results in 

non-centrosymmetric crystal structure, required for a crystal to exhibit second order optical 

nonlinearity [23]. With the anticipation of an efficient NLO material, a pyridine based bromo 

substituted donor- π-acceptor (D-π-A) type chalcone derivative was designed. The present article 

describes the synthesis, crystal growth and characterization of a nonlinear optical material, 2E-3-

(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP).  
  

2. Experimental procedure 

2.1. Material synthesis and single crystal growth 

BPP was synthesized by the Claisen–Schmidt condensation reaction [24]. A mixture of 

Analytical Reagent grade chemicals, 3-acetyl pyridine (0.01mol) and 4-bromobenzaldehyde 

(0.01mol) in methanol (50 ml) was prepared without further purification. Aqueous solution of 



  

sodium hydroxide (5 ml, 20%) was then added drop wise, and the mixture is stirred for 2 hours. 

The temperature of the solution was maintained within the range of 26-300C throughout the 

stirring process. The contents of the flask were poured into a beaker containing ice-cold water 

and kept aside for 24hrs. The crude product was then collected by filtration, washed with excess 

of water and dried. The crude product was used for the single crystal growth without further 

purification. The synthetic scheme of the product is shown in Fig. 1. 

Single crystals of BPP were grown by slow evaporation solution growth technique using 

N,N-dimethyl formamide (DMF) as the solvent at room temperature. A saturated growth solution 

was prepared by dissolving the synthesized compound in DMF in a 100 ml beaker at room 

temperature; the solution was filtered to remove suspended particles. The solvent was allowed to 

evaporate slowly by covering the beaker with a polythene sheet with few pin holes in it. Single 

crystals of BPP were harvested from the growth solution after 45-50 days. Good quality single 

crystals were selected for further study. A photograph of the grown crystals is shown in Fig. 2a. 

The morphology of the single crystal of BPP was simulated using the software WinXMorph [25, 

26]. Data obtained from the single crystal XRD study were used as the input to index the faces in 

the crystal and is shown in Fig. 2b. The crystal has a higher growth rate along crystallographic b-

axis compared to other two axes which results in the elongation of the crystal along this 

direction. Morphology of BPP may change if it is crystallized by changing the solvent. 

 

Fig. 1. Scheme for synthesis of BPP. 

 



  

 

Fig. 2. (a) Photograph of the BPP crystals. (b) Simulated Morphology of the crystal. 

2.2. Characterization methods  

In order to establish that the material (BPP) obtained is certainly that of the desired 

compound, energy dispersive X-ray analysis (EDAX) was carried out on the sample. The grown 

crystal was subjected to EDAX analysis using JEOL JSM-6380LA analytical scanning electron 

microscope (SEM) system. The recorded spectrum of BPP is shown in Fig. 3. The peaks in the 

EDAX spectrum confirm the presence of C, N, O and Br in the compound. The EDAX elemental 

analysis confirms the formation of the compound. 

                   

 



  

Fig. 3. EDAX spectrum of BPP 

The surface morphology of the BPP single crystal was studied by scanning electron 

microscopy (SEM). A JOEL JSM-6380LA analytical scanning electron microscope was used for 

the analysis. SEM was operated at 20 kV and probe current was 1 nA and the sample was kept in 

high vacuum. Due to the non-conducting behavior of the organic materials, gold coating is done 

by sputtering technique before subjecting the surface of BPP crystal to electron beam.  

The FT-Raman and FT-IR spectral analysis of BPP was carried out to identify the 

presence of functional groups and their vibrational modes. A BRUKER RFS 27, Stand alone FT-

Raman Spectrometer, having spectral resolution of 2 cm-1 with an exciting wavelength of 1064 

nm from an Nd: YAG laser source was used to record the FT-Raman spectrum. The FT-IR 

spectrum was obtained by mixing the compound with KBr pellets. The spectrum was recorded 

between 500 cm-1 and 3500 cm-1 by a Thermo Nicolet, Avatar 370 FTIR spectrometer outfitted 

with KBr beam splitter and a DTGS detector, with a spectral resolution of 4 cm-1.  

