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An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely 

resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. 

In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was 

selected for further evaluation of its antivirulence properties. Real-Time PCR was used to evaluate mRNA expression of biofilm-associated virulence 

factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as 

fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is 

downregulated together with the reduction of adhesion and motility. The conclusion is that 2-methoxy-2’-hydroxychalcone exhibits antivirulence activity 

against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility. 
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Introduction 

Acinetobacter baumannii is recognized as one of the most troublesome nosocomial pathogens, due to its outstanding ability to rapidly develop 

antimicrobial resistance and to persist in wide range of environmental conditions.[1] Extreme tolerance to desiccation and formation of highly recalcitrant 

biofilms provide A. baumannii potential to survive for extended periods on hospital surfaces, materials, and medical devices, thus promoting hospital 

outbreaks and epidemics.[2] The ever-increasing number of extensively drug-resistant (XDR) isolates, resistant to carbapenems, as well as emergence of 

pandrug-resistant (PDR) strains, emphasizes the indisputable need for discovery and development of new therapeutic strategies.[3] One such strategy 

that is being investigated deals with targeting of the A. baumannii virulence factors, which provides possibility to disarm pathogens, while minimally 

affecting their growth, thereby generating much weaker selection of resistant mutants.[4][5] 

Besides the well-known resistance to desiccation and an ability of biofilm formation that mediate the so-called “persist and resist” strategy of virulence, 

there are now numerous recognized virulence factors in A. baumannii.[6] These include adherence mechanisms, motility, siderophore-mediated iron 

acquisition systems, activities of polysaccharide membrane and outer membrane protein phospholipases, alteration in penicillin-binding proteins (PBPs), 

outer membrane vesicles (OMVs), and mechanisms of immune evasion.[7] Of the particular interest is outer membrane protein A (OmpA), the most 

abundant protein in outer membrane of A. baumannii, with well-characterized virulence involvement.[8] OmpA promotes bacterial adherence and 

invasion, as well as subsequent apoptosis of host epithelial cells, partially by acting as a major fibronectin binding ligand.[9-11] Additionally, this protein 

induces the biogenesis of cytotoxic OMVs, thus further enhancing host cell apoptosis.[12][13] Also, OmpA contributes to the resistance, survival, and 

persistence of A. baumannii, by promoting immune evasion, biofilm formation, surface motility, and multidrug resistance.[8][14-17] Biofilm-associated 

protein (Bap) is another large outer membrane protein that enables formation of fully mature biofilms and increases adherence to human cells,[18][19] 

whose inhibition was shown to diminish the virulence potential of A. baumannii.[20] Finally, the quorum-sensing (QS) system in A. baumannii, consisting of 

auto-inducer synthase (AbaI), acyl-homoserine lactone (AHL) signal molecules, and AbaR receptor,[21] was also shown to influence the expression of 

virulence factors such as biofilm formation[22] and surface motility.[16] Moreover, the attenuated virulence in a zebrafish infection model was 

demonstrated for abaI deficient mutants.[23] 
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Chalcones are natural compounds with simple common chemical scaffold 1,3-diaryl-2-propen-1-one (chalconoide), which can be found in fruits, 

vegetables, spices, teas, and other products of some plant species.[24] A wide variety of biological and pharmacological activities of chalcones have been 

observed. These include antioxidant properties, anti-inflammatory effects, chemopreventive and cytotoxic activities, anti-hyperglycemic and 

hypolipidemic activities, cardioprotective and neuroprotective effects, antibacterial, antifungal, antiviral, and antiparasitic activities, and many others.[25-

27] In addition to natural isolation, chalcones can be obtained by chemical synthesis that allows construction of compounds with targeted activity and 

minimal side effects.[25][28] In that sense, a variety of synthetic chalcones were screened for antimicrobial activity and lots of them showed great potential 

in this respect.[29] 

In our recent study, we had demonstrated that among the four differently substituted 2’-hydroxychalcones, 2- methoxy substituted derivative is the most 

active in inhibition of bacterial biofilm production.[30] For the purpose of this study, we synthesized two differently substituted 2’-hydroxy-5’-

fluorochalcones and one 2’-hydroxy-4’-methylchalcone, and tested their antibiofilm potential, along with 2-methoxy-2’- hydroxychalcone from previous 

study, against A. baumannii. Further, since the biofilm production itself is not associated with A. baumannii virulence, we selected compound that 

exhibited greatest antibiofilm activity for examination of its influence on biofilm-related virulence factors. We monitored expression levels of biofilm-

associated virulence factor genes, as well as fibronectin- and collagen-mediated adhesion, surface motility, and QS activity of A. baumannii strains 

treated with the selected chalcone compound. Also, we examined crystallinity and thermal properties of this compound to get better insights into its 

stability, solubility, and bioavailability. 

