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An orally antitumor chalcone hybrid inhibited HepG2 cells growth
and migration as the tubulin binding agent
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Summary
Liver cancer is a kind of high mortality cancer due to the difficulty of early diagnosis. It is necessary to develop the anticancer
agents to treat liver cancer. Here, a novel chalcone derivative was synthesized and evaluated for anticancer activity in vitro against
liver cancer cell lines (HepG2, SNU-423, SMMC7221, and SNU-398). The chalcone hybrid 9 displayed the antiproliferative
effect against HepG2, SNU-423, SMMC7221 and SNU-398 cells with IC50 values of 0.9 μM, 2.7 μM, 6.2 μM and 4.6 μM,
respectively. Cellular mechanisms showed that derivative 9 could obviously inhibit HepG2 cells growth and colony formation in
a concentration-dependent manner. Analogue 9 inhibited the migration by regulating the expression levels of migration-releated
markers and transcription factors (Snail and Slug). Tubulin polymerization inhibition assay illustrated that chalcone hybrid 9
might be a potent tubulin polymerization inhibitor. Importantly, compound 9 displayed the antitumor activity against liver cancer
HepG2 cells in vivo with the low toxicity toward mice. Therefore, compound 9 as a novel tubulin polymerization inhibitor
deserves further investigation to treat liver cancer.
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Introduction

Liver cancer is highly fatal, and death rates in the United
States are increasing faster than for any other cancer [1–3].
Recently, there have been progresses to help patients with
hepatocellular carcinoma by the liver resection or chemical
drugs [4]. However, patients usually present with underlying
advanced liver disorders and the successful treatment of liver
cancer remains a challenge [5]. Therefore, it is very necessary
to discovery novel antiproliferative agents to treat liver cancer.

Chalcone bearing an α,β-unsaturated carbonyl moiety has
been used as the antitumor agent against a variety of cancer cell
lines [6–10]. Chalcone 1 (Fig. 1) could activate intracellular
reactive oxygen species levels and activate programmed death
via the caspase-dependent intrinsic mitochondrial pathway

against HepG2 cells [11]. Natural chalcone 2 arrested cell cycle
at G2/M phase against HER2-overexpressing breast cancer
cells by inhibiting phosphorylation of Cdc2 and Cdc25C [12].
Chalcone 3 inhibited cell growth and induced apoptosis against
MCF-7/ADR cells in a dose-dependent manner [13]. Chalcone
4 as a phosphate salt inhibited tumor growth in xenograft
models in vivo without apparent toxicity [14].

Molecular hybridization is a rational design strategy to ob-
tain new ligands based on the recognition of pharmacophoric
subunits in the molecular structure of two or three known
bioactive derivatives [15, 16]. Based on the anticancer activity
of chalcones, we designed and synthesized a novel chalcone-
1,2,3-triazole hybrid 9 by the molecular hybridization strate-
gy. In this work, we tested its antiproliferative activity against
liver cancer cells and explored its anticancer mechanisms.

Materials and methods

General procedure for the synthesis
of chalcone-1,2,3-triazole derivative 9

Chalcones 7 (5 mmol), 3-azidoprop-1-ene (5 mmol), propar-
gyl bromide (6 mmol), CuSO4.5H2O (1 mmol) and sodium
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ascorbate (0.5 mmol) were dissolved in THF/H2O (15 mL/
15 mL) and stirred for 10 h at room temperature. The crude
product was filtered and purified with column chromatogra-
phy on silica gel (EtOAc/hexane = 8/1). The yield to get com-
pound 9 is 86%.

(E)-1-(4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)
phenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (9)

White solid, yield: 86%; m.p.:175–177 °C; 1H NMR
(400 MHz, CDCl3) δ 8.09 (d, J = 15.7 Hz, 1H), 8.03 (d, J =
8.8 Hz, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.65 (s, 1H), 7.48(d, J =
15.7 Hz, 1H)7.47(d, J = 6.8 Hz, 1H), 7.30 (dd, J = 8.5, 2.0 Hz,
1H), 7.09 (d, J = 8.8Hz, 2H), 6.03 (s, 1H), 5.37 (m, 2H), 5.31(s,
1H), 5.01 (d, J = 6.2 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ
188.26, 162.17, 143.66, 138.66, 136.29, 135.99, 132.01,
131.17, 130.98, 130.12, 128.49, 127.53, 124.85, 122.66,

120.57, 114.73, 77.23, 62.17, 52.89. HRMS (ESI) calcd. For
C21H18Cl2N3O2 [M+H]+: 414.0776, found: 414.0779.

MTT assay

Liver cancer cell lines (HepG2, SNU-423, SMMC7221, and
SNU-398) were from shanghai research science limited com-
pany. Cells were cultured with RPMI 1640 medium in an
atmosphere containing 5% CO2. We added 10,000 cells in
each well of 24 wells plate. All wells were added 100uL
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT) solution to culture 1 h. The next steps were
processed according to the reported reference [17].