A Bruker Avance III FT-NMR spectrometer was used to record the 1H NMR spectrum of 

BPP with CDCl3 as the solvent and tetramethylsilane (TMS) as the internal standard. The grown 

crystal was subjected to single-crystal X-ray diffraction (XRD) studies. A Bruker SMART 

APEX diffractometer with CCD area detector using graphite monochromated MoKα radiation of 

wavelength 0.71073 Å was used to solve the three dimensional structure. Crystal data were 

collected with a scan width of 1°. The crystal structures were solved by direct method and refined 

by full matrix least squares method using SHELXL-97 [27] in the WinGx package suite [28] 

with isotropic temperature factors for all the atoms. For molecular graphics X-seed [29] and 

Mercury [30] software was used. A transmission spectrum is very important for any NLO 

materials as a non linear material can be used for practical applications such as frequency 

doubling if it has wider transparency window [31]. In this view UV–VIS–NIR absorption 

spectrum of the BPP crystal was recorded using a Varian, Cary 5000 UV–VIS spectrophotometer 

in the wavelength range of 200–1100 nm. 

To study the thermal stability of the crystal BPP, thermo gravimetric (TG)/differential 

thermal (DT) analysis and differential scanning calorimetric (DSC) analysis was carried out. 

TG/DT analysis was done using a Perkin Elmer simultaneous TG/DTA analyzer. Powder sample 

of the crystal was taken for this purpose and the analysis was carried out under the nitrogen 

atmosphere at a heating rate of 100 C per minute in the temperature range from 300 C to 3500 C. 

The DSC plot for the crystal BPP was obtained using Mettler Toledo DSC 822e thermal analyzer 

on a sample weight of 1.188 mg in the temperature range 50o C to 190o C, at a rate of 10o C /min, 



  

in nitrogen atmosphere. Kurtz and Perry Technique [32] of powder SHG efficiency measurement 

enables one to measure SHG efficiency of a new material relative to standard KDP or urea.  A 

Q-switched 8 ns Nd: YAG laser beam delivering energy of 4.4 mJ/pulse at a wavelength of 1064 

nm with 10 Hz repetition rate is used as light source in the experiment. A fine powder of BPP 

crystal was tightly packed in a micro-capillary of uniform bore and exposed to laser radiations. 

The output from the sample was monochromated and the intensity of 532 nm component was 

collected. The emission of green light confirms the generation of second harmonics. The 

electrical signal corresponding to the SHG output was displayed on a storage oscilloscope for 

measurement. Urea and KDP, powdered to the same particle size as that of the experimental 

sample, were used as indication materials for the present measurement.  

3. Results and Discussion 

The SEM images of 70x and 5000x magnification are shown in Fig. 4a and 4b 

respectively. From the Fig. 4a, it is clear that the surface of the crystal appears smooth with some 

micro-crystals on the surface. These inclusions are formed during the crystal growth and are 

influenced by the growth conditions. Fig. 4b shows a layered growth pattern which is an 

indication of two dimensional growth mechanisms [33]. The uneven darker and brighter regions 

seen on the surface are might be due to the inclusion of solvent, a common event in solution 

grown crystals.  

 

Fig. 4. SEM images of BPP 

FTIR and FT-Raman spectra are shown in Fig. 5 and Fig. 6 respectively. The 

characteristic frequencies and corresponding assignments confirming the presence of various 

functional groups in the material are tabulated in the Table 1.  The FT-IR and FT-Raman spectral 

study ascertains the various functional groups present in the compound.   



  

Table 1 

Assignments of vibrational frequencies: 

Wave number (cm-1)      Assignment 

        FT-IR lines                     FT Raman lines 

3081.9    3064   aromatic C-H stretching 

1658.1    1658.8   C=O stretching vibration 

1588.9    1583.9   aromatic ring vibrations 

1481.9    1484.4   chalcone C=C stretching vibrations 

1396.6    1401.4   aromatic C=C stretching vibrations 

     -    1351.3   C-N stretching vibration 

1317.7         -   C-H bending vibration 

1233.18, 1186.49  1242.8, 1176.2 aromatic C-H in-plane bending  

1039.59   1027.2   vibrations 

970.25    976.4   CH=CH stretching vibration 

799.62       -    C-Br stretching vibration 

691.5, 614.64   702.5, 627.7  Out of plane C – H aromatic bending  

vibrations 

 

 



  

 

Fig.5. FTIR spectrum of BPP. 

