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ABSTRACT: The crystal structures of thorium clusters
are important for understanding the formation and
transformation mechanisms of actinide species in solution,
which can in turns benefit nuclear waste processing and
management. However, stabilizing thorium clusters in
aqueous solution is quite challenging because of their fast
olation and oxolation reactions. Here, we report a
thorium-based metal−organic framework, NU-905, with
the formula [Th6(μ3-O)2(HCOO)4(H2O)6(TCPP)4]
[TCPP = tetrakis(4-carboxyphenyl)porphyrin], synthe-
sized by a solvothermal reaction in N,N-dimethylforma-
mide and water at 120 °C. NU-905 contains a hexanuclear
s e conda r y bu i l d i n g un i t ( SBU) , [Th 6 (μ 3 -
O)2(HCOO)4(H2O)6], which has never been reported
previously. The SBUs are capped and bridged by the
tetratopic linker TCPP to form a three-dimensional
network with scu topology. The activated NU-905 exhibits
permanent porosity and shows high catalytic activity for
the selective photooxidation of a mustard gas simulant.

As a naturally occurring actinide metal on Earth, thorium has
become a focus of study because of its promising use as a

new primary energy source.1 Thorium fuels breed fissile
uranium-233, which can be used in various nuclear reactors.
Additionally, thorium-232 can also be implemented as a core
part of molten salt reactors.2 Because of its tetravalent nature,
thorium was often studied as a surrogate of plutonium(IV) to
obtain knowledge about the nuclear waste disposal of
plutonium(IV).3 Therefore, understanding thorium-based
solution and solid-state chemistry is crucial for the processing,
management, and disposal of nuclear fuels and radioactive waste.
To understand and predict the stabilities and transformation
properties of thorium at different conditions, it is essential to
characterize the crystal structures of thorium species. However,
the rapid and unpredictable multistep olation and oxolation
reactions promoted by highly charged tetravalent thorium ions
in aqueous solution often lead to the formation of polymeric
colloidal poly(oxothorium) species with poorly defined
chemical structure.4 Although indirect characterization like
Raman spectrometry,5 mass spectrometry,6 and X-ray spec-
trometry7,8 indicates that various polynuclear thorium clusters,
including dimers,9 trimers,10 tetramers,11 hexamers,12 oc-
tamers,13 and decamers,6 may exist under a given pH, the

detailed crystal structures of well-defined polynuclear thorium
clusters are rarely reported.14 On the basis of the Cambridge
Crystallographic Data Centre (CCDC),15 there are only
approximately 50 thorium oxide species reported to date. One
method to stabilize and capture unstable polynuclear thorium
clusters is to incorporate capping ligands or counterions, such as
carboxylate,8 phosphoate,16 sulfate,17,18 and selenate19 groups. A
wide variety of discrete or polymeric polynuclear thorium
clusters have been successfully isolated using this strategy.20

Among the various thorium clusters reported thus far,
octahedral hexanuclear Th6O4(OH)4 is the most prevalent
and is considered to be a stable building unit.
Recently, actinide-based metal−organic frameworks (MOFs)

have received considerable interest.21 Stabilizing actinides and
their clusters in MOF structures not only facilitates the
characterization of various actinide species but also generates
novel actinide-based materials with unique chemical and
physical properties. A large number of uranyl-based MOFs
(U-MOFs) have been prepared and structurally characterized.22

Their diverse topologies,23,24 high porosities,25 and novel
functionalities, including gas separation,26 adsorption of
biomolecules,25,27 detection of radiation,28−31 and nuclear
waste removal,32 have brought great attention to this new
family of MOF materials. In comparison with U-MOFs, only a
small number of thorium-based MOFs (Th-MOFs) have been
reported.10,26,33−35 As a pioneer of this field, O’Hare reported a
series of three-dimensionally connected Th-MOFs: TOF-136

and TOF-237 are constructed from thorium oxyfluoride chains,
while TOF-338 is built from octahedral thorium hexamer
clusters consisting of ThO4F5 polyhedra. Thierry et al.
synthesized the first UiO-66 type Th-MOF containing a
hexanuclear Th6O4(OH)4 cluster by tuning the ratio of N,N-
dimethylformamide (DMF) and water (H2O) in a solvothermal
system.39 On the basis of this finding, a number of Th-MOFs
with Th6O4(OH)4 clusters have recently been successfully
synthesized by several groups.40,41

