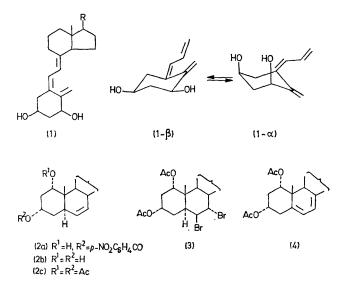
Conformation Equilibria in Vitamins D. The Synthesis of 1α -Hydroxy-3-epivitamin D₃ (1α -Hydroxy-3 α -cholecalciferol)


By Mordechai Sheves, Elisha Berman, Dalia Freeman, and Yehuda Mazur*

(Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel)

Summary The ratio of the two conformers of 1α -hydroxy-3-epivitamin D_3 , which has been synthesized from $1\alpha, 3\beta$ -dihydroxycholest- Δ^6 -ene, has been established.

RECENT ¹H n.m.r. studies of cholecalciferol¹ and ergocalciferol² (vitamin D_3 and D_2) have confirmed Havinga's suggestion of a rapid equilibrium in solution between two, almost equally populated, ring A α and β -chair conformations (in which the =CH₂ group lies below and above the ring plane respectively).³ A similar conformational equilibrium was also found for the related 1,3-trans-diol, the biologically potent $|\alpha$ -hydroxycholecalciferol¹ and it was proposed that its hormonal activity was related to the fact that the β -conformation has an equatorial OH substitutent at C(1).^{1,4} We have now synthesized the 3-epimer of $|\alpha$ -hydroxycholecalciferol, in order to find the ratio of the two conformers, and to establish its biological activity.

The starting material was the previously described $1\alpha,3\beta$ dihydroxycholest- Δ^{6} -ene⁵ which was epimerized at C(3) (EtCO₂N=NCO₂Et-Ph₃P-p-nitrobenzoic acid in THF⁶) resulting in the $1\alpha,3\alpha$ -diol 3-p-nitrobenzoate (2a) m.p. 183-184°. Hydrolysis (5% KOH in MeOH) to the diol (2b) (75% from the starting diol) (m.p. 207-208°) followed by acetylation (N-dimethylaminopyridine-Ac₂O in CH₂Cl₂) led to the diaxial diacetate (2c) [m.p. 95-96°, δ (CDCl₃) $4\cdot85$ (1H, t, 1 β -H, J 3 Hz, and δ 5·16 (1H, quintet, 3 β -H, J 3 Hz)], which on bromination (Br₂ in CH₂Cl₂) gave the dibromide (3) (69% from (2a)] (m.p. 120-121°). The dibromide (3) was dehydrobrominated (HMPA-Et₃MeN+-Me₃PO₂--CaCO₃, 110°, 10 h)^{6,7} to a 5:1 mixture of the $\Delta^{4,6}$ -diene (λ_{max} 236, 240, and 249 nm) and the $\Delta^{5,7}$ -diene $(\lambda_{\max} 281, 292 \text{ nm})$. The $\Delta^{5,7}$ -diene (4) was irradiated, without isolation, in Et₂O (Rayonet, 300 nm, NaNO₃ filter, 0°, 40 min) then heated at 70° for 2 h, and hydrolysed (5% KOH in MeOH, 0°, 0.5 h) resulting in a mixture from

which (1), m.p. 114—116°, $[\lambda_{max} 264 \text{ nm} (\epsilon 17.00) \text{ and on} addition of I_a, \lambda_{max} 272 \text{ nm}]$ was isolated [5% from (3)] by t.l.c. This compound shows identical peaks in the mass spectrum and a similar ¹H n.m.r. spectrum to its epimer 1 α -hydroxycholecalciferol.⁸ In the ¹H n.m.r. spectrum of (1) δ (CDCl_a), 5.00 (1H, d, 19Z-H, J 2), 5.28 (1H, m, 19E-H), 6.01

(1H, d, 6-H, J 11.5), and 6.40 (1H, d, 7-H, J 11.5 Hz) the protons at C(1) and C(3) appear at 4.04 and 4.30 p.p.m. as triplet and quintet respectively with an identical J 4.4 Hz. Assuming this coupling constant represents an averaged value of ${}^{3}J_{\text{axax}}$ 11 Hz and ${}^{3}J_{\text{eqeq}}$ 3 Hz, the calculated proportion of the two conformers $(1-\alpha)$ and $(1-\beta)$ in CDCl₃ is 80:20.9 It appears that the preponderance of the 1,3diaxial conformer in solution derives from the H-bonding between the two OH groups.¹⁰

We thank Dr. Z. V. I. Zaretskii for the mass spectral determinations.

(Received, 30th April 1975; Com. 493.)

- R. M. Wing, W. H. Okamura, M. R. Pirio, S. M. Sine, and A. W. Norman, Science, 1974, 186, 939.
 G. N. La Mar and D. L. Budd, J. Amer. Chem. Soc., 1974, 96, 7317.
 E. Havinga, Experientia, 1973, 29, 1181.
 W. H. Okamura, M. N. Mitra, R. M. Wing, and A. W. Norman, Biochem. Biophys. Res. Comm., 1974, 60, 179.
 D. Erraran, A. Asher, and Y. Morris, Tetrahodron Letters, 1975, 261.
- D. Freeman, A. Acher, and Y. Mazur, Tetrahedron Letters, 1975, 261.
 A. K. Bose, B. Lal, W. A. Hoffman, and M. S. Manhas, Tetrahedron Letters, 1973, 1619.
- ⁷ J. L. Kraus and G. Sturz, Bull. Soc. chim. France, 1971, 2551.
- ⁹ M. R. Haussler, J. E. Zerwekh, R. H. Hesse, E. Rizzardo, and M. H. Pechet, Proc. Nat. Acad. Sci. USA., 1973, 70, 2248.
 ⁹ F. A. L. Anet, J. Amer. Chem. Soc., 1962, 84, 1053.
 ¹⁰ H. Buc, Ann. Chim., 1963, 8, 409.