 

   Fig.6. FT-Raman spectrum of BPP crystal. 
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The molecule of the title chalcone derivative exists in E configuration with respect to the 

-C7=C8- double bond [1.336 Å]; the torsion angle C6-C7-C8-C9 is 176.28o. The dihedral angle 

between the pyridine and 4-bromophenyl rings is 19.96o and therefore the molecule is almost 

planar. The carbonyl group is also planar with respect to the adjacent pyridine unit showing a 

torsional angle O1-C6-C1-C5 of 5.65o. The degree of planarity of molecule correlates with the 

degree of π-conjugation throughout the molecule. This increases the donor-acceptor interactions 

across the molecule which in turn enhances the degree of molecular charge transfer and degree 

of nonlinearity [32]. The bromine atom is displaced from C9 - C14 mean plane by 0.006 Å. 

Atoms of the propenone bridge (C7, C8, C9 and O1) lie almost on the same plane and the torsion 

angle O1-C6-C7-C8 is -10.11o. The mean plane through this bridge makes dihedral angles of 

7.32o and 19.37o with the planes of pyridine and benzene rings respectively. The packing 

diagram displayed in Fig. 9 shows that the molecular dipoles are aligned in zigzag head to tail 

fashion stacked along b axis. The crystal structure is stabilized by weak intermolecular C-H…O 

and C-H…N hydrogen bonds (Fig. 10) which forms an infinite molecular chain along a axis. It is 

interesting to note that the arrangement of molecules in the crystal structure of BPP is very 

similar to that in CPP [17].    

 

Fig.8. ORTEP diagram of BPP. Thermal ellipsoids were drawn at 50 % probability level. 



  

Fig

cal

of t

TA

Cry

 

 

g. 9

lcul

the 

ABL

ysta

9.  

late

dip

LE 

al d

E

F

C

C

S

U

 

 

C

V

R

R

T

D

A

F

Pac

ed fr

pole

2 

data

Emp

Form

Crys

Crys

pac

Unit

Cell 

Volu

Radi

Radi

Tem

Den

Abso

F(00

ckin

from

es i

a of 

piric

mul

stal 

stal 

ce g

t ce

An

ume

iati

iati

mper

sity

orp

00) 

ng 

m M

in th

f BP

cal 

la w

Siz

Sy

grou

ll p

 

 

ngle

e  

on 

on 

ratu

y 

ption

 

dia

MOP

he c

PP C

for

weig

ze  

yste

up  

para

es 

 

Wa

ure 

n C

agra

PA

cry

Cry

rmu

ght 

 

em 

 

ame

 

 

 

 

 

ave

  

 

Coef

 

am 

AC 2

stal

ysta

ula 

eter

len

ffic

vie

201

l str

al  

rs  

ngth

cien

ewe

12 s

ruc

 

 

 

  

 

 

 

 

 

 

 

h  

 

 

nt  

 

ed 

sem

ture

dow

mi e

e.   

wn 

emp

 

the

piric

e a–

cal 

–ax

pac

xis. 

cka

Re

age 

ed 

and

arro

d gr

C1

28

0.3

mo

P 2

a =

b =

c =

α =

Z =

60

Mo

0.7

T =

1.6

3.3

29

ow

ree

4 H

88.1

3 x 

ono

21 

= 6.

= 5

= 20

=90

= 2

04.3

o K

710

= 2

606

383

96 

ind

en a

H10 B

14 g

0.1

oclin

.006

.01

0.24

0, β

2 

35(1

Kα r

073

295(

6 kg

3 μ/m

dic

arro

Br N

g m

10 x

nic

63(

34(

46(

= 9

12)

radi

Å

(2) 

g/m

mm

ate

ows 

NO

mol-1

x 0.

(7) Å

(6)

(2) Å

97.5

Å3

iati

K

m3 

m-1 

s th

ind

O 
1 

03 

Å 

Å 

Å 

568

 

on 

he 

dica

mm

(11

mo

ate 

m3 

 

1), γ

olec

the

γ = 

cula

e al

90

 

ar d

lign

(de

dipo

nme

eg)

ole 

ent 



  

θ range for data collection    3.04 - 27.55 (deg) 

Limiting indices     -7<=h<=7, -6<=k<=6, -26<=l<=26  

Max. And min. Transmission    0.9053 and 0.4302 

Refinement method     Full-matrix least-squares on F^2       

No. of measured reflections    3030 

Measured No. of unique reflections    2166 

No. of independent reflections   1443 

No. of parameters     154                         

Goodness-of-fit on F^2               0.984 

No. of restraints     1 

R_all, R_obs.       0.0938, 0.0604 

wR2_all, wR2_obs.     0.1483, 0.1237 

Δρ min, max/e Å-3     -0.638, 0.528 

 

