

PII: S0031-9422(96)00644-9

PHENOLICS FROM HYPERICUM GEMINIFLORUM

MEI-ING CHUNG, MEI-HSUN LAI, MING-HONG YEN, RU-RONG WU* and CHUN-NAN LIN†

School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan 807, R.O.C.; * Instrumental Center, National Cheng Kung University, Tainan, Taiwan 701, R.O.C.

(Received in revised form 2 August 1996)

Key Word Index—*Hypericum geminiflorum*; Guttiferae; chalcone; heartwood; roots; 3,5,7,2',5'-pentahydroxy-flavan; 3,5-dimethoxy-4-hydroxy-1-O- β -D-glucoside; 3'-[γ -hydroxymethyl-(Z)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-O-ferulate; 3'-[γ -hydroxymethyl-(Z)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-O-coumarate; 3'-[γ -hydroxymethyl-(E)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-O-coumarate.

Abstract—Five new constituents were isolated from the heartwood and roots of *Hypericum geminiflorum*. The structures were characterized as (2R,3R)-3,5,7,2',5'-pentahydroxyflavan, 3,5-dimethoxy-4-hydroxy-1-*O*- β -D-glucoside, 3'-[γ -hydroxymethyl-(Z)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-*O*-ferulate, named gemichalcone A, 3'-[γ -hydroxymethyl-(Z)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-*O*-coumarate, named gemichalcone B, and 3'-[γ -hydroxymethyl-(E)- γ -methylallyl]-2',4',4-trihydroxychalcone 11'-*O*-coumarate, named gemichalcone B. Copyright © 1997 Elsevier Science Ltd

INTRODUCTION

Studies on the constituents of Hypericum species have been reported [1]. However, no work has been done on the constituents of *H. geminiflorum* and as part of a study of the bioactive principles of Formosan plants, its constituents were studied. Five new constituents, (2R,3R)-3,5,7,2',5'-pentahydroxyflavan (1), 3,5-dimethoxy-4-hydroxy-1-O- β -D-glucoside (2), gemichalcone A (3), gemichalcone B (4) and isogemichalcone B (5), and eight known compounds, 2,6-dimethoxy-p-benzoquinone, β -sitosterol, betulinic acid, 1,5-dihydroxy-6-methoxyxanthone, β -sitosterol-3-O- β -D-glucoside, cycloartocarpin [2], cudraflavone A [3] and isobavachalcone [4], were isolated and characterized from the roots of this species. In this paper, we report on the structure characterization of these five new compounds.

RESULTS AND DISCUSSIONS

Compound 1, $C_{15}H_{14}O_6$, showed UV absorption maxima characteristic of flavans [5]. The present of a bathochromic shift with NaOMe in the UV spectrum suggested that it was a 7-hydroxylated flavan [5]. Its IR spectrum showed the present of absorptions at 3400 cm⁻¹ (OH) and 1600 cm⁻¹ (C=C) but had no absorptions for any type of carbonyl groups. The ¹H NMR spectrum of 1 indicated three benzylic proton signals at δ 3.41 (1H, dd, J = 16.0, 4.4 Hz, H-4), 3.55 (1H, dd, J = 16.0, 3.2 Hz, H-4) and 5.37 (1H, brs, H-4)2), a -CHOH signal at δ 4.72 (brs, H-3), a metacoupled proton system at δ 6.67 (d, J = 2.0 Hz, H-6) and 6.70 (d, J = 2.0 Hz, H-8) and three aromatic proton signals at δ 7.27 (*d*, J = 8.0 Hz), 7.34 (*dd*, J = 8.0, 1.6 Hz) and 7.92 (d, J = 1.6 Hz) [5, 6]. Because of the absence of a bathochromic shift with NaOAc-H₃BO₃ in the UV spectrum, the above three aromatic proton signals at δ 7.27, 7.34 and 7.92 were assigned to H-3', H-4' and H-6', respectively. The EI-mass spectrum of 1 showed a $[M]^+$ at m/z 290 and significant peaks at m/z 272 [M-H₂O]⁺, 152 and 139 (base peak) [6]. All the above evidence clearly indicated that 1 is a 3,5,7,2',5'-pentahydroxyflavan.