Results 

Synthesis 

Compounds 1-4 were obtained by base-catalyzed Claisen-Schmidt condensation (Scheme 1) in the form of yellow colored powders. Structures were 

verified by Fourier-transform infrared (FTIR), 1H NMR, 13C NMR and 19F NMR spectroscopy techniques, and high-resolution electrospray ionization mass 

spectrometry (HR-ESI-MS). NMR spectra are provided in Supporting information. 
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Scheme 1. Synthesis of compounds 1-4. 

Antibiofilm Activity of Compounds 1-4 

Compounds 1-4 were screened for antibiofilm activity against A. baumannii reference strain and wound isolate at concentration of 70 μg ml-1 

(Supplementary Figure S1). Significant activity against A. baumannii ATCC 19606 was exhibited by compounds 1, 2, and 4. However, only compound 1 

significantly inhibited production of biofilm in A. baumannii wound isolate. Subsequently, we selected compound 1 for further examination of crystallinity, 

thermal characteristics, and biofilm-associated virulence factor genes expression. Also, we evaluated its biofilm inhibitory activity at 35 μg ml-1 and 10 μg 

ml-1, and revealed dose-dependent influence (Figure 3A). Whereas, concentration of 35 μg ml-1 still yielded significant biofilm inhibition in both strains, 

concentration of 10 μg ml-1 had little effect. 

Crystallinity and Thermal Properties of Compound 1 

To further examine the structure and properties of compound 1, we employed X-ray diffraction (XRD), microscopy, and thermal analyses. Based on the 

numerous sharp peaks, observed from the XRD pattern (Figure 1B), the sample possesses a highly crystalline nature which is also confirmed by optical 

microscopy (Figure 1A). The most intense reflections of the incident beam were detected at the following 2θ angles: 26.25 and 24.85 along with a triplet in 

the interval 14.05-15.4. Regarding the investigation of thermal stability, based on the data obtained from thermogravimetric differential thermal analysis 

(TGA/DTA; Figure 1C), it can be concluded that the sample is stable up to 250 °C, after which it goes through the rapid weight loss of about 90%. The 

combustion of remaining decomposition products took place at around 490 °C, which could be also noticed as a big exothermic peak on the DTA signal. 

10.1002/cbdv.202000786

A
cc

ep
te

d 
M

an
us

cr
ip

t

Chemistry & Biodiversity

This article is protected by copyright. All rights reserved.



Chem. Biodiversity 

3 

Differential scanning calorimetry (DSC) further revealed that two endothermic events took place (Figure 1D). The first one has a substantially lower 

intensity and the second one clearly represents the melting of the sample with a detected melting temperature of 101.4 °C. The first peak occurs around 

66 °C and it could be attributed to the removal of adsorbed moisture. However, the TGA signal did not record any weight loss in this region, thus it is 

possible that this peak corresponds to some structural changes and arrangement of molecular conformation. The molecular conformation of chalcone is 

influenced by the intramolecular forces, and based on the composition of the sample presented here, results obtained from FTIR spectroscopy, and XRD, 

there is more than one conformation present in the sample. 

 

Figure 1. Crystallinity and thermal properties of compound 1. (A) Microscopic and macroscopic evaluation, (B) XRD, (C) TGA/DTA, (D) DSC. 

The Expression of ompA, bap, and abaI Genes is Downregulated by Compound 1  

The mRNA expression, influenced by compound 1 at decreasing sub-minimum inhibitory concentrations (sub-MICs) from 70 to 10 μg ml-1, was 

investigated for several biofilm-associated virulence factor genes of A. baumannii (Figure 2). Remarkably, all the tested genes exhibited significant 

downregulation of the expression by all tested concentrations. The mRNA level of ompA, which encodes a protein involved in numerous virulence-

associated traits of A. baumannii, was dose-dependently decreased in both tested strains. Most notably, 1.58-fold and 1.85-fold downregulation was 

achieved at concentration of 70 μg ml-1 in strains ATCC 19606 and 766, respectively. Interestingly, the reduction of mRNA level of Bap-encoding gene was 

greater when using lower concentrations. In particular, its expression was almost twofold reduced in A. baumannii ATCC 19606 by compound 1 at 10 μg 

ml-1. Finally, mRNA expression of abaI, a gene that encodes auto-inducer synthase, an essential component of A. baumannii QS system, was decreased in 

A. baumannii ATCC 19606, but also in a reverse dose-dependent manner. The expression of this gene was not detected in strain 766. 
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Figure 2. The mRNA expression of ompA, bap, and abaI genes in A. baumannii treated with different concentrations of compound 1. Data are presented as mean values of three 

experiments (± SD). *P < 0.05, **P < 0.01, ***P < 0.001 compared to the control group. 