 

Fig. 10. Partial packing diagram of BPP viewed down the b-axis. The only hydrogen atoms 

involved in bonding are shown for clarity.   
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Fig. 12. Tauc plot of the crystal BPP 

The results of the thermal analysis are shown in the Fig. 13. The DTA curve shows that 

the compound undergoes an irreversible endothermic transition at 122.4o C where melting 

begins. The peak of the endothermic, which represents the temperature 139.78o C at which 

melting terminates corresponds to the melting point of the crystal and the same was also 

observed in the DSC plot. The sharp endotherm in the DSC response curve represents solid state 

transition of relatively pure material [36]. In the TG curve, no weight loss was observed at the 

melting point. Below the melting temperature, no endothermic or exothermic peaks were 

observed which indicates the absence of any phase transitions and its thermal stability in this 

region. The resistivity of the crystal against thermal crack is clearly evident as the DSC curve is 

smooth up to the melting point. In the TG curve, weight loss begins to occur at about 175o C 

which is due to the volatilization of the compound without decomposition. A weight percentage 

of 96.83% at this temperature may be attributed to the loss of water. A major weight loss of 87% 

was observed in the TG curve between 198o C and 279o C and is due to the decomposition of 

BPP. The peak at 264.5o C in the DTA plot shows the complete dissociation of the compound 

into gaseous products. Thermal stability of BPP is better than that of standard urea (130o C) and 

do not get decomposed till the melting temperature. This ensures the firmness of the crystal for 

NLO applications involving laser where the crystal has endure very high temperatures. 



  

From the DSC curve, the molar enthalpy of fusion mfus HΔ of the crystal BPP was 

estimated adopting the area integration method and is found to be 81.47 Jg-1. The molar entropy 

of fusion mfus SΔ  was calculated using the thermodynamic equation [18] =Δ mfus S mmfus TH /Δ , 

where Tm is the melting point of the crystal. The calculated molar entropy of fusion is 0.197 JK-

1g-1. 

 

 

Fig.13. TG/DTA/DSC response curves of BPP 

 

Nonlinear Optical Property: Structure-Property Relationship. 

The SHG conversion efficiency of BPP crystal measured by the classical powder SHG 

efficiency test was found to be 6.8 times that of KDP and 1.4 times that of urea.  SHG efficiency 

of BPP is nearly 7 times greater than that of 3-(2,3-dimethoxyphenyl)-1-pyridin-2-yl)prop-2-en-

1-one [15], twice that of 1-(4-chlorophenyl)-3-(4-chloroyphenyl)-2-propen-1-one [8], 1.5 times 

greater than that of 1,3-bis-(4-methoxyphenyl)prop-2-en-1-one [37], 3-(2,3-dichorophenyl)-1-

pyridin-2-yl)prop-2-en-1-one[16] and 1-(4-methylphenyl)-3-(4-N,N-dimethylaminophenyl)-2-

propen-1-one[38] and comparable to that of 2,4-dichloro-4 -bromochalcone[39]. 

Using semiempherical computer program molecular orbital package, MOPAC 2012 [40] 

the molecular static and frequency dependent first and second hyperpolarizabilities of BPP 



  

crystal were calculated using PM7 Hamiltonian [41]. The geometry obtained from the single 

crystal XRD study of the BPP molecule was used as an input to the MOPAC 2012 program. The 

geometry was optimized using the default geometry optimizer, Eigenvector Following (EF) 

geometry optimizer. Using Time-Dependent Hartree–Fock (TDHF) theory, the molecular 

hyperpolarizabilities were calculated. As a convergence criterion for PM7 calculation of 

geometries and the NLO properties, the keyword “PRESICE” was used. The computed static and 

frequency dependent first (βo, β1064nm) and second (γ1064nm) molecular hyperpolarizabilties of BPP 

are 5.54x10-30 esu, 11.88x10-30 esu and 25.36x10-32 esu respectively. The molecular first 

hyperpolarizabilties at 1064 nm of some of the reported chalcones along with other properties are 

presented in Table 3.  

Table 3.  

Properties of some chalcone derivatives.  