The ¹³C NMR spectrum of 1 (Table 1) was assigned by ¹H-decoupled spectra, DEPT pulse sequence and comparison of chemical shifts with those of corresponding data for (-)-epicatechin and 2',5'-dimethoxyflavone [7]. Based on the similar coupling effect between H-4, H-3 and H-2 to those of corresponding protons of 3,5,7,3',5'-pentahydroxyflavan [5] in the ¹H NMR spectrum and identical chemical shifts of C-2, C-3, C-4 and C-1' to those of corresponding carbons of (-)-epicatechin in ¹³C NMR spectrum (Table 1), the relative stereochemistry at C-2 and C-3 of 1 were assigned as (2R,3R).

Compound 2, $C_{14}H_{20}O_9$, showed hydroxyl (3350 cm⁻¹) and aromatic (1610 cm⁻¹) absorptions in its IR spectrum. The UV spectrum showed maximum

[†] Author to whom correspondence should be addressed.

Table 1. ¹³C NMR spectral data of compounds 1 and 3-5

с	1*	С	3†‡	3a†	4 †‡	5†‡	С	3†‡	3 a†	4†‡	5 †‡
2	80.0	1	128.2	128.2	128.2	127.7	7′	22.8	22.7	22.7	22.7
3	66.9	2	132.4	132.4	132.4	132.4	8'	129.1	125.8	129.0	128.3
4	29.6	3	117.4	117.5	117.4	117.4	9′	131.7	136.5	131.8	131.9
4a	100.2	4	161.7	161.7	161.7	161.7	10′	22.3	22.8	22.3	14.9
5	158.6	5	117.4	117.5	117.4	117.4	11′	64.2	62.5	64.2	70.9
6	96.6	6	132.4	132.4	132.4	132.4	1″	128.2		127.2	127.7
7	158.6	α	119.0	119.0	119.0	119.1	2″	112.0		131.6	131.6
8	95.8	β	145.7	145.7	145.7	145.7	3″	149.4		117.3	117.3
8a	157.6	CO	193.7	193.7	193.7	193.7	4″	150.7		161.2	161.2
1′	132.1	1′	115.7	115.8	115.7	115.8	5″	116.7		117.3	117.3
2′	146.7	2′	165.7	165.7	165.7	165.9	6″	124.6		131.6	131.6
3′	116.3	3′	115.0	114.9	115.1	115.1	7″	146.3		146.0	146.0
4′	119.3	4′	163.5	163.7	163.4	163.6	8″	116.6		116.3	116.3
5′	146.8	5′	108.8	109.2	108.7	108.7	9″	168.3		168.3	170.2
6′	116.0	6′	131.2	131.2	131.2	131.2	OMe	56.3			

Numbers of directly attached protons to individual carbons verified by DEPT pulse sequence.

* Measured in pyridine-d₅.

† Measured in (CD₃)₂CO.

[‡]Signals obtained by ¹H-¹H COSY, HMQC, HMBC and NOESY techniques.

absorption at 282, 402 and 446 (sh) nm. The ¹H NMR spectrum of **2** indicated two methoxyl signals at δ 3.41 (s), an anomeric proton signal at δ 5.37 (d, J = 7.6Hz), two aromatic proton signals at δ 6.92 (s, H-2 and H-6) and a phenolic hydroxyl signal at δ 10.3. The ¹³C NMR spectrum (see Experimental) showed two methoxyl signals at δ 56.3 and signals due to β -glucopyranose (δ 103.8, 75.1, 71.6, 79.0 and 62.6). Based on the above evidence, **2** was concluded to be 3,5dimethoxy-4-hydroxy-1-O- β -D-glucoside or 3,5-dimethoxy-1-hydroxy-4-O- β -glucoside [8]. Acidic hydrolysis yielded glucose as detected by TLC.