Compound 1 Inhibits Fibronectin- and Collagen-Mediated Binding of A. baumannii 

The adherence ability of A. baumannii strains treated with compound 1 was evaluated through fibronectin- and collagen-binding affinity. A. baumannii 

ATCC 19606 exhibited much higher binding affinity to both of these extracellular matrix (ECM) proteins, in comparison to the wound isolate (Figures 3B 

and 3C). Strikingly, the cells of the standard strain were almost completely deprived of the binding ability to both fibronectin and collagen, when 

incubated in the presence of compound 1 at 70 μg ml-1. The binding affinity of this strain was substantially reduced by compound 1 at other two tested 

concentrations as well. In case of A. baumannii 766, however, only the collagen-binding affinity was significantly reduced by compound 1 at all tested sub-

MICs. 

 

 

Figure 3. Comparisons between control and treated groups of A. baumannii ATCC 19606 and A. baumannii 766. (A) Biofilm production, represented as OD values of the 

extracted safranin dye at 490 nm, (B) Fibronectin- and (C) Collagen-binding ability represented as the percentage of bound bacterial cells, (D) AHL production, measured as OD 

values of dark brown colored ferric hydroxamate complexes at 520 nm. Data are presented as mean values of three experiments (± SD). *P < 0.05, **P < 0.01, ***P < 0.001 

compared to the control group. 

Surface Motility of A. baumannii Wound Isolate is Inhibited by Compound 1 

Surface motility was not exhibited by A. baumannii ATCC 19606, thus only A. baumannii 766 was used for the evaluation of antimotility activity of 

compound 1. The surface motility of A. baumannii 766 was considerably inhibited by compound 1 at 70 μg ml-1 and 35 μg ml-1, while the lowest tested 

concentration had no effect, since the surface of entire plate was covered as in the case of untreated control (Figure 4). Comparison of migration areas 

revealed that the treatment with 70 μg ml-1 resulted in 150.16 mm2 of covered surface area, which is less compared to the extent of migration exhibited by 

bacteria treated with 35 μg ml-1 (229.94 mm2), indicating the existence of dose-dependent activity. 
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Figure 4. Surface motility of A. baumannii 766 treated with decreasing sub-MICs of compound 1 compared to untreated control. 

Compound 1 Reduces AHL Secretion in A. baumannii ATCC 19606 

Since the expression of AbaI-encoding gene was not detected in A. baumannii wound isolate, we evaluated the influence of compound 1 on AHL 

production only in strain ATCC 19606. The results revealed that the production is reduced by compound 1, at all tested concentrations, in a dose-

dependent manner (Figure 3D). However, significant reduction was achieved only with 70 μg ml-1, which inhibited AHL secretion by 36.22%. 

A. baumannii Growth is not Affected by Tested Sub-MICs of Compound 1 

In order to demonstrate that investigated sub-MICs (70 μg ml-1, 35 μg ml-1, and 10 μg ml-1) of compound 1 do not affect A. baumannii growth, we 

measured bacterial cell growth at five different time points. According to constructed growth curves (Supplementary Figure S2), it can be concluded that 

tested concentrations do not inhibit A. baumannii growth. Subsequently, it is reasonable to consider that potential inhibition of virulence by compound 1 

will not enhance selection of resistant mutants, i.e. compound 1 at selected concentrations is an appropriate antivirulence drug candidate. 

Discussion 

So far, myriad of chalcone structures have displayed efficient antibacterial activities against both Gram-positive and Gram-negative species (aerobic or 

anaerobic), Mycobacterium tuberculosis, and other resilient genera.[29][31] Besides the substantially efficient growth inhibition activities, with MICs reaching 

the values below 1 μg ml-1 in some cases,[32][33] several antivirulence properties of chalcones have also been documented, including the inhibition of biofilm 

formation, glycocalyx production, motility, and adhesion,[30][34][35] the quorum-quenching activity,[36] inhibition of certain genes’ expression and bacterial 

toxin production,[37] and inhibition of the efflux pumps.[38-40] 

Biofilm formation in A. baumannii is responsible for colonization of abiotic and biotic surfaces, including medical devices and host tissues, thus enabling 

the persistence and spreading of infection in hospital settings.[6][15] Besides, increased resistance or tolerance of biofilm-associated A. baumannii cells to 

antimicrobial drugs, including carbapenems, aminoglycosides, and colistin, has been documented in several studies.[41-43] Also, A. baumannii biofilm 

formation was shown to contribute to the immune evasion,[44] and could be related to several other virulence properties, perhaps at the level of gene 

expression. Earlier, we demonstrated that a synthetic 2-methoxy substituted 2’-hydroxychalcone has the greatest antibiofilm activity in comparison to 

other tested variously substituted 2’-hydroxychalcones.[30] For the purpose of this study we synthesized three new chalcones (compounds 2-4) and 

compared their antibiofilm activity to that of 2-methoxy-2’-hydroxychalcone (compound 1). One of the newly-synthesized compounds was derivative of 