Given the diversity of thorium oxo clusters formed in solution,
we envision that Th-MOFs composed of various polynuclear
thorium clusters other than Th6O4(OH)4 can also be
synthesized by judicious choice of reaction conditions. One
feasible strategy to achieve this goal is to add a suitable amount
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of H2O in a solvothermal system to accelerate the olation and
oxolation reactions in thorium hydrolysis. Organic linkers and
monocarboxylate modulators can also be used to stabilize the
clusters formed in situ, generating Th-MOFs containing
different types of secondary building units (SBUs). Here, we
report the synthesis and characterization of a novel Th-MOF,
N U - 9 0 5 , w i t h t h e f o r m u l a [ T h 6 ( μ 3 -
O)2(HCOO)4(H2O)6(TCPP)4] [TCPP = tetrakis(4-
carboxyphenyl)porphyrin], which is built from the SBU,
[Th6(μ3-O)2(HCOO)4(H2O)6]. Importantly, this SBU has
never been discovered in any form of thorium species, indicating
that MOF materials can uniquely stabilize thorium SBUs, which
have not been observed to be stable in other inorganic systems.
After adding a suitable amount of H2O to the mixture of

thorium nitrate and TCPP linkers in a DMF solution, dark-red
block-shaped crystals of NU-905 were obtained at a
solvothermal reaction temperature of 120 °C. Single-crystal X-
ray diffraction (SCXRD) studies of NU-905 reveal that it
crystallizes in the monoclinic space group C2/m (Table S1).
The asymmetric unit of NU-905 consists of a quarter of the
hexanuclear thorium SBU [Th6(μ3-O)2(HCOO)4(H2O)6] and
a TCPP linker (Figures 1a,b and S1). Interestingly, four formic

acid molecules generated from the decomposition of DMF in
situ also incorporate into the SBU (Figure S2). However, no
other counterions were observed in the crystal structure,
indicating that NU-905 is the neutral framework, [Th6(μ3-
O)2(HCOO)4(H2O)6(TCPP)4]. The complete hexanuclear
thorium SBU is composed of three kinds of crystallographically
independent thorium atoms (Th1, Th2, and Th3 in Figure 1a),

where two of each kind are observed per SBU. Th1 sits between
Th2 and Th3 and is coordinated by nine oxygen atoms, with the
Th−O bond lengths ranging from 2.320(16) to 2.743(6) Å. Six
of the nine coordinated oxygen atoms are each from a different
organic linker. The seventh oxygen atom is a μ3-oxo group
bridging two adjacent Th3 centers, forming a planar rhombic
entity with average Th1−Th3 distances of 4.105 Å. Finally, the
remaining two oxygen atoms are from coordinated water and a
capping formic acid, respectively. Two Th3 atoms are located in
the geometric center of the hexanuclear SBU, and each of them
is also coordinated to nine oxygen atoms, with Th−O bond
lengths ranging from 2.289(9) to 2.991(17) Å. Four of the nine
oxygen atoms are each from a different organic linker, two are
from a bridging μ3-oxo group, two are from formic acid, and one
is coordinated water. The Th3−Th3 distance is 3.691 Å (Table
S2). Interestingly, two Th2 atoms are present, one on each side
of the SBU, and each is surrounded by eight oxygen atoms, with
Th−O bond lengths ranging from 2.279(14) to 2.743(6) Å. Six
of the eight oxygen atoms are from four different organic linkers
(two chelating carboxylate groups and two monodentate
carboxylate groups). The remaining two oxygen atoms are
from formic acid and coordinated water, respectively. To the
best of our knowledge, this type of thorium SBU has never been
reported before.14 The possible formation mechanism of this
unique SBU is the result of in situ hydrolysis of thorium nitrates
to form a tetranuclear cluster, which is further bridged by TCPP
linkers to form a hexanuclear SBU (Figure S3). In total, each
SBU is coordinated by 16 carboxylate groups from organic
TCPP linkers, and each TCPP is coordinated to four
neighboring thorium SBUs. Two neighboring TCPP linkers
align parallel to each other with a close π−π distance (ca. 3.5 Å;
Figure 1b). The packing diagram ofNU-905 indicates a rhombic
window (14 × 25 Å diagonal distance) along the c axis (Figure
1b) and two rhombic windows (4 × 5 and 6 × 8 Å diagonal
distances, respectively) along the a axis (Figure 1c). The solvent-
accessible pore volume is approximately 60%, as calculated by
PLATON software. The tetratopic linker TCPP and 16-
connected thorium SBU assemble into a 4,16-connected
network, which can be simplified as a 4,8-connected scu
topology (Figure 1d).
To test the porosity of NU-905, the solvent of the as-

