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Two new chiral organoyttrium amidate complexes 1-Y[N(SiMe3)2]2 (3) and 2-Y[N(SiMe3)2]2·C6H12

(4·C6H12) have been readily prepared in good yields by silylamine elimination reaction between Y[N
(SiMe3)2]3 and chiral binaphthyl-based amidate ligands, (R)-2,2′-bis(mesitoylamino)-1,1′-binaphthyl (1)
and (S)-2-(mesitoylamino)-2′-(dimethylamino)-1,1′-binaphthyl (2), respectively. Complexes 2 and 3 have
been characterized by various spectroscopic techniques, elemental analyses, and X-ray diffraction analyses.
Complexes 3 and 4 are active catalysts for the polymerization of rac-lactide, leading to the isotactic-rich
polylactides.
: +86 10 5880 2075.
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Chiral rare earth metal complexes based on non-Cp ligands have
attracted increasing attention in the past decades [1–6]. This interest
is spurred by the lability of rare earthmetal element-ligand bonds and
the flexibility of their coordination geometries. These features make
them highly suitable for use in catalysis. However, the rare earth
metal complexes supported by non-Cp ligands usually suffer from salt
addition, dimerization or ligand redistribution, and these factors also
make it difficult to generate well-defined chiral architectures that will
lead to efficient enantioselective reactions [1]. Thus, the development
of new chiral rare earth catalysts is a desirable and challenging goal. In
recent years, we have developed a series of chiral non-Cp multi-
dentate ligands, and their early transition metal complexes are useful
catalysts for a wide range of transformations [7–15]. For example,
group 4 metal complexes with chiral binaphthylamidate ligands
(R)-2,2′-bis(mesitoylamino)-1,1′-binaphthyl (1) [12] and (S)-2-
(mesitoylamino)-2′-(dimethylamino)-1,1′-binaphthyl (2) [11] are
useful chiral catalysts for the hydroamination/cyclization, in which
good enantioselectivities (up to 86% ee) with excellent conversions
(up to 100%) have been obtained [16]. Encouraged by the attractive
features of the amidate ligand system, and to our knowledge, no chiral
rare earthmetal amidate catalyst has been reported.We have recently
started exploring ligands 1 and 2 in rare earth chemistry.

It has been documented that rare earth metal amidate complexes
can be efficiently prepared via silylamine elimination reaction
between Ln[N(SiMe3)2]3 and protic amidate ligands [17,18]. It is
rational to propose that the acidic protons in the chiral amidate
ligands 1 and 2 would allow the similar silylamine elimination to
occur between 1 or 2 and metal amides. In fact, treatment of 1 or 2
with 1 equiv of Y[N(SiMe3)2]3 in toluene gives, after recrystallization
from a toluene or cyclohexane solution, the amidate yttrium
complexes 1-Y[N(SiMe3)2]2 (3) and 2-Y[N(SiMe3)2]2·C6H12

(4·C6H12), respectively, in good yields (Schemes 1 and 2) [19].
Complexes 3 and 4 are stable in dry nitrogen atmosphere, while they
are very sensitive to moisture. Complexes 3 and 4 are soluble in
organic solvents such as THF, DME, pyridine, toluene, and benzene,
but only slightly soluble in n-hexane. Complexes 3 and 4 have been
characterized by various spectroscopic techniques, elemental analy-
ses, and X-ray diffraction analyses [19,20].

The solid-state structure of 3 shows that the Y3+ is σ-bound to one
nitrogen atom and two oxygen atoms from ligand 1 and two nitrogen
atoms from two amido N(SiMe3)2 groups in a distorted-trigonal-
bipyramidal geometry (Fig. 1) with the average distance of Y-N (2.330
(3) Å), and the average distance of Y-O (2.254(2) Å), respectively. The
potentially tetradentate amidate ligand adopts a tridentate binding
mode. The solution NMR characterization data are also consistent
with this C1 symmetric binding mode, as the 13C NMR spectra show
two signals at about 181.5 ppm and 172.0 ppm for the carbonyl group,
attributable to a bidentate (κO, κN) binding and a monodentate (κO)
binding, respectively [12]. The distances of Y-N(SiMe3)2 are 2.272(3)
and 2.286(3) Å, which are slightly longer than that found in [(S)-2-
Me2N-C20H12-2′-(NCHC4H3N)]2YN(SiMe3)2 (2.258(2) Å) [7]. The
twisting between two naphthyl rings of torsion angle is 85.9(1)°,
indicating that they are almost perpendicular to each other.

The solid-state structure of 4·C6H12 shows there is one 4molecule
and one solvated cyclohexane molecule in the lattice. In the molecule
4, the Y3+ is σ-bound to two nitrogen atoms and one oxygen atom
from ligand 2 and two nitrogen atoms from two amido N(SiMe3)2
groups in a distorted-trigonal-bipyramidal geometry (Fig. 2) with the
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Scheme 1. Synthesis of complex 3.