2’-hydroxy-4’-methylchalcone, while the remaining two were derivatives of 2’-hydroxy-5’-fluorochalcone. Still, the best activity was exhibited by 2-

methoxy-2’-hydroxychalcone, possibly due to the presence of methoxy group, considering that potentiating effect of methoxy group on antibiofilm 

activity is known from some previous studies.[45][46] We therefore selected this compound for further investigation of its antivirulence properties. To 

demonstrate that this chalcone is not just a potent antibiofilm agent, we tested its influence on several important biofilm-associated virulence factor 

genes of A. baumannii. All of the tested biofilm-associated genes exhibited significant downregulation, however, the most notable finding is significant 

inhibition of ompA gene expression. As described previously, OmpA is a protein which can induce adherence and invasion of bacteria to human epithelial 

cells, and trigger host cell apoptosis, promote antimicrobial resistance, inhibit the alternative complement pathway, and induce the biogenesis of 

cytotoxic OMVs, biofilm formation, and surface motility.[1][8] The combination of these features results in a strain that is much more virulent and 

associated with higher morbidity and mortality rates in infected patients. Recent study has demonstrated that bacteremic or non-bacteremic pneumonia-

causing strains express much higher levels of ompA compared to colonizing non-pathogenic strains. Multivariate analysis, performed within latter study, 

further showed that ompA expression is an independent risk factor for pneumonia, bacteremia, and mortality in A. baumannii infected patients. 

Additionally, the same study demonstrated a substantial role of OmpA in mortality and dissemination of infection in a murine peritoneal sepsis model.[47] 

In order to demonstrate the potential ompA-dependent antivirulence activity of compound 1, we decided to further evaluate phenotypic features 

associated with this gene, such as adhesion and motility. ECM proteins are important mediators in bacterial adhesion to host tissues, and A. baumannii 
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displays high affinity binding to these proteins, including fibronectin and collagen.[48] Furthermore, it was shown that OmpA plays a significant role in 

fibronectin-mediated adhesion.[11] Therefore, we tested fibronectin- and collagen-mediated binding affinity of A. baumannii, and found that it is 

considerably reduced by compound 1. Only the fibronectin binding of A. baumannii wound isolate was not significantly affected, most likely due to 

generally weaker ECM-binding affinity exhibited by this strain. Fibronectin-associated antiadherence properties of similar chalcone compounds were 

previously demonstrated against methicillin-resistant Staphylococcus aureus (MRSA).[34] Also, comparable results were reported for AOA-2, a cyclic 

hexapeptide that was shown to inhibit the adhesion of A. baumannii strain ATCC 17978 to A549 cells. This peptide, also a potent biofilm inhibitor, was 

further tested in vivo, in a peritoneal sepsis murine model, where it succeeded to significantly reduce spleen and lung bacterial loads, and to decrease 

mortality. Most importantly, the authors have demonstrated that AOA-2 interact with OmpA protein.[49]  

Two independent forms of motility have been described in A. baumannii: twitching and surface motility.[6] Although, the role of motility in virulence of A. 

baumannii is still not well established, there are some observations that indicate its potential contribution to the increased virulence. For example, a 

hypermotile variant of A. baumannii ATCC 17978 strain with disrupted hns-like gene displayed increased virulence potential in the Caenorhabditis elegans 

infection model.[50] Similarly, several isolated rifampin-resistant A. baumannii ATCC 17978 rpoB mutants showed defective surface motility and attenuated 

phenotype in C. elegans fertility model.[51] According to Clemmer et al.,[16] the expression of ompA is linked to the surface motility of A. baumannii, 

therefore we tested the impact of compound 1 on this type of motility. Unluckily, A. baumannii ATCC 19606 is a non-motile strain,[52] so it could not be 

used for evaluation of antimotility activity. However, surface motility of A. baumannii wound isolate was considerably inhibited by compound 1. The QS 

system is also involved in surface motility of A. baumannii, but since the expression of abaI was not detected in wound isolate, it could be assumed that 

impaired motility is related to the inhibition of ompA expression. Interestingly, two recent studies showed that honokiol, magnolol, and curcumin, which 

are plant products same as chalcones, also co-inhibit biofilm formation and surface motility in A. baumannii ATCC 17978 strain. These studies further 

demonstrated increased survival of C. elegans nematodes infected with treated strains in comparison to positive controls. Consequently, these results 

provide additional evidence that impaired biofilm formation and surface motility in A. baumannii strains result in reduced virulence in vivo.[53][54] 