Alkaline hydrolysis of permethylated 2 yielded 2a, identified by UV, IR, mass spectral, NMR and comparison of mmp and spectral data with those of authentic 3,4,5-trimethoxyphenol. Based on the above evidence, 2 was characterized as 3,5-dimethoxy-1-hydroxy-4-O- β -D-glucoside (2). The EI-mass spectrum of 2 show a [M]⁺ at m/z 332 and significant peaks at m/z170, 155, 140 and 109. It also supported the characterization of 2 as 3,5-dimethoxy-1-hydroxy-4-O- β -Dglucoside (2).

Compound 3, $C_{30}H_{28}O_8$, had similar UV maxima to 2',4',4-trihydroxychalcone [9]. The IR spectrum showed an ester absorption band at 1 720 cm⁻¹. The ¹H NMR spectrum of 3 showed a vinyl methyl at δ 1.74 (s), a methylene signal at δ 3.49 (d, J = 7.2 Hz), a singlet of OCH₂ at δ 4.96, an olefinic proton signal at 5.59 (t, J = 7.2 Hz) [10], a methoxyl group at δ 3.91, a 1,4-disubstituted phenyl moiety [δ 6.93 (2H, dd, J = 8.5, 2.0 Hz, H-3 and H-5) and δ 7.73 (2H, dd, J = 8.5, 2.0 Hz, H-2 and H-6)], a 1',2',3',4'-tetra-substituted phenyl moiety [δ 6.51 (1H, d, J = 8.8 Hz, H-5') and 8.00 (1H, d, J = 8.8 Hz, H-6')], α and β proton signals in a chalcone skeleton [δ 7.75 (1H, d, J = 15.6 Hz, H- α) and δ 7.84 (1H, d, J = 15.6 Hz, H- β)] [11], ABX-type signals at δ 6.87 (1H, d, J = 8.4

Hz, H-5"), δ 7.16 (1H, dd, J = 8.4, 2.0 Hz, H-6") and δ 7.36 (1H, d, J = 2.0 Hz, H-2"), a cinnamoyl moiety by the presence of doublets at δ 6.43 (H-8") and δ 7.62 (H-7") (J = 15.9 Hz) [12], and a hydrogen-bonded hydroxyl group [δ 14.07 (1H, s, C-2'-OH)]. Based on the above evidence and the absence of a bathochromic shift induced by AlCl₃, **3** was concluded to be a 3"-methylated 3",4"-dioxygenated or 4"-methoxylated 3",4"-dioxygenated cinnamoyl ester of a 3-substituted 2',4',4-trihydroxychalcone.

Alkaline hydrolysis of 3 afforded ferulic acid, identified by comparison of mmp and spectral data with those of authentic ferulic acid and 3a. Compound 3a, C₂₀H₂₀O₅, showed similar UV maxima and bathochromic shifts induced by NaOAc, NaOMe, and AlCl₃ to 3 in its UV spectrum. The IR spectrum indicated hydroxyl and chelated carbonyl group absorptions at 3350 and 1630 cm^{-1} but the absence of an ester absorption band. The ¹H NMR spectrum of 3a indicated the presence of a γ -hydroxymethyl, γ -methylallyl moiety [10] and a 2',4',4-trihydroxychalcone moiety but the absence of a 3",4"-dioxygenated cinnamoyl moiety. Based on the above evidence and the absence of a bathochromic shift induced by AlCl₃ in the UV spectrum, 3a was characterized as $3'-[\gamma-hydroxymethyl-(Z)-\gamma-methylallyl]-2',4',4$ trihydroxychalcone (3a). The ¹³C NMR spectrum (Table 1) was assigned by ¹H-decoupling spectra, DEPT pulse sequence and comparison of chemical shifts with those of corresponding data for norachalcone A [13], broussochalcone B [11], cabenegrin A-I [10] and the literature [14]. The ¹³C NMR spectrum and mass spectrum of 3a also supported its structural assignment. The chemical shift values of C-11' and H-11' of 3 were both downfield in comparison with those of the corresponding signals for 3a (Table 1 and Experimental). This indicated that the cinnamoyl