Colony formation assay

1000 HepG2 cells were selected and added in each well of
6 wells plate. The next day, derivative 9 at different

Fig. 1 Chemical structures of anticancer chalcones

Scheme 1 Reagents and conditions: (a) NaOH, EtOH, reflux. (b) Propargyl bromide, CuSO4.5H2O, sodium ascorbate, THF:H2O (1:1), r.t
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concentrations (0 μM, 0.1 μM and 0.5 μM) was added and
cells were cultured for 1 week. Then, all cells were washed
by PBS solution and stained by crystal violet solution for
1 h. The system was washed by water and took photos. The
detailed method was referenced the report [18].

Migration assay

Migration assay was assessed by the 24-well cell culture plate
(BD Falcon, NJ). The top chambers were seeded with 2 × 104

HepG2 cells in 400 μL serum-free 1640 medium containing
derivative 9. The bottom chambers were filled with 700 μL
complete medium. After 24 h incubation, top chambers were
washed with PBS. The bottom chambers were fixed with 4%
paraformaldehyde and stained with 0.4% crystal violet for 1 h.
Then the chambers were washed with water, and the

membranewas left to dry. The detailedmethodwas referenced
the report [19].

Animals study in vivo

Animals were treated according to protocols established
by the ethics committee of zhengzhou university and the
in vivo experiments were carried out in accordance with
the approved guidelines. Mice were subcutaneously im-
planted with HepG2 cells (1 × 107 cells per mouse) on
the right flank of nude mice. The mice were randomly
divided into corresponding saline and 9 (70 mg/kg) treat-
ment groups (n = 5 mice for each group). The treatment
group received intragastric administration of 9 per day for
a period of 21 days.

Fig. 2 The cell viability and IC50 values of compound 9 for 72 h

a b

Fig. 3 Colony formation (a) Representative images of HepG2 cells colonies after the treatment of derivative 9 for a week (b) Colony formation rate
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Results

Synthesis

The synthesis of chalcone-1,2,3-triazole hybrid 9 in this work
was shown in Scheme 1. Acetophenone 5 was reacted with the
aromatic aldehyde 6 to obtain the chalcone intermediate 7 via

the claisen-schmidt condensation reaction based on reported
references [20–22]. 1,2,3-Triazole fragment is widely applied
in organic chemistry and medicinal chemistry because of its
anticancer activity [23–25]. The 1,2,3-triazoles might increase
the antitumour activity of chemical compounds [26, 27].
Based on these findings, chalcone-1,2,3-triazole analogue 9
was designed and synthesized. Chalocne intermediate 7 was

a b

Fig. 4 Derivative 9 inhibited themigration against HepG2 cells (a) Representative images of HepG2 cells migration (b) migration rate. *: p< 0.05 verse control

a b c

fed

Fig. 5 Expression changes of migration releated biomarkers and
transcription factors (a) Analogue 9 regulated the expression levels of
migration-releated markers and transcription factors in HepG2 cells (b-

f) Statistical analysis of protein expression levels. *: p < 0.05 verse
control, **: p < 0.01 verse control
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reacted with 3-azidoprop-1-ene 8 to form (E)-1-(4-((1-allyl-
1H-1 ,2 ,3 - t r i a zo l -4 -y l )me thoxy )pheny l ) -3 - (2 , 4 -
dichlorophenyl)prop-2-en-1-one 9 in the yield of 86%.

Antiproliferative activity of analogue 9

MTT assay was performed to investigate the antiproliferative
activity of chalcone derivatives against liver cancer cells for
72 h [28]. The antiproliferative activity results of chalcone-
1,2,3-triazole hybrid 9 against liver cancer cells (HepG2,
SNU-423, SMMC7221, and SNU-398) were listed in Fig. 2.
In this work, 5-fluorouracil (5-Fu) was used as the control
drug. The IC50 values of 5-fluorouracil against HepG2,
SNU-423, SMMC7221 and SNU-398 cells were 9.2 μM,
10.3 μM, 15.1 μM, and 17.9 μM, respectively. From MTT
assay, chalcone 7 showed the weak inhibitory activity with
IC50 values >20 μM against all four cancer cell lines.
However, chalcone-1,2,3-triazole hybrid 9 displayed the po-
tently antiproliferative activity with IC50 values from 0.9 μM
to 6.2 μM against all four cancer cell lines. These resuts illus-
trated that the 1,2,3-triazole unit might be very important for
antiproliferative activity.

Analogue 9a inhibited HepG2 cells growth

Based on the best antiproliferative activity result of chalcone-
1,2,3-triazole derivative 9 against HepG2 cells, HepG2 cell
line was selected to do anticancer mechanisms in vitro.