Finally, since we demonstrated significant downregulation of abaI in A. baumannii ATCC 19606, we decided to test the production of AHLs, signal 

molecules that are synthesized by AbaI, as a part of QS system.[21] N-(3-hydroxydodecanoyl)-L-homoserine lactone is so far the only described AHL 

molecule in A. baumannii, whose binding to AbaR was shown to contribute to biofilm forming ability and surface motility through the modification of 

gene expression. More importantly, some authors have documented its association with virulence.[23][55] Regarding the quorum-quenching ability of 

chalcone-related compounds in A. baumannii, i.e. the ability to suppress QS-mediated intercellular communication, Bhargava et al. discovered potent 

activity of certain Glycyrrhiza glabra flavonoids.[55] This finding is in agreement with potent quorum-quenching activity of compound 1 against A. 

baumannii ATCC 19606, that we observed in this study, however, we could not test its impact on QS system of A. baumannii 766, since the expression of 

key QS element AbaI, was not detected by qPCR. 

Conclusions 

Thus far, we showed that the use of 2-methoxy, 2’-hydroxy substituted chalcone could provide us with a possibility to reduce two key features that make 

A. baumannii one of the most problematic pathogens of today, that is, ability to persist and to rapidly develop antimicrobial resistance. By inhibiting its 

biofilm production, this compound makes these bacteria vulnerable to a range of exterior agents, whereas attenuation of its virulence substantially 

reduces pathogenic infections and severe outcomes without direct activity against its growth, consequently generating much slower selection of resistant 

mutants. The fact that the impact of chalcones or related compounds on the expression of A. baumannii key virulence factors have not been studied 

earlier, further contributes to the significance of this study. Having described structure and properties of this potential antivirulence agent, we provide 

information on its stability, solubility, and bioavailability that could be useful in future investigations, perhaps design of drug formulations for in vivo 

studies. 

Experimental Section 

Materials and Methods 

Reagents purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA) were used for synthesis of compounds. Also, 96% (v/v) ethanol, NaOH, HCl, dimethyl 

sulfoxide (DMSO), type I recombinant human collagen, Triton X-100, ethyl acetate, and hydroxylamine were purchased from Sigma-Aldrich Inc. Tryptic 

soy broth (TSB), agarose, and tryptone were bought from Torlak (Belgrade, Serbia), whereas Mueller-Hinton broth (MHB) and 0.5% safranin were 

procured from HiMedia Laboratories Pvt. Ltd. (Mumbai, India). Also, human fibronectin, purchased from Serva (Heidelberg, Germany) was used in this 

study. Thin-layer chromatography (TLC) was conducted with silica gel 60 F254 aluminum sheets (Merck, Darmstadt, Germany). FTIR spectra were 

recorded on spectrometer Nicolet iS10 (Thermo Fisher Scientific, Waltham, MA, USA), using attenuated total reflectance (ATR) mode. Measurements 
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were performed in a spectral range of 400–4000 cm−1 with a resolution of 4 cm-1 and the number of scans was 32. NMR spectra were taken on Bruker 400  

spectrometer (Bruker, Billerica, MA, USA), at 400, 100 and 376.46 MHz for 1H, 13C and 19F NMR spectra, respectively, using tetramethylsilane as an internal 

standard in deuterated chloroform (CDCl3). The chemical shifts were expressed in ppm and the coupling constants (J) in Hz. Splitting patterns were 

designated as singlet (s), doublet (d), triplet (t) and multiplet (m). High-resolution mass spectra were measured by Agilent 6210 Time-of-Flight LC/MS 

system (Agilent Technologies, Palo Alto, CA, USA). The microscopy analysis was performed using the OPTICA B-500MET light microscope (Optica SRL, 

Ponteranica, Italy). Image was collected in reflective mode with OPTIKAM PRO 8LT - 4083.18 camera equipped with scientific-grade CCD sensor. XRD 

from sample powder was obtained on Philips PW 1050 diffractometer (Philips, Eindhoven, The Netherlands) using Cu-Kα radiation (Ni filter). The sample 

was scanned in the 2θ range of 10° to 70°, with a scanning step width of 0.05°, and speed of 2 s per step. Thermal analysis was conducted on SETARAM 

apparatuses (Caluire-et-Cuire, France), SETSYS evolution TGA/DTA and DSC 131 EVO controlled by CALISTO software. For TGA/DTA sample was placed 

in an alumina crucible and heated from room temperature up to 900 °C with a heating rate of 10 °C min-1. The phase transition within the region of 

thermal stability was evaluated by DSC. For this purpose accurately weighed sample was hermetically sealed in 30 μl aluminum pans and heated from 

30 °C to 150 °C at a rate of 10 °C min-1 in nitrogen gas flow. EZ Read 400 Microplate Reader (Biochrom, Holliston, MA, USA) was used for the 

measurement of optical density (OD) values. 