moiety was linked to C-11'-OH. In addition to the above evidence, the NOESY spectrum showed intense interactions between H-2" and OMe. Therefore, gemichalcone A (3) was characterized as 3. The 13 C NMR spectrum of 3 (Table 1) was assigned by ¹H-decoupled

spectra, DEPT pulse sequence, ${}^{1}H{-}^{1}H$ COSY, HMQC, NOESY, HMBC and comparison with corresponding data for **3a** and in the literature [12].

Compound 4, $C_{29}H_{26}O_7$, had similar UV and IR spectra to those of 3, suggesting that 4 was also an

ester of a 2',4',4-trihydroxychalcone derivative. The ¹H NMR spectrum showed identical proton signals to those of corresponding signals for 3 except for presence of an additional 1",4"-disubstituted phenyl moiety, δ 6.90 (2H, dd, J = 8.8, 2.4 Hz, H-3" and H-5") and δ 7.57 (2H, dd, J = 8.8, 2.4 Hz, H-2" and H-6") and the absence of the ABX-type proton signals. Based on the above evidence and the absence of a bathochromic shift induced by AlCl₃, 4 was concluded to be a 4"-monooxygenated cinnamoyl ester of a 3substituted 2',4',4-trihydroxychalcone.

Alkaline hydrolysis of 4 afforded coumaric acid (*p*-hydroxycinnamic acid) and **3a**, identified by comparison of mmp and spectral data with those of authentic samples, respectively. The chemical shift values of C-11' and H-11' in **4** were also downfield in comparison with the corresponding signals for **3a** (Table 1 and Experimental). This indicated that the cinnamoyl moiety was linked to C-11'-OH. Therefore, gemichalcone B (4) was characterized as **4**. The ¹³C NMR spectrum of **4** was assigned by ¹H-decoupled spectra, DEPT pulse sequence, 2D spectra and comparison with those of corresponding data for **3**. The characterization of **4** was also supported by its ¹³C NMR spectrum, mass spectrum and 2D spectra.

Compound 5, C₂₉H₂₆O₇, gave identical UV, IR and mass spectra to those of 4. The ¹H NMR spectrum showed identical proton signals to those of corresponding signals for 4, except for the chemical shift values of H-8' and H-10', and H-11' which were shifted downfield and highfield, respectively, compared with the corresponding signals for 4. In addition to the above evidence, the NOESY spectrum showed intense interactions between H-7' and H-10', and H-8' and H-11'. Therefore, isogemichalcone B (5) was characterized as 5. The ¹³C NMR spectrum was assigned by 'H-decoupling spectra, DEPT pulse sequence, 2D spectra and literature [10] and comparison with the corresponding data for 4. The ^{13}C NMR spectrum of 5 showed identical chemical shifts to those of the corresponding carbon signals for 4, except for the chemical shifts of C-10' and C-11', which were highfield and lowfield, respectively, compared with 4. This clearly indicated that the vinyl methyl of 3, 3a and 4, and 5 were assigned to (Z)-Me and (E)-Me, attached to C-8', respectively [14].

EXPERIMENTAL

Plant material, extraction and isolation. Plants of H. geminiflorum Hemsl. were collected at Ping Tung Hsieng, Taiwan, during November 1993 and a voucher specimen is deposited in the authors' laboratory. Heartwood (aerial part, 13 kg) and roots (3 kg) were chipped and extracted with MeOH and Me₂CO, successively. The MeOH extract was subjected to chromatography on a silica gel column. Elution with CHCl₃--EtOAc (9:1) yielded 2,6-dimethoxy-p-benzoquinone and 1,5-dihydroxy-6-methoxyxanthone, elution with CHCl₃--EtOAc--MeOH (8.5:0.5:1) yielded