synthesized MOF sample was exchanged to fresh ethanol and
further activated using supercritical CO2,

42 resulting inNU-905-
ScCO2. The powder X-ray diffraction (PXRD) pattern for NU-
905-ScCO2 indicates that the MOF retains its crystallinity
(Figure 2a), and thermogravimetric analysis (TGA) demon-
strates that NU-905-ScCO2 can be thermally stable up to 500
°C (Figure S4), which is comparable with that of other reported
Th-MOFs.39 The activatedNU-905-ScCO2 exhibits permanent
porosity, and the Brunauer−Emmett−Teller area calculated
from the argon isotherm is approximately 800 m2/g, which is
moderate among the reported Th-MOFs.33,34 The calculated
pore-size distribution shows a broad peak from 4 to 12 Å (Figure
2b), which is consistent with the size of the rhombic pores in the
single-crystal structure of NU-905.
Previously, our group demonstrated that photosensitizers

(such as porphyrin,43 pyrene,44 and benzoselenodiazole45

chromophores) immobilized in MOFs can be used as stable
photocatalysts for the selective aerobic oxidation of a mustard
gas simulant, 2-chloroethyl ethyl sulfide (CEES), to the nontoxic
product 2-chloroethyl ethyl sulfoxide (CEESO) by light-
emitting diode irradiation of the appropriate wavelength. We
speculated thatNU-905, as a porphyrin-containing MOF, could

Figure 1. (a) Hexanuclear SBU composed of three crystallographically
independent thorium atoms. A planar rhombic entity formed by Th1
and Th3 is highlighted in purple. (b) Packing diagram ofNU-905 along
the c axis showing double-layered TCPP linkers with a close π−π
distance. (c) Packing diagram of NU-905 along the a axis showing two
types of rhombic windows. (d) scu-a topology of a simplified net inNU-
905.
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also demonstrate CEES oxidation under light irradiation. To test
the performance of NU-905 as a photocatalyst, we carried out
photocatalysis experiments (see the Supporting Information for
details) under our standard conditions.46 With 1 mol % catalyst
used (based on porphyrin), NU-905 converted 65% of the
starting material in 5 min and 100% in 10 min (Figures 3 and S5

and S6). The selectivity of the catalytic reaction toward the
monooxygenated product (CEESO) over toxic dioxygenated 2-
chloroethyl ethyl sulfone (CEESO2) was confirmed via NMR of
the reaction mixture. The estimated half-life of CEES is 4 min,
which is competitive with the best catalysts reported for this
reaction.46 Additionally, PXRD of NU-905 after catalysis shows
that it is chemically stable under the reaction conditions.
In conclusion, a Th-MOF, NU-905, with the formula

[Th6(μ3-O)2(HCOO)4(H2O)6(TCPP)4] [TCPP = tetrakis(4-
carboxyphenyl)porphyrin] was synthesized in a DMF/H2O
mixture under solvothermal reaction conditions. NU-905

contains an unprecedented hexanuclear thorium SBU, which
is composed of three crystallographically unique thorium atoms.
The highly connected thorium SBUs are further stabilized and
bridged by TCPP organic linkers to form a three-dimensional
framework with scu topology. The ScCO2-activated NU-905
demonstrates excellent catalytic efficiency and selectivity for the
oxidation of CEES. This work may pave the way to construct
unexplored Th-MOF materials with novel SBU structures.
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