General Procedure for the Synthesis of Compounds 1-4 

Compounds were synthesized by Claisen-Schmidt condensation of non-substituted (1) or substituted 2-hydroxyacetophenone (2-4) and substituted 

benzaldehyde, in the presence of relatively strong base (60% (w/v) NaOH), at room temperature. 2-hydroxyacetophenon (0.012 mol) and benzaldehyde 

(0.01 mol) were simultaneously dissolved in 96% (v/v) ethanol (10 ml) with continuous stirring. Resulting colorless solution was supplemented gradually 

with 60% (w/v) NaOH in small portions (20 g in total), until the blood-red color was achieved. The solution was then stirred overnight at room 

temperature, in order to precipitate the chalcone as orange sodium salt and the resulting mixture was kept at 0 °C for 24 h. Afterwards, the mixture was 

diluted with ice water and acidified with cold 1 mol l-1 HCl, gradually until the pH of approx. 3 was reached. The resulting yellow precipitate was then 

filtered in vacuum, washed with ice water to a near neutral pH level, and the crude mixture was left to air-dry in dark, after which it was purified by 

preparative TLC using the silica gel plates and toluene as eluent. After removal of toluene under vacuum, the crude products recrystallized from ethanol.  

(E)-1-(2-hydroxy-5-fluorophenyl)-3-(2,6-dichlorophenyl)-prop-2-en-1-one (2) 

Yellow crystals, Yield: 62.49%. IR (ATR): 1645.1, 1578.9, 1478.9, 1355.4, 1240.9, 1170.0, 972.3, 850.5, 835.5, 784.1, 722.1, 677.2. 1H NMR (400 MHz, CDCl3): 

12.43 (s, -OH, 1H); 8.02 (d, J=16, a, 1H); 7.75 (d, J=16, b, 1H); 7.51-7.49 (m, ArH-C(6’), 1H); 7.42 (d, J=8, ArH-C(3), ArH-C(5), 2H); 7.26-7.22 (m, ArH-C(4), ArH-

C(4’), 2H); 7.03-6.99 (m, ArH-C(3’), 1H). 13C NMR (100 MHz, CDCl3): 192.90; 159.88; 156.13; 153.76; 139.18; 135.44; 132.04; 130.34; 129.05; 128.34; 124.46; 

124,22; 120.00; 119.92; 119.43; 119.37; 114.92; 114.69. 19F NMR (376.46 MHz, CDCl3): δ = −123.78. HRMS (ESI) m/z calcd for C15H9Cl2FO2 [M]+ 311.135 found 

311.839. 

(E)-1-(2-hydroxy-5-fluorophenyl)-3-(2-trifluoromethylphenyl)-prop-2-en-1-one (3) 

Yellow crystals, Yield: 85.06%. IR (ATR): 1644.3, 1586.8, 1574.6, 1484.1, 1351.8, 1286.4, 1238.9, 1099.8, 1061.1, 1034.7, 1015.6, 970.9, 850.8, 771.4, 757.5, 

719.2, 680.3, 651.1. 1H NMR (400 MHz, CDCl3): 12.50 (s, -OH, 1H); 8.31 (d, J=15.20, a, 1H); 7.85 (d, J=7.6, ArH-C(6’), 1H); 7.69 (d, J=7.6, ArH-C(3), 1H); 7.66-

7.62 (m, ArH-C(6), 1H); 7.56-7.53 (m, ArH-C(4), ArH-C(5), 2H); 7.49 (d, J=15.20, b, 1H); 7.28-7.23 (m, ArH-C(4’), 1H); 7.03-6.99 (m, ArH-C(3’), 1H). 13C NMR 

(100 MHz, CDCl3): 192.47; 159.92; 156.11; 153.74; 141.57; 133.48; 132.22; 130.27; 128.10; 126.51; 126.45; 124.42; 124.19; 123.99; 120.11; 114.74. 19F NMR 

(376.46 MHz, CDCl3): δ = −124.00 (-F); δ = −58.78 (-CF3). HRMS (ESI) m/z calcd for C16H10F4O2 [M]+ 310.243 found 311.084. 