 β -sitosterol and 3,5,7,2',5'-pentahydroxyflavan (1) and elution with CHCl₃–MeOH (9:1) yielded β -sitosterol-3-O- β -D-glucoside and 3,5-dimethoxy-4-hydroxy-1-O- β -D-glucoside (2). The Me₂CO extract was also subjected to chromatography on a silica gel column. Elution with CHCl₃ yielded betulinic acid, elution with hexane-CHCl₃-EtOAc (4.5:1:1) yielded fr. A, elution with CHCl₃-MeOH (9:1) yielded isobavachalcone [4], elution with hexane-CHCl₃-Me₂CO-MeOH (1:8:1:0.2) yielded gemichalcone A (3) and elution with hexane-CHCl₃-Me₂CO-MeOH (1:7.3:1.5:0.2) yielded frs B and C. Frs A-C were further subjected to chromatography on Sephadex LH-20. Elution of fr. A with MeOH yielded cycloartocarpin [2] and cudraflavone A [3], elution of fr. B with MeOH yielded gemichalcone B (4) and elution of fr. C with MeOH yielded isogemichalcone B (5) and β -sitosterol-3-O- β -D-glucoside. Characterization of known compounds was achieved by spectral methods.

Compound 1. Red needles (Me₂CO), mp 224°. $[\alpha]_{d}^{23}$ – 54° (c 0.05, MeOH). UV λ_{max}^{MeOH} nm (log ε): 220 (4.68), 278 (3.97), 405 (3.54); + NaOMe: 227, 298; + NaOAc-H₃BO₃: unchanged. IR ν_{max}^{KBr} cm⁻¹: 3 400, 1 600. EIMS (direct inlet) 70 eV, m/z (rel. int.): 290 [M]⁺ (17), 152 (37), 139 (100), 123 (41). ¹H NMR (pyridine- d_5): see text. ¹³C NMR (pyridine- d_5): Table 1. HRMS: calc. for C₁₅H₁₄O₆, 290.0790; found, 290.0813.

Compound **2.** Powder (pyridine), mp 238°. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 282 (3.89), 402 (3.34). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3350, 1610. EIMS (direct inlet) 70 eV, *m/z* (rel. int.): 332 [M]⁺ (2), 170 (100), 155 (41). 140 (42), 109 (11). ¹H NMR (pyridine-*d*₅): see text. ¹³C NMR (pyridine-*d*₅): δ 56.2 (OMe × 2), 62.6 (C-6'), 71.6 (C-4'), 75.1 (C-2'), 78.7 (C-3'), 79.0 (C-5'), 96.6 (C-2 and C-6), 103.8 (C-1'), 132.8 (C-4), 149.3 (C-3 and C-5). HRMS: calc. for C₁₄H₂₀O₉, 322.1107; found, 322.1095. Acid hydrolysis (2 N HCl-MeOH) of **2** yielded glucose identified by PC, *R_f* 0.21 (*n*-BuOH–HOAc–H₂O, 4:1:2).

3,4,5-*Trimethoxyphenol* **2a**. Compound **2** (20 mg) in dry Me₂CO (10 ml) was refluxed over dry K_2CO_3 (0.5 g) with dry Me₂SO₄ (5 ml) for 6 hr. The product was refluxed with 5% KOH in MeOH (10 ml) and yielded **2a**, 146–148°. Mmp, IR, NMR and MS identical to authentic compound.

Compound 3. Yellow needles (MeOH), mp 106°. UV λ_{max}^{MeOH} nm (log ε): 225 (sh) (4.52), 344 (4.56), 360 (sh) (4.52); + NaOMe: 207, 405; + NaOAc: 220, 344, 400; + AlCl₃: unchanged. IR v_{max}^{KBr} cm⁻¹: 3 350, 1 720, 1 635. EIMS (direct inlet) 70 eV, m/z (rel. int.): 322 [340-H₂O]⁺ (56), 307 [322-15]⁺ (20), 203 [322-120+H]⁺ (42), 194 [M-322]⁺ (100), 187 [307-120]⁺ (57), 174 [322-147-H]⁺ (22), 147 (26), 120 (45), 107 (31). FAB-MS (pos. mode) m/z: 517 [M+1]⁺ (0.4), 307 (8), 289 (5), 155 (28), 154 (100), 136 (87), 120 (17), 107 (31). ¹H NMR (acetone- d_6): see text. ¹³C NMR (acetone- d_6): Table 1.