Colony formation was used to investigate whether derivative
9 could inhibit HepG2 cells growth and proliferation [29]. The
colony formation results were shown in Fig. 3. Compared
with the control group, HepG2 cells with the treatment of
derivative 9 at 0.1 μM and 0.5 μM exhibited fewer colonies
obviously. From the colony formation results, chalcone-1,2,3-
triazole derivative 9 could significantly inhibit HepG2 cells
growth in a concentration-dependent manner.

Analogue 9 inhibited HepG2 cells migration

The effect of migration about chalcone-1,2,3-triazole deriva-
tive 9 was explored by the reported method [30]. HepG2 cells
were treated with derivative 9 at different concentrations
(0 μM, 0.5 μM, 1 μM and 2 μM) for 24 h and were stained
by hematoxylin. The migration rates at 0.5 μM, 1 μM and
2 μMwere about 62%, 21% and 4%, respectively. All migra-
tion results in Fig. 4 indicated that chalcone-1,2,3-triazole de-
rivative 9 could inhibit HepG2 cells migration by a
concentration-dependent manner.

Analogue 9 regulated the expression levels
of migration-releated markers and transcription
factors

Epithelial-mesenchymal transition (EMT) as a biologic process
displayed a pivotal role during the embryonic development and
carcinoma progression [31]. Due to the migration inhibitory
effect of derivative 9 against HepG2 cells, we examined the
expression level of the typical proteins of epithelial-
mesenchymal transition. As shown in Fig. 5, chalcone-1,2,3-
triazole derivative 9 could upregulate the expression level of E-
cadherin. Meanwhile, this compound decreased the mesenchy-
mal cells’ biomarkers, N-Cadherin and Vimentin. The expres-
sion levels of upstream transcription factors, Snail and Slug
were both decreased. These results indicated that chalcone-
1,2,3-triazole derivative 9 could inhibit liver cancer cells migra-
tion by regulating EMT related biomarkers (E-cadherin, N-
Cadherin and Vimentin) and inhibiting the expression of up-
stream transcription factors (Snail and Slug).

Fig. 6 Tubulin polymerization activity of derivative 9

Fig. 7 The in vivo antitumor activity of chalcone-1,2,3-triazole derivative 9 (a) Tumor volumes of mice (b) Tumor weight from each group (c)
Body weights of mice. **P < 0.01 verse control
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Chalcone analogue 9 inhibited tubulin polymerization

Microtubules as an important framework supporting cellular
morphology in interphase are the major components of the
mitotic spindle which allows the controlled segregation of the
chromosomes during mitosis [32]. Recently, a series of
phenstatin/isocombretastatin-chalcone conjugates were syn-
thesized and screened as potent tubulin polymerization inhib-
itors [33]. These phenstatin/isocombretastatin-chalcones pos-
sess the structural similarity with our target compounds. Based
on these findings, the tubulin activity of chalcone hybrid 9was
detected using the tubulin polymerization inhibition assay [34].
The IC50 value of chalcone hybrid 9 was 2.34 μM against
tubulin polymerization. All these results indicated that deriva-
tive 9 was a novel tubulin polymerization inhibitor (Fig. 6).

Analogue 9 inhibited HepG2 cells growth in vivo

To evaluate the potential anticancer effects of chalcone-1,2,3-
triazole derivative 9 in vivo, a HepG2 xenograft model was
established in nude mice by subcutaneously injecting HepG2
cells. Tumor bearing mice were then randomly assigned to
two groups (control, 70 mg/kg 9) with 5 mice per group.
The growth rate of HepG2 xenograft tumors frommice which
were treated with chalcone-1,2,3-triazole derivative 9 was
lower than those from the control group (Fig. 7). The average
tumor weights of control and 70mg/kg 9were 1.311 ± 0.216 g
and 0.524 ± 0.172 g (inhibitory rate: 60.03%), respectively.
Importantly, there is no significant difference in mean body
weights between control and treated group. All these results
demonstrated the potent antitumor activity of chalcone-1,2,3-
triazole derivative 9 against liver cancer HepG2 cells in vivo
and low toxicity toward mice.

Discussion

A novel chalcone-1,2,3-triazole derivative 9 displayed the po-
tent inhibitory effect against HepG2 cells with an IC50 value
of 0.9 μM. Analogue 9 obviously inhibited HepG2 cells
growth and migration in a concentration-dependent manner.
In addition, compound 9 was a novel tubulin polymerization
inhibitor. Importantly, derivative 9 effectively inhibited the
liver cancer cells growth in vivo with no signs of adverse side
effects. In summary, derivative 9 deserves further investiga-
tion as a lead compound to treat liver cancer.
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