(E)-1-(2-hydroxy-4-methylphenyl)-3-(2-methyl-4-fluorophenyl)-prop-2-en-1-one (4) 

Yellow crystals, Yield: 93.15%. IR (ATR): 3015.3, 1640.7, 1573.2, 1504.2, 1493.9, 1365.5, 1286.9, 1234.9, 1208.3, 1167.9, 1146.06, 975.9, 955.7, 943.8, 849.7, 

784.2, 735.1. 1H NMR (400 MHz, CDCl3): 12.79 (s, -OH, 1H); 8.15 (d, J=15.6, a, 1H); 7.79 (d, J=8.4, ArH-C(6’), 1H); 7.71-7.67 (m, ArH-C(6), 1H); 7.51 (d, J=15.2, b, 

1H); 6.96-6.93 (m, ArH-C(5), ArH-C(5’), 2H); 6.84 (s, ArH-C(3), 1H); 6.76-6.74 (m, ArH-C(3’), 1H); 2.49 (s, -C(2)-CH3, 3H). 13C NMR (100 MHz, CDCl3): 193.01; 

163.17; 163.88; 162.67; 148.17; 141.37; 141.32; 141.24; 130.05; 129.52; 128.61; 128.52; 121.15; 120.21; 118.75; 117.81; 117.60; 113.74; 113.53; 22.00; 19.95. 19F 

NMR (376.46 MHz, CDCl3) δ = −109.90. HRMS (ESI) m/z calcd for C17H15FO2 [M]+ 270.298 found 270.829. 

 

Spectral data of previously published compound 1[30] are provided in Supporting information.  
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Bacterial Strains and Growth Conditions 

A. baumannii wound isolate (766) obtained from Clinical Medical Center Zvezdara Belgrade and A. baumannii type strain ATCC 19606 (KWIK-STIK™, 

Microbiologics Inc., St. Cloud, MN, USA) were used in this study. The wound isolate (766) was initially identified as member of Acinetobacter calcoaceticus-

baumannii (Acb) complex by VITEK® 2 system (bioMérieux, Craponne, France). The strain was later confirmed as A. baumannii on the basis of growth at 

44 °C and obtained FTIR spectrum. According to susceptibility testing performed by broth microdilution method and VITEK® 2 system, A. baumannii 766 

was classified as XDR, susceptible only to colistin. Both strains were grown in TSB at 37 °C for 24 h prior to experiments. 

Growth of A. baumannii strains in MHB supplemented with compound 1 at concentrations of 70 μg ml-1, 35 μg ml-1, and 10 μg ml-1 was monitored at five 

different time points (1 h, 3 h, 6  h, 24 h, and 48 h).[56] Cultures were inoculated at an initial optical density at 600 nm (OD600) of 0.04 and incubated at 37 °C. 

The growth was followed by determining OD600 values at each time point. 

Biofilm Assay 

The biofilm production of A. baumannii was tested in the presence of compounds 1-4 at sub-MIC of 70 μg ml-1. Compound that exhibited greatest activity 

was further evaluated at concentrations of 35 μg ml-1 and 10 μg ml-1. The samples were prepared by using DMSO at concentrations below 1% (v/v) for 

dissolution. TSB supplemented with an additional 1% glucose was used as the growth medium. Briefly, strains, inoculated at approx. 106 CFU ml-1, were 

grown in 96-well plates (Sarstedt, Newton, NC, USA) at 37 °C for 24 h. Afterwards, the plates were washed three times with phosphate-buffered saline 

(PBS) and then fixated by air-drying at 60 °C for 1 h. Fixed biofilms were then stained with 0.5% safranin for 15 min. Unbounded dye was rinsed off under 

running tap water, and the bounded dye extracted with 96% (v/v) ethanol. Finally, ODs were measured at 490 nm.[57] 

Quantitative Real-Time PCR   

Cultures of A. baumannii in MHB, inoculated at approx. 108 CFU ml-1 and treated with 70 μg ml-1, 35 μg ml-1, and 10 μg ml-1 of compound 1, along with 

untreated counterparts, were incubated at 37 °C overnight. Then, the total RNA extraction was performed using RNeasy Mini Kit (Qiagen, Hilden, 

Germany) with a modified lysis step.[58] DNase I treatment was performed by an Ambion DNAfree™ Kit (Thermo Fisher Scientific, Cambridge, MA, USA). 

Reversed transcription was done using isolated RNA (1 μg) as a template, according to the manufacturer’s protocol (Thermo Scientific, Vilnius, Lithuania). 

Random hexamers (Applied Biosystems, Foster City, CA, USA) and RiboLock RNase inhibitor (Thermo Scientific, Vilnius, Lithuania) were used in the 

reactions. Quantification of gene transcripts was performed using KAPA SYBR Fast qPCR Kit (KAPA Biosystems, Wilmington, MA, USA) in 7500 Real-

Time PCR 265 system (Applied Biosystems, Foster City, CA, USA) under the following conditions: 3 min at 95 °C activation, 40 cycles of 15 s at 95 °C and 

60 s at 60 °C. Normalization was done against the rpoB gene using the 2-ΔΔCt method.[59] Primers used in the study are listed in Table 1. All primers were 

purchased from Thermo Scientific. 