Compound 3a and ferulic acid. 3 (20 mg) was sapon-

ified as described for 2 to yield 3a and ferulic acid, mp 166-167° (mmp, IR, NMR and MS identical to authentic ferulic acid). Compound 3a. Yellow needles (MeOH), mp 146°. UV λ_{max}^{MeOH} nm (log ε): 225 (sh) (4.46), 281 (3.92), 362 (3.87); + NaOMe: 212, 415; + NaOAc: 217, 276 (sh), 405; + AlCl₃: unchanged. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 350, 1 630. EIMS (direct inlet) 70 eV, m/z (rel. int.): 340 [M]⁺ (14), 322 [M-H₂O]⁺ (40), 307 (37), 203 (60), 147 (45), 119 (37), 107 (34). ¹H NMR (acetone-d₆): δ 1.73 (3H, s, C10'-Me), 3.46 (2H, d, J = 7.2 Hz, H-7', 4.23 (2H, s, H-11'), 5.36 (1H, t)J = 7.2 Hz, H-8'), 6.51 (1H, d, J = 8.8 Hz, H-5'), 6.93 (2H, d, J = 8.4 Hz, H-3 and H-5), 7.74 (2H, d, J = 8.4 Hz, H-2 and H-6), 7.76 (1H, d, J = 15.6 Hz, H- α), 7.84 (1H, d, J = 15.6 Hz, H- β), 8.0 (1H, d, J = 8.8 Hz, H-6'), 14.13 (1H, s, C2'-OH). ¹³C NMR (acetone-d₆): Table 1 HRMS: calc. for C₂₀H₂₀O₅, 340.1311; found, 340.1297.

Compound 4. Yellow needles (MeOH), mp 140°. UV λ_{max}^{MeOH} nm (log ϵ): 212 (4.52), 221 (sh) (4.45), 317 (4.56), 362 (4.43); + NaOMe: 210, 236 (sh), 363, 430; +NaOAc: 221, 315, 398; +AlCl₃: unchanged. IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3 250, 1 720, 1 635, 1 610. EIMS (direct inlet) 70 eV, m/z (rel. int.): 322 (52), 307 (16), 203 (43), 187 (55), 174 (22), 164 (9), 147 (24), 120 (100), 119 (34), 107 (16). FAB-MS (pos. mode) m/z: 487 [M + 1]⁺ (0.5), 391 (5), 307 (0.1), 289 (0.2), 155 (28), 154 (100), 136 (84), 120 (16), 107 (29). ¹H NMR (acetone- d_6): δ 1.63 (3H, s, C10'-Me), 3.38 (2H, d, J = 7.6 Hz, H-7'), 4.84 (2H, s, H-11'), 5.45 (1H, m, H-8'), 6.27 (1H, d, J = 15.9 Hz, H-8"), 6.43 (1H, d, J = 8.9 Hz, H-5'), 6.80 (2H, dd, J = 8.7, 2.4 Hz, H-3 and H-5), 6.90 (2H, dd, J = 8.6, 2.0 Hz, H-3" and H-5"), 7.51 (1H, d, J = 15.9 Hz, H-7"), 7.57 (2H, dd, J = 8.6, 2.0 Hz, H-2" and H-6"), 7.60 (2H, dd, J = 8.7, 2.4 Hz, H-2 and H-6), 7.62 (1H, d, J = 15.3 Hz, H- α), 7.71 (1H, d, J = 15.3 Hz, H- β), 7.78 (1H, d, J = 8.9 Hz, H-6'), 14.01 (1H, s, C2'-OH). ¹³C NMR (acetone- d_6): Table 1. Compound 4 (20 mg) was saponified as described for 2 to yield 3a and p-coumaric acid, mp 210-211° (mmp, IR, NMR and MS identical to those of authentic p-coumaric acid).