 

Compound      R   R1     β1064nm   SHG  Melting   Dipole  λcutoff 

          (10-30esu) (×Urea) point (0C) moment (D) (nm) 

      1[23] C OCH3     46.70    8.5     73  2.45  440 

      2[13] o-N OCH3     35.62    4.7     81  1.53  410 

      3[17]         m- N      Cl     11.57    3.7    133  1.23  417 

      4[23] C   Br     86.40    7    125  2.12  435 

      5*  m-N   Br     11.88    1.4    139  1.16  419 

*Present work 

The title molecule BPP has a D-π-A push pull structure formed by the electron donating 

Br group at one end and the carbonyl group along with pyridine ring acting as electron accepting 

moiety being at the other end of the molecule. This means that the direction of the contributing 

charge transfer or the dipole moment is form carbonyl to bromo group (Fig. 9). As result there is 

delocalization of the electronic charge within the molecule. The donor-acceptor groups are 

interconnected by conjugated –C=C- double bond which forms the pathway for the effective 

charge transfer across the molecule. 

Chalcone derivatives, such as CPP[17], 4NP3AP[18], MPP[13] and PDBA[42] reported 

earlier by our group, showed very good SHG efficiency and is ascribed to the arrangement of 
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replacement of benzene ring near to the carbonyl group by pyridine ring brings down the dipole 

moment and results in the crystallization of the compounds in acentric style. The table 4 provides 

further evidence for this argument. The expected SHG efficiency in compounds 6 and 8 is zero, 

since these compounds crystallize in centrosymmetric space group P21/c [20]. But compounds 7 

and 9 where in a pyridine ring is substituted adjacent to carbonyl group, crystallizes in 

noncentrosymmetric crystal system which is a prerequisite condition for SHG activity. Thus, in 

addition to the bromo group, the pyridine moiety at the benzoyl arm instead of phenyl moiety is 

also an effective replacement. But this resulted in decreased β value and hence the SHG of 

compounds 2 and 5 in comparison with that of compounds 1 and 4. This decrease in SHG can be 

attributed to the variation in the extent of charge transfer across the molecule due to the 

difference in the planarity of the molecules and electron donating abilities of methoxy and bromo 

groups. The degree of π-conjugation depends on the degree planarity of molecule. The planar 

structure increases the extent of intramolecular charge transfer across the molecule and hence the 

degree of nonlinearity and any deviation from planarity results in its reduction [17]. The degree 

of planarity in compound 2 is high as indicated by the dihedral angle between phenyl and 

pyridine rings of 2.040. The molecule of compound 3 is almost planar as indicated by the 

dihedral angle of 19.530. In the present case (compound 5) the dihedral angle is 19.960 due to 

which the crystal BPP shows a lower SHG efficiency. Thus, though Br group is a better electron 

donor compared to Cl group, the lower SHG of BPP when compared to compound 3 may be due 

an extra twist of small angle between phenyl and pyridine rings in BPP. Moreover, pyridine ring 

improves the thermal stability and optical transparency of the material.  
 

4. Conclusion 

 An efficient NLO material 3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one was 

synthesized and single crystals were grown at room temperature from DMF by the solution 

growth technique. The functional groups in the compound and hence its structure was established 

by FTIR and FT-Raman spectral analysis. EDAX elemental analysis and 1H NMR spectral study 

confirms the purity of the sample. The crystals are optically transparent in the region above 419 

nm and optical energy gap of the material is found to be 3.1 eV. Material is nonlinear optically 

active with a powder SHG efficiency of 6.8 times that of KDP. Thermal study by TG/DTA and 

DSC analysis showed that the compound does not get decomposed till its melting temperature of 

1390C. Surface features of the crystals were studies by SEM analysis. The study showed that 

BPP crystal may be a promising candidate for frequency doubling and other technological 

applications involving second order NLO property. The investigation of structure – property 



  

relationship of BPP in comparison with other reported compounds reveals pyridine ring as an 

effective replacement for benzene ring in forming the enantiomorphic crystal structures needed 

for second order nonlinearity. Further, small deviation from molecular planarity results in a 

drastic change in the SHG response of the chalcones.      

Appendix A. Supplementary information 

 

The crystallographic information file for this paper containing full details of the X-ray 

data collection and final refinement parameters including anisotropic thermal parameters and full 

list of the bond lengths and angles has been deposited by us in the Cambridge structure database 

(CCDC 1026995). These data can be obtained free of charge from The Cambridge 

Crystallographic Data Center via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 

Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK). 
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