Table 1. The list of primers used in this study. 

Gene Primer sequence (5'→3') Reference 

rpoB 
TCCGCACGTAAAGTAGGAAC 

ATGCCGCCTGAAAAAGTAAC [58] 

ompA 
TCTTGGTGGTCACTTGAAGC 

ACTCTTGTGGTTGTGGAGCA [59] 

bap 
AATGCACCGGTACTTGATCC 

TATTGCCTGCAGGGTCAGTT [60] 

abaI 
CCGCCTTCCTCTAGCAGTCA 

AAAACCCGCAGCACGTAATAA 
[61] 

 

Fibronectin- and Collagen-Binding Assays 

The methods were performed as described earlier with some modifications.[11][64] Wells of the sterile 96-well plates were coated with human fibronectin 

(100 μg ml-1) or type I recombinant human collagen (100 μg ml-1) at 4 °C for 16 h. Then the wells were washed three times with PBS and blocked with 2% 

(w/v) bovine serum albumin (BSA) in PBS at room temperature for 1 h. Following the removal of BSA, the wells were once more washed three times with 

PBS, just before the addition of A. baumannii strains (100 μl), previously grown overnight at 37 °C in MHB (initial inoculum of approx. 108 CFU ml-1), non-
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supplemented or supplemented with compound 1 at 70 μg ml-1, 35 μg ml-1, and 10 μg ml-1. The plates were subsequently incubated at 37 °C for 3 h, after 

which non-adherent bacteria were washed out with PBS and the adhered cells collected by adding of sterile PBS supplemented with 0.5% Triton X-100 

(125 μl). Serial tenfold dilutions of lysates were then plated onto Luria-Bertani agar (LBA) and incubated at 37 °C for 24 h in order to enumerate the 

colonies. 

Surface Motility Assay 

Surface motility was tested on 0.3% agarose plates, containing 2.5 g l-1 NaCl and 5 g l-1 of tryptone, as described with slight modification.[65] Cultures in 

MHB, with an inoculum size of 1.5 x 108 CFU ml-1, treated with 70 μg ml-1, 35 μg ml-1, and 10 μg ml-1 of compound 1, along with untreated control, were 

grown at 37 °C to an early stationary phase, after which the freshly prepared plates were point inoculated with bacterial suspensions (2 μl). The plates 

were subsequently incubated at 37 °C in dark for 42 h i.e. until the appearance of specific motility patterns. ImageJ 1.52a software (National Institutes of 

Health, Bethesda, MA, USA) was used for the calculation of surface areas covered by migrating bacteria. 

Colorimetric Quantification of AHLs 

AHL production was screened by colorimetric quantification method.[66] The strains, inoculated at 1.5 x 108 CFU ml-1, were grown overnight in MHB (5 ml) 

supplemented with compound 1 at 70 μg ml-1, 35 μg ml-1, and 10 μg ml-1. Then the tubes were centrifuged at 5,000 rpm for 15 min, and the cell pellets 

were discarded. Supernatants were collected and filtered through a 0.22 μm pore size filters, in order to eliminate cell debris. The filtrates were mixed 

with ethyl acetate in 2:1 ratio and vortexed for 10 min, after which the mixtures were left to stand for 5 min. The upper organic portions were recovered, 

and the procedure was repeated twice with the remaining lower aqueous portions. Collected organic portions were then dried at 40 °C, and each sample 

(160 μl) was transferred into wells of 96-well plates supplemented with 1:1 mixture of 2 M hydroxylamine and 3.5 M NaOH (20 μl), and 1:1 mixture of FeCl3 

(10% in 4 M HCl) and 96% (v/v) ethanol (20 μl). The ODs of dark brown colored ferric hydroxamate complexes were then measured at 520 nm. 

Statistical Analysis 

All experiments were performed at least three times and the results are presented as mean values ± SDs. One-way analysis of variance (ANOVA), 

followed by Tukey’s post hoc test was used for comparisons between control and experimental groups. Values for P < 0.05 or less were considered to be 

statistically significant. Statistical analysis was carried out and graphs were prepared by using GraphPad Prism 8 software (San Diego, CA, USA). 

Supplementary Material 

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cbdv.202000786. 
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Entry for the Graphical Illustration 
 

 

Twitter Text 

2-methoxy substituted hydroxychalcone has a potential to prevent serious illness in A. baumannii infected patients through 

downregulation of bap and most notably ompA gene expression. 
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