Fig. 1.Molecular structure of 3. Selected bond lengths (Å) and bond angles (deg): Y(1)-
O(1) 2.340(2), Y(1)-O(2) 2.168(2), Y(1)-N(1) 2.433(2), Y(1)-N(3) 2.272(3), Y(1)-N(4)
2.286(3), Y(1)-C(21) 2.801(3), O(1)-Y(1)-O(2) 141.68(9), O(1)-Y(1)-N(1) 54.68(7), O
(1)-Y(1)-N(3) 107.96(9), O(1)-Y(1)-N(4) 87.71(9), O(2)-Y(1)-N(1) 87.91(8), O(2)-Y
(1)-N(3) 101.49(9), O(2)-Y(1)-N(4) 101.14(10), N(1)-Y(1)-N(3) 127.72(9), N(1)-Y
(1)-N(4) 112.28(10), N(3)-Y(1)-N(4) 115.86(11), torsion (aryl–aryl) 85.9(1).
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average distance of Y-N 2.388(5) Å, and the distance of Y-O 2.294(4)
Å, respectively. The distances of Y-N(SiMe3)2 are 2.265(5) and 2.244
(5) Å, which are slightly longer than those found in {[2,6-iPr2C6H3NC
(O)]-1-C10H7}Y[N(SiMe3)2]2(THF) (2.214(2) and 2.231(2) Å) [18].
The twisting between two naphthyl rings of torsion angle is 67.9(2)°,
which is comparable to those found in (2)2Ti(NMe2)2 (70.4(2) and
69.9(4)°) and (2)2Zr(NMe2)2 (71.6(5) and 69.2(5)°) [11].

The polymerization data show that the complexes 3 and 4 can
initiate the ring opening polymerization (ROP) of racemic-lactide
(rac-LA) [21] under mild conditions (Table 1). It allows the complete
conversion of 1000 equiv of lactide within 2 h at room temperature in
toluene at [rac-LA]=1.0 mol L–1 (Table 1, entries 1 and 2). However,
polymerizations with these yttrium initiators/catalysts proceed much
more slowly in THF (Table 1, entries 5 and 6), presumably due to the
competitive coordination between the monomer and this donor
solvent [22]. This difference in activity between toluene and THF
solvent is observed more clearly at a lower temperature (Table 1,
entries 1, 2, 5 and 6) than at higher temperature (Table 1, entries 3, 4,
7 and 8). The microstructure of polymers, as determined by homo-
decoupled 1H NMR experiments in the region of 5.30–5.00 ppm [23–
26], shows the resulting polylactides are all isotactic-rich (riched in
the region of 5.16–5.11 ppm) under our conditions examined.
Molecular weights and polydispersities of the polymers produced
ranged from 65.4 to 71.3 kg mol−1 and 1.21 to 1.34, respectively. Our
results show that the catalytic activities of 3 and 4 resemble that of [2-
(2,6-iPr2C6H3N CH)C4H3N]2Y(CH2SiMe3)(THF)2 [27], while the mi-
crostructure of the resulting polylactides are similar to those initiated
by [(S)-2-MeO-C20H12-2′-(NCHC4H3N)]2LnN(SiMe3)2}2 [10].

In conclusion, two new chiral rare earth metal amidate complexes
have been readily prepared via silylamine elimination reaction
between Y[N(SiMe3)2]3 and chiral binaphthyl-based amidate ligands
1 and 2. Both complexes are active catalysts for the polymerization of
rac-lactide, leading to the isotactic-rich polylactides.
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Appendix A. Supplementary material

CCDC 791749, and 791750 contain the supplementary crystallo-
graphic data for 3 and 4. These data can be obtained free of charge
via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the
Fig. 2.Molecular structure of 4. Selected bond lengths (Å) and bond angles (deg): Y(1)-
N(1) 2.367(4), Y(1)-N(2) 2.674(5), Y(1)-N(3) 2.265(5), Y(1)-N(4) 2.244(5), Y(1)-O(1)
2.294(4), Y(1)-C(21) 2.736(6), N(1)-Y(1)-N(2) 76.7(2), N(1)-Y(1)-N(3) 126.8(2), N
(1)-Y(1)-N(4) 113.6(2), N(2)-Y(1)-N(3) 95.6(2), N(2)-Y(1)-N(4) 109.8(2), N(3)-Y(1)-
N(4) 118.8(2), O(1)-Y(1)-N(1) 56.9(2), O(1)-Y(1)-N(2) 133.08(13), O(1)-Y(1)-N(3)
105.9(2), O(1)-Y(1)-N(4) 95.66(17), torsion (aryl–aryl) 67.9(2).
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Table 1
Polymerization of rac-lactide (LA) catalyzed by complex 3 and 4a.

O
O

O

O

O
O

O

O

+
complex

O O O O
O O O O

n
m

rac-Lactide Isotactic Polylactide

Entry Precatalyst T (°C) Solvent Conv. (%) Mn
b (kg/mol) Mw/Mn

b Pm
c (%)

1 3 20 Toluene 100 70.3 1.28 68
2 4 20 Toluene 100 69.5 1.34 59
3 3 40 Toluene 100d 71.3 1.21 71
4 4 40 Toluene 100d 70.4 1.24 62
5 3 20 THF 85 65.4 1.32 68
6 4 20 THF 90 67.8 1.30 60
7 3 40 THF 95d 67.2 1.34 66
8 4 40 THF 98d 68.7 1.29 63

a Conditions: precat./LA (mol/mol)=1/1000; polymerization time, 2 h; solvent, 5 mL; [LA]=1.0 mol/L.
b Measured by GPC (using polystyrene standards in THF).
c Pm is the probability ofmeso linkages between monomer units and is determined from the methine region (5.30–5.00 ppm) of the homonuclear decoupled 1H NMR spectrum in

CDCl3 at 25 °C [23–26].
d Polymerization time, 0.5 h.
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