Compound **5**. Yellow granules (MeOH), mp 176°. UV λ_{max}^{MeOH} nm (log ε): 225 (sh) (4.38), 313 (4.29), 365 (4.23); + NaOMe: 212, 360, 430; + NaOAc: 219, 315, 405; + AlCl₃: unchanged. IR ν_{max}^{KBr} cm⁻¹: 3 300, 1 720, 1 635, 1 610. EIMS (direct inlet) 70 eV, *m/z* (rel. int.): 322 (94), 307 (26), 203 (73), 187 (80), 147 (36), 120 (100), 119 (44), 107 (30). FAB-MS (pos. mode) m/z: 509 [M + Na]⁺ (0.7), 154 (19), 137 (27), 69 (100). ¹H NMR (acetone- d_6): δ 1.88 (3H, s, C10'-Me), 3.47 (2H, d, J = 7.2 Hz, H-7'), 4.55 (2H, s, H-11'), 5.68 (1H, m, H-8'), 6.36 (1H, d, J = 16.0 Hz, H-8"), 6.55 (1H, d, J = 8.8 Hz, H-5'), 6.88 (2H, dd, J = 8.4, 2.0 Hz, H-3" and H-5"), 6.93 (2H, dd, J = 8.4, 2.0 Hz, H-3 and H-5), 7.55 (2H, dd, J = 8.4, 2.0 Hz, H-2" and H-6"), 7.59 (1H, d, J = 16.0 Hz, H-8"), 7.74 (2H, dd, J = 8.4, 2.0 Hz, H-2 and H-6), 7.80 (1H, d, J = 16.0 Hz, H- α), 7.84 (1H, d, J = 16.0 Hz, H- β), 8.00 (1H, d, J = 8.8Hz, H-6'), 14.07 (1H, s, C2'-OH); ¹³C NMR (acetone d_6): Table 1.

Acknowledgement—The work was supported by a grant from the National Science Council of the Republic of China (NSC 85-2331-B037-024).

REFERENCES

- Chen, M. T. and Chen, C. M., *Heterocycles*, 1985, 23, 2543.
- 2. Nair, P. M., Rama, Rao, A. V. and Venkataraman, K., *Tetrahedron Letters*, 1964, 125.
- Fujimoto, T., Hano, Y., Nomura, T. and Uzawa, J., *Planta Medica*, 1984, **50**, 161.
- 4. Bhalla, V. K., Nayak, U. R. and Dev, S., Tetrahedron Letters, 1968, 2401.
- 5. Saini, K. S. and Ghosal, S., *Phytochemistry*, 1984, 23, 2415.
- Samaraweera, U., Sotheeswaran, S. and Sultanbawa, M. U. S., *Phytochemistry*, 1983, 22, 565.
- Agrawai, P. K., Carbon-13 NMR of Flavonoids. Elsevier, New York, 1989, pp. 130, 446.
- 8. Lounasmaa, M. and Jokela, R., *Tetrahedron*, 1978, **34**, 1841.
- 9. Markham, K. R. and Mabry, T. J., in *The Fla*vonoids. Academic Press, New York, 1975, p. 51.
- Nakagawa, M. and Nakanishi, *Tetrahedron Letters*, 1982, 23, 3855.
- Matsumoto, J., Fujimoto, T., Takino, C., Saitoh, M., Hans, Y., Fukai, T. and Nomura, T., *Chemical and Pharmaceutical Bulletin*, 1985, 33, 3250.
- Kuo, S. H., Yen, M. H., Chung, M. I. and Lin, C. N., *Phytochemistry*, 1996, **41**, 309.
- Agrawai, P. K., Carbon-13 NMR of Flavonoids. Elsevier, New York, 1989, p. 382.
- Nishino, C. and Bowere, W. S., *Tetrahedron*, 1976, 